Conjugaison et cyclage dans les groupes de Garside, applications cryptographiques
(Document en Français)
- Thèse consultable sur internet, en texte intégral. Accéder au(x) document(s) : Ce document est protégé en vertu du Code de la Propriété Intellectuelle.
- Auteur
- Maffre Samuel
- Date de soutenance
- 21-11-2005
- Directeur(s) de thèse
- Berger Thierry
- Président du jury
- BOREL Jean-Pierre
- Rapporteurs
- GIRAULT Marc - GONZALEZ-MENESES Juan
- Membres du jury
- BERGER Thierry - GABORIT Philippe - ZIMMERMANN Alexander - ARNAULT François - PICANTIN Matthieu
- Laboratoire
- LACO - Laboratoire d'Arithmétique, de Calcul formel et d'Optimisation - UMR 6090
- Ecole doctorale
- École doctorale Sciences - Technologie - Santé - STS (Limoges ; ...-2009)
- Etablissement de soutenance
- Limoges
- Discipline
- Mathématiques et Applications
- Classification
- Mathématiques,
- Technologie (Sciences appliquées)
- Mots-clés libres
- algorithmes, cryptographie, groupes (algèbre)
- Mots-clés
- Cryptographie à clé publique - Thèses et écrits académiques,
- Tresses, Théorie desTresses, Théorie des -- Thèses et écrits académiques
Ce travail s'inscrit dans la thématique de la cryptographie basée sur les tresses. Nous nous intéressons au problème de conjugaison et au problème des cyclages présentés par K.H. Ko, S.J. Lee et al. à CRYPTO 2000 (LNCS 1880) dans New public-key cryptosystem using braid groups. D'une part, nous montrons que l'inversion de la fonction cyclage admet une solution polynomiale dans les groupes de Garside, qui sont une généralisation des groupes de tresses ; ceci permet de résoudre efficacement le problème des cyclages. D'autre part, le travail réalisé sur le problème de conjugaison et ses variantes met en relief le rôle joué par les générateurs aléatoires de tresses. Nous proposons un algorithme qui donne une factorisation du secret sous la forme d'un diviseur et d'un multiple. Ceci permet de définir deux nouvelles instances dont les secrets sont de taille réduite. De plus, nous exploitons la double structure de Garside des groupes de tresses afin d'améliorer l'efficacité de cette réduction. Nous observons que le choix du générateur aléatoire influe grandement sur la sécurité d'une instance et donnons plusieurs éléments constructifs et encourageants pour de futures recherches dans la conception d'un bon générateur aléatoire de tresses.
- Type de contenu
- Text
- Format
- Entrepôt d'origine
- Identifiant
- unilim-ori-15033
- Numéro national
- 2005LIMO0028
Pour citer cette thèse
Maffre Samuel, Conjugaison et cyclage dans les groupes de Garside, applications cryptographiques, thèse de doctorat, Limoges, Université de Limoges, 2005. Disponible sur https://aurore.unilim.fr/ori-oai-search/notice/view/unilim-ori-15033