Développement d'une plateforme SERS basée sur des fibres optofluidiques pour des applications de biosensibilité efficaces
(Document en Anglais)
- Thèse consultable sur internet, en texte intégral. Accéder au(x) document(s) : Ce document est protégé en vertu du Code de la Propriété Intellectuelle.
- Auteur
- Benazza Amine
- Date de soutenance
- 22-10-2024
- Directeur(s) de thèse
- Humbert Georges - Auguste Jean-Louis
- Président du jury
- Lamy de la Chapelle Marc
- Rapporteurs
- Lamy de la Chapelle Marc - Piot Olivier
- Membres du jury
- Humbert Georges - Dinish U.s. - Andersson-Engels Stefan
- Laboratoire
- XLIM - UMR CNRS 7252
- Ecole doctorale
- École doctorale Sciences et Ingénierie (Limoges ; 2022-)
- Etablissement de soutenance
- Limoges
- Discipline
- Sciences et ingénierie pour l’information
- Classification
- Sciences de l'ingénieur
- Mots-clés libres
- Spectroscopie Raman exaltée en surface, Fibre optique, Nanoparticules, Biodétection
- Mots-clés
- Biocapteurs - Innovation,
- Cristaux photoniques,
- Nanotechnologie
Les méthodes actuelles de détection des maladies, telles que les biopsies traditionnelles de tissus et de liquides, rencontrent souvent des défis liés à l'invasivité, à la sensibilité limitée et à la durée des procédures, ce qui peut entraver le diagnostic précoce et le traitement efficace. La Spectroscopie Raman exaltée de Surface (SERS) offre une alternative prometteuse grâce à sa nature non invasive, sa haute sensibilité et sa capacité à détecter des niveaux traces de biomarqueurs avec spécificité. Cependant, les plateformes SERS conventionnelles rencontrent des problèmes de fiabilité des mesures. Cette thèse explore l'utilisation de fibres à cristaux photoniques (PCFs) comme capteurs innovants pour SERS, abordant ces défis et améliorant son application dans la biodétection et le diagnostic médical. Les PCFs offrent des surfaces d'interaction accrues et une fiabilité supérieure par rapport aux substrats planaires traditionnels, permettant une détection efficace des analytes cruciale pour les diagnostics précoces. Grâce à l'optimisation des PCFs effilées, nous obtenons une meilleure efficacité de couplage de la lumière, en équilibrant la taille du cœur pour améliorer à la fois la sensibilité et la reproductibilité. La mise au point d'un système de détection SERS plug-and-play simplifie l'utilisation, démontrant ainsi son efficacité pour les applications cliniques pratiques. En plus de la conception des fibres, la recherche explore la relation entre les propriétés des nanoparticules (NP) et l'amélioration du signal SERS. Des investigations expérimentales ont identifié les nanosphères d'or de 60 nm comme la forme la plus efficace pour offrir des performances SERS constantes et supérieures. Notre analyse montre que l'ancrage des NP à l'intérieur des fibres empêche leur agrégation, préservant ainsi leurs propriétés plasmoniques essentielles pour une performance SERS fiable. Des simulations numériques valident que ces NPs offrent un renforcement optimal du champ électrique par rapport à l'absorption, les rendant particulièrement efficaces pour les applications SERS. Les applications pratiques des PCFs basés sur SERS sont démontrées dans la détection de biomarqueurs de maladies, tels que le TNF-alpha, en utilisant une approche innovante basée sur le sandwich. Les recherches futures continueront à élargir ces applications à des cibles plus complexes, telles que les vésicules extracellulaires, augmentant ainsi l'impact des PCFs basés sur SERS dans le diagnostic médical.
- Type de contenu
- Text
- Format
Pour citer cette thèse
Benazza Amine, Développement d'une plateforme SERS basée sur des fibres optofluidiques pour des applications de biosensibilité efficaces, thèse de doctorat, Limoges, Université de Limoges, 2024. Disponible sur https://aurore.unilim.fr/ori-oai-search/notice/view/2024LIMO0064