Ouvrir cette fenêtre en pleine page
  • Imprimer
  • Partager
    • Courriel
    • Twitter
    • Facebook
    • del.icio.us
    • Viadeo
    • LinkedIn

Problèmes de Complémentarité aux Valeurs Propres : Théories, Algorithmes et Applications

(Document en Français)

Accès au(x) document(s)

Modalités de diffusion de la thèse :
  • Thèse consultable sur internet, en texte intégral.
  • Accéder au(x) document(s) :
    • https://cdn.unilim.fr/files/theses-doctorat/2013LIMO4036.pdf
    Ce document est protégé en vertu du Code de la Propriété Intellectuelle.

Informations sur les contributeurs

Auteur
Hadia Rammal
Date de soutenance
19-09-2013

Directeur(s) de thèse
Adly Samir
Président du jury
YASSINE Adnan
Rapporteurs
HADDOU Mounir - SEEGER Alberto
Membres du jury
ACARY Vincent - ADLY Samir - ARMAND Paul - PINTO DA COSTA António - YASSINE Adnan

Laboratoire
XLIM - UMR CNRS 7252
Ecole doctorale
École doctorale Sciences et Ingénierie pour l'Information, Mathématiques (Limoges ; 2009-2017)
Etablissement de soutenance
Limoges

Informations générales

Discipline
Mathématiques et Applications
Classification
Mathématiques

Mots-clés libres
algorithmes, analyse mathématique
Mots-clés
Problèmes aux valeurs propres - Thèses et écrits académiques,
Algorithmes - Thèses et écrits académiques,
Analyse stochastique - Thèses et écrits académiques
Résumé :

Cette thèse porte sur le développement des méthodes mathématiques applicables à l'étude théorique et numérique d'une large classe de problèmes unilatéraux. Nous considérons plus particulièrement les problèmes de complémentarité aux valeurs propres PCVP engendrés par le cône de Pareto et le cône de Lorentz. De tels problèmes apparaissent dans de nombreuses disciplines scientifiques comme la physique, la mécanique et l'ingénierie. Dans un premier temps, nous nous intéressons à la résolution de PCVP en utilisant une méthode adéquate, “Lattice Projection Method LPM”, menant à un résultat efficace et performant. L'originalité de cette formulation, en comparaison avec la littérature existante, réside dans le fait qu'elle ne repose pas sur l'approche de complémentarité. Notre contribution se reflète aussi par l'étude des conditions de la non-singularité des matrices Jacobiennes utilisées dans la méthode de Newton semi-lisse SNM pour détecter les solutions de tels problèmes. Ensuite, en nous basant sur les profils de performance, nous comparons LPM avec d'autres solveurs très connus dans la littérature. Les résultats obtenus s'avèrent en accord avec les observations expérimentales et montrent l'efficacité de LPM. Dans un second temps, nous traitons le cas stochastique de PCVP au sens des cônes de Pareto et de Lorentz. Nous reformulons un tel problème pour trouver les zéros d'une fonction semi-lisse. Ensuite, nous étudions les conditions de la non-singularité de la Jacobienne de cette fonction pour résoudre de tels problèmes. Puis, nous transformons le problème sous forme d'un problème de minimisation. Dans un dernier temps, nous abordons le problème inverse de complémentarité aux valeurs propres de Pareto PICVP. Cette tâche s'articule plus précisément sur la résolution de PICVP où nous présentons une nouvelle méthode, “Inverse Lattice Projection Method ILPM”, pour résoudre ces problèmes.

Informations techniques

Type de contenu
Text
Format
PDF

Informations complémentaires

Entrepôt d'origine
Ressource locale
Identifiant
unilim-ori-30661
Numéro national
2013LIMO4036

Pour citer cette thèse

Hadia Rammal, Problèmes de Complémentarité aux Valeurs Propres : Théories, Algorithmes et Applications, thèse de doctorat, Limoges, Université de Limoges, 2013. Disponible sur https://aurore.unilim.fr/ori-oai-search/notice/view/unilim-ori-30661