UNIVERSITE DE LIMOGES

ECOLE DOCTORALE « Sciences et Ingénierie pour I’ Information »
FACULTE DES SCIENCES ET TECHNIQUES

Année : 2014 These N°X

THESE
pour obtenir le grade de
DOCTEUR DE L’UNIVERSITE DE LIMOGES

Discipline : Informatique

présentée et soutenue par
Guillaume BOUFFARD

-
©
| -
o
s
(@)
@)
©
D
©
(¢b)
(0p)
D
i
|_

le 10 octobre 2014

A Generic Approach for Protecting Java Card™ Smart Card
Against Software Attacks

These dirigée par le Professeur Jean-Louis LANET

JURY :

Rapporteurs :
M. David NACCACHE, Professeur, Ecole Nationale Supérieure, Université Paris |1
M. Peter RYAN, Professeur, Université du Luxembourg

Examinateurs :
M. Jean-Louis LANET, Professeur, INRIA
M. Erik POLL, Associate Professor, Radboud University, Nijmegen, The Netherlands
M. Emmanuel PROUFF, Ingénieur, HDR, ANSSI/Laboratoire Sécurité des Composants
M. Eric VETILLARD, Ingénieur, Java Card Principal Product Manager, Oracle Inc.

“ Université
‘ : ‘ de Limoges

“Lupus est homo homini”

Plautus

I dedicated this thesis to my parents, my sister

and my Choupi.

Remercitements

La recherche est une succession de rencontres, généralement autour d’un verre ou ’on n’hésite
pas a refaire le monde. Durant cette these, j’ai eu la chance de rencontrer de nombreuses personnes
de milieux et d’origines différents. De belles rencontres ont jalonné ces trois années de travail. Il
est a présent temps d’avoir une pensée pour ceux qui ont su me soutenir, m’encourager ou encore
me ramener les pieds sur terre.

Je dois 'admettre, écrire ces remerciements fiit un exercice délicat qui attirera, je n’en doute
pas, le lecteur, curieux de savoir si j’ai eu une pensée pour lui.

La toute premiere personne que je souhaite remercier est JEAN-LOUIS LANET qui m’a fait
I’honneur de diriger cette thése. Sans son soutien, sa patience, son engouement et sa gentillesse,
le travail décrit dans ce mémoire n’aurait probablement jamais vu le jour. Responsable d’équipe
comme on en rencontre rarement, JEAN-LOUIS est une personne toujours a 1’écoute, motivée et
avec qui échanger est un réel plaisir. Je lui souhaite pleins de choses dans la nouvelle aventure qui
I’attend.

Je souhaite également remercier toutes les personnes qui ont contribué a la validation de
cette these. Tout d’abord merci & DAVID NACCACHE et PETER RYAN d’avoir accepté
d’étre les rapporteurs de mon mémoire et d’avoir consacré une partie précieuse de leur temps a
sa relecture. Je suis également trés reconnaissant & ERIK POoLL, EMMANUEL PROUFF et
ERIC VETILLARD d’avoir bien voulu faire partie de mon jury. Je souhaite aussi mentionner
CHRISTOPHE CLAVIER, AUDE CROHEN, JEAN DUBREUIL, CUONG HOoANG QUOC,
MEHDI MOUSTAKIM, TIANA RAZAFINDRALAMBO et ANTOINE WURCKER qui ont
patiemment relu, commenté et (beaucoup) corrigé les versions préliminaires de ce mémoire.

Je tiens également a remercier la région LIMOUSIN d’avoir financé cette these. Le LiMoU-
SIN est une région ou il fait bon vivre et ou j’ai rencontré des gens avec qui j’ai pris plaisir a
travailler et partager de bons moments. A D'Université de LIMOGES, j’ai pu travailler avec des
personnes de compétences et connaissances différentes. Merci a BENOIT, EVANS, GUILLAUME,
NicoLAs et RICHARD de m’avoir fait découvrir les joies de la synthese d’image. Tant de tra-
vail pour quelques secondes de beauté me surprendra toujours. Merci & RAZIKA et SAMIYA
pour leurs gentillesses. Bon courage, les filles, pour la suite! Enfin, merci & tous les chimistes,
plus particulierement & BENJ’ dit « Gros » et son fils spirituel OLIVIER, alias « P’tit Gros »,
AMANDINE, FLORIAN, JIHANE, KERIM, MANU, PIERRE-HENRI et RACHIDA qui ont
réussi, généralement autour de bonnes mousses & ’OBRIAN, a me faire partager leurs passions et
leurs doutes. J’ai enfin une pensée pour ODILE DUVAL, SYLVIE LAVAL et JULIE URROZ
pour leur amitié et leur aide dans les méandres dadministratifs. Merci 8 HUBERT MERCIER

pour son amitié et son aide précieuse quand mon ordinateur me boudait. Je tiens a remercier aussi

tous ces étudiants, la plupart anonyme, qui ont su m’aider durant cette these. Merci, entre autre,
a AFEF, ANIS, FANDI, MOHAMMED RANIM et ROKIA.

Sur une touche plus personnelle, je tiens a remercier les LEO de LIMOGES qui m’ont supporté
pendant ces trois ans. J’ai passé de trés bons moments que je garderais a jamais dans mon
coeur. Merci aussi & AGNES COUSSOT pour son amitié. Merci & PASCALINE LANET et
SYLVIE MICHEL-DANGE de m’avoir fait partager leur joie de vivre. Merci beaucoup & ADIL,
ARNAUD, AYMERICK, CHA, CHRISTIAN, CORALIE, DAMIEN, JENNY, JUJU, JULIE,
LuLu, MAEHMOUD, MARIE, MATTHIEU, MiMI, PHILIPPE, ROMAIN, SARAH, TOM,
ToToO, VINCENT et tous les autres pour leur soutien et leur amitié qui, méme avec la distance,
sont toujours la.

Je tiens aussi a remercier mes parents et ma soeur pour pour leur soutien sans faille durant
toutes ces années. Merci de m’avoir permis de poursuivre mes études sans trop savoir ce sur quoi
je déboucherai. Rassurez-vous, maintenant c’est fini!

Je ne pouvais pas finir ses remerciements sans avoir remercier ma CHOUPI. Merci de me
supporter et de rendre la vie tellement agréable. Merci d’avoir été présente durant tous ses moments
ou mes travaux de recherche ont pris le dessus sur le reste. Merci d’avoir cru en moi quand je n’y

croyais plus et surtout merci d’étre celle qui éclaire mon chemin.

Foreword

« Si la chance n’est pas avec moi, tant pis pour elle! »

— Once said by Christophe Clavier.

On our daily life, smart cards are the keystone of our security throughout the world. Most
smart cards are based on the Java Card! technology. Such a smart card embeds a Virtual Machine
(VM) to execute applications upon a friendly development environment. This approach increases
the security of the platform. In 2014, around 7.7 billion of smart secure elements will be sold.

The security of the Java Card platform has been mainly studied by the literature. Until 2010,
the Java Card platform suffers of two kinds of attacks: software and physical attacks. Physical
attacks are focused on the cryptographic algorithms’ implementation to retrieve cryptographic
keys through side channel attacks [Cla07a,Koc96] or fault injection [Bar-+04,CW13]. Software
attacks are based on the fact that the runtime relies on the Byte Code Verifier (BCV) to avoid
costly tests. Then, once someone finds an absence of a test during runtime, there is a possibility
that it leads to an attack path. Mainly, an attack aims at confusing the applet’s control flow upon
a corruption of the Java Card Program Counter or perturbation of the data [IL10].

At CARDIS 2010, Barbu et al. [BTG10] introduced a new kind of attack where a laser beam
injection perturbs an application. This application was compliant with the Java security rules
and was installed on a card where an embedded BCV had checked it. During the runtime, the
application is modified and an ill-formed code is executed. Their attack proves that a embedded
BCV can only prevent the installation of an ill-formed applet. But, an application can become an
ill-formed one via laser beam injection. As pointed by Vétillard et al. [VF10], combined attack is
a software attacks’ enabler on smart card.

This thesis began few months after the publication of these papers. This dissertation relates
the research undertaken within Smart Secure Devices (SSD) team in the XLIM laboratories. This
thesis aims at proposing a generic approach to improve and introduce efficient and affordable

high-level countermeasures which cover Java Card platform against the software attacks.

! Java and Java Card are registered trademarks of Oracle Inc. in the United States of America and other countries.

A Generic Approach for Protecting Java Card™ Smart Card Against Software Attacks

Contents

Foreword

List of Figures
List of Tables
Glossary
Acronyms

1 Introduction

1 Study Context

2 The Smart Card
2.1 The History of the Smart Card
2.2 The Design of the Modern Smart Card,
2.3 Smart Card’s Ecosystem
2.4 Conclusion

3 The Java Card Technology
3.1 The Java Technology
3.2 Java Card Platform
3.3 Conclusion e

11 State of the Art

4 Attacks on Java Card Smart Card
4.1 Product Card with no Post-Issuance Allowed
4.2 Product Card with Post-Issuance Allowed
4.3 Development Card
4.4 Conclusion e e e

5 Software Countermeasures
5.1 Applicative Countermeasures v v v v i et e e e
5.2 System Countermeasures vttt e e e e e e

iii

vii

ix

xi

10
14
15

17
18
21
30

31

33
34
37
43
46

2.3
5.4

I11

Dynamic Security Mechanisms
Conclusion e e e e

Contribution

6 Fault Tree Analysis

6.1
6.2
6.3
6.4

State-of-the-art Fault Tree Analysis in Security Analysis
Smart Card Vulnerability Analysis using Fault Tree Analysis
Exploitation of the Discovered Attack Vectors
Conclusion e

7 Java Card Control Flow Security

7.1
7.2
7.3
7.4
7.5

Method Invocation and Return
Security of the Branching Instructions in Java Card
Enabling Malicious Byte codes inside Java Based Smart Card
Security Automatons to Protect the Java Card Control Flow
Conclusion e e

8 Security of the Java Card Linker

8.1
8.2
8.3
8.4

Overview of the Java Card Linking Process
A Man in the Middle Attack Upon the Off-Card Linker
Confusion of the On-Card Linker
Conclusion e

9 Experimental Results

9.1
9.2
9.3
9.4
9.5
9.6

Tools Developed during this Thesis
Embedded Countermeasures
Evaluation of Attacks against the Control Flow
Evaluation of Attacks against the Java Card Linker
Evaluation of the Countermeasures
Conclusion e

10 Conclusion and Future Works

Appendices

A Overview of the State-of-the-Art Java Card Security

Publications

Bibliography

95

57

59
60
61
67
68

101
102
104
107
111

113
115
116
117
124
128
131

133
137
139
141

144

A Generic Approach for Protecting Java Card™ Smart Card Against Software Attacks

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2

5.1

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
7.3
7.4
7.5
7.6
7.7

The diners’ club card
The first American Expresscard.
The smart ring. e
The Bull CP8. e e
Smart card’s pin out [Wik14].o o L
An APDU command.
An APDU response. e
General architecture of the smart card internal circuit [Bar12, with modifications].
Smart card structure and packaging [Wik14, with modifications].
Decapsulated smart card chip [IOA12]. o L.

Java toolchain mechanism. oo oL
The Java architecture.
High-level architecture of the Java Card 3 platform [Sun08].
The Java Card security model.
Dependencies between each CAP file component [Ham12].
The Java Card architecture. L

Vulnerable “Square and Multiply” step of modular exponentiation.
Representation of an applet stored in a Java Card memory.

Application’s control flow graph.

The causal relationship between two events.
Code integrity tree. oL
Execution of ill-formed code.
The executed code is not the loaded one.
The executed code is not the storedone.
Data integrity tree.

Indirection table usage.
A Java Card stack. oL
Java Card stack during a method invocation.
Java Card frame stack state when the method return is corrupted.
Control flow graph of the applet constructor.
Applet constructor automatons.o
Applet constructor automatons. L.

8.1 The on-card linking process.
8.2 The Architecture of the man in the middle into the Java Card smart card.

9.1 Modus operandi of the man-in-the-middle against the off-card linker.

A Generic Approach for Protecting Java Card™ Smart Card Against Software Attacks

List of Tables

4.1 Existing fault model. 36
5.1 List of annotations. 54
7.1 Array with the called methods., 72
7.2 List of addresses in the EEPROM. 73
7.3 Dual stack: pushavalue. 81
7.4 Dual stack: push a reference. L oo L 81
7.5 Typed stack: push a second reference. L. 81
7.6 Basic representation of the automatons. o000 97
7.7 Summarise of the attacks against the Java Card control flow. 98
8.1 Overview of the attacks on the Java Card linker. 111
9.1 Cards used during this evaluation. 0L 114
9.2 Runtime countermeasures. Lo 117
9.3 Each tested card’s returned value for the native method call. 118
9.4 Cards used during this evaluation of EMAN2 attack. 121
9.5 Sum up of the evaluated cards against a heap type confusion. 122
9.6 Evaluation of the attacks against the finally-clause instruction. 123
9.7 Overview of attacks against the application’s control flow. 124
9.8 Overview of attack’s evaluation against the off-card linker. 125
9.9 Returned values. 127
9.10 Overview of attacks against the Java Card linker. 128
9.11 Dual stack evaluation. 0 Lo 130
9.12 Overview of attacks against the application’s control flow. 132

vii

A Generic Approach for Protecting Java Card™ Smart Card Against Software Attacks

Glossary

AES The Advanced Encryption Standard (AES) is a symmetric-key algorithm for encryption
of electronic data established by the U.S. National Institute of Standards and Technology
(NIST) in 2001. It supersedes the Data Encryption Standard (DES).

Byte code Byte code is a form of instruction set designed for efficient execution by a software
interpreter. The byte code is machine-independent code generated by the compiler and
executed by the Java virtual machine.

DES The Data Encryption Standard (DES) is a symmetric-key algorithm for the encryption of
electronic data. It was developed in the 70s at IBM and based on the Feistel function .

EEPROM Electrically-Erasable Programmable Read-Only Memory (EEPROM) is a non-volatile
memory where each pages can be independently read, erased, and re-written.

MNO Mobile Network Operator (MNO) provides wireless communications services and owns or
controls all the elements require to sell and deliver services to an end user.

PIN Personal Identification Number (PIN) is used to authenticate the owner for automated teller
machines and credit cards.

RAM Random Access Memory (RAM) is a memory where data are stored as volatile.

ROM Read Only Memory (ROM) is a non volatile memory which can be infinitely read. Once
data has been written onto a ROM chip, it cannot be removed.

RSA Rivest Shamir Adleman (RSA) is RSA a public-key cryptosystem widely used for secure
data communication .

Shellcode A shellcode is a small fragment of code used as the payload in the exploitation of a
software vulnerability.

SIM A Subscriber Identity Module (SIM) is a smart card required by mobile phone devices to
identify and authenticate subscribers.

ix

A Generic Approach for Protecting Java Card™ Smart Card Against Software Attacks

Acronyms

AID Application IDentifier.
APDU Application Protocol Data Unit.

API Application Programming Interface.

BCD Binary-Coded Decimal.
BCYV Byte Code Verifier.

BDMP Boolean logic Driven Markov Process.

CAP Converted Applet.
CFG Control Flow Graph.
CPN Colored Petri Net.

CPU Central Processing Unit.

FHA Functional Hazard Analysis.
FIRE Fault Injection for Reverse Engineering.
FMEA Failure Mode and Effect Analysis.

FTA Fault Tree Analysis.

G&D Giesecke & Devrient.

GP GlobalPlatform.

GPL GNU General Public License.
I/O Input/Output.

IT Information Technology.

ITSEF Information Technology Security Evaluation Facility.

JCDK Java Card Development Kit.

xi

JCF Java Card Forum.

JCK Java Compatibility Kit.

JCRE Java Card Runtime Environment.
JCVM Java Card Virtual Machine.

JIT Just In Time.

JNI Java Native Interface.

JPC Java Program Counter.

JVM Java Virtual Machine.
MMU Memory Management Unit.
NVM Non Volatile Memory.

OS Operating System.

OTP One Time Password.
PDA Personal Digital Assistant.
RFID Radio-Frequency IDentification.

SCADA Supervisory Control And Data Acquisition.
SCARE Side Channel Analysis For Reverse Engineering.

SW Status Word.
TLV Tag Length Value.

UML Unified Modeling Language.

USB Universal Serial Bus.

VM Virtual Machine.

A Generic Approach for Protecting Java Card™ Smart Card Against Software Attacks

Chapter 1

Introduction

“Begin at the beginning” the King said gravely, “and go on till you
come to the end; then stop”

— Lewis Carrol, Alice in Wonderland

Storing private and secret data requires secure elements which protect our assets against illegal
access. A secure element is a tamper-resistant platform which securely hosting applications and
their confidential and cryptographic data. The secure elements are everywhere around us — from
computers, cars, TV sets, secure SD cards, video game consoles and connected devices as mobile
phone, cars, fridge to next-gen devices. The most famous secure element is the smart card which
moved to everyday life.

A smart card is a secure, efficient and cost effective embedded system device that contains of a
microprocessor, memory modules (Random Access Memory (RAM), Read Only Memory (ROM),
Electrically-Erasable Programmable Read-Only Memory (EEPROM)) serial Input/Output (I/O)
interfaces and data bus. On chip operating system is stored in ROM and the applications are
stored in the EEPROM. On recent smart cards, the operating system boots on the ROM memory
and continues with the Flash memory. In this case, the application is stored on the Flash memory.

A smart card can also be viewed as an intelligent data carrier which can store data in a
secured manner and ensure data security during transactions. Security issues are one major area
of hindrance in smart card development and the level of threat imposed by malicious attacks on
the integrated software is of a high concern. To overcome this, industries and academia are trying
to develop countermeasures which protect the smart card from such attacks and keep transactions
secured [Bou+11]. Size constraints restrict the amount of on chip memory and a majority of smart
cards on the market have at most 5kB of RAM, 256 kB of ROM, and 256 kB of EEPROM which
has a deep impact on software design. The first tier safety relates to the underlying hardware.
To resist to an internal bus probing, all components (memory, Central Processing Unit (CPU),
crypto-processor, etc.) are on the same chip which is embedded with sensors covered by a resin.
Such sensors (light sensors, heat sensors, voltage sensors, etc.) are used to disable (temporarily or

permanently) the card or its applications when a physically attacked is detected. The software is

the second security barrier. The embedded programs are usually designed neither for returning
nor for modifying sensitive information without guarantying that the operation is authorised.
All applications stored in the smart card should be resistant to attacks. It is important to

analyse all the possible attack paths to mitigate them through adequate software countermeasures.

Software Security and Smart Card

From few decades, the smart card’s security is related to hardware security field. Using channel
side attacks [Cla07a,KKoc96] or a fault injected [Bar+04,CW13] on the chip can retrieve secret
cryptographic keys used by the attacked cryptographic algorithm implementation.

The smart card’s software security depends on the respect of the Common Criteria and some
other development guidelines which specified the security requirements expected for the targeted
implementation. The security level of an implementation is verified, an Information Technology
Security Evaluation Facility (ITSEF) evaluates the products and checks the security requirements
based on the state of the art.

Before 2010, only three scientific publications [IL10,MP08,Wit03] described new software attacks
against smart card. These attacks can be split into two categories: ill-formed application and bug
exploitation. The ill-formed application attacks succeeded because the card is not able to verify that
the code to execute is valid. A bug can exploit legal instructions when some checks are missing.
That allows the attacker to access unauthorised elements to set a system register for example.
These attacks can be counteracted by a code verifier embedded on the targeted card. Embed this
security component is a difficult work widely studied in the literature [Bas+99,Cas02b,Ler02,Ros03].
Nonetheless, nowadays few cards embed a partial code verifier.

In 2010, Barbu et al. [BTG10] have introduced the concept of combined attacks where a physical
attack enables a software attack. In this case, a legal application successfully verified by a code
checked is loaded on a card. During the runtime, an external fault confuses the application to
execute ill-formed instruction. As pointed by Vétillard et al. [VF10], the hardware attacks are a

software attacks enabler on smart card.

Motivation and Overview

This thesis began few months after these publications. Mainly focused on how a code checker
can be embedded into the smart cards, the manufacturers hardly ever embed countermeasure
against combined attacks. These countermeasures are executed during runtime but they are often
inefficient. Moreover, several countermeasures are designed in a bottom-up approach, in such a
way that they cut efficiently the attack path but a new avatar of an attack path can be found
easily.

This thesis aims at designing a top-down approach to mitigate the attack by protecting the

assets instead of blocking the attack path. In order to have a generic view of all the attacks, we

A Generic Approach for Protecting Java Card™ Smart Card Against Software Attacks

Introduction

propose to use a fault tree analysis. This method used in safety analysis helps to understand and
model a set of events which represent the attack paths and the means to eradicate them. This
thesis adapts this method to Java Card vulnerability analysis.

This dissertation is split intro three parts. The first part sets the context of our researches.
Chapter 2 introduces the smart card in its architecture and its environment. Chapter 3 presents the
Java Card technology which aims at being a friendly development environment where Java-based
applications are securely executed. This technology is widely used in the smart card world and it
is embedded in most smart cards worldwide.

The second part surveys the state of the art. A smart card embeds critical information
which interest evil-minded people. To increase the security of these cards, some attacks and
countermeasures had been proposed by the literature. They are surveyed in the second part of
this thesis. Chapter 4 details the already known attacks against smart cards and more particularly
Java Card platforms. Chapter 5 describes the state-of-the-art software countermeasures developed
to protect the card against the software attacks.

The third part explains the contributions of this thesis. The state of the art is often though with
a bottom-up approach. Moreover, often countermeasures are dedicated for protecting the device
against a specific attack path. Chapter 6 applies the Fault Tree Analysis in the smart card domain.
This chapter defines the properties that must be ensured: integrity and confidentiality of smart
card data and code. By modelling the conditions, new attack paths are discovered to get access to
the smart card contents. During this thesis, we mainly focus on how to protect the code integrity.
Breaking the code integrity should breach the data integrity and the confidentiality of the code and
data. This thesis presents two ways to break the code integrity: cheating the application’s control
flow or corrupting the Java Card linker. Using the fault tree approach, Chapter 7 presents newly
disclosed attack paths which change smart card control flow security. This chapter also introduces
high-level countermeasures to cover the control flow security. Next, Chapter 8 focuses on the Java
Card linker to improve its security. Indeed, during the installation of an application, corrupting
the linker aims at installing a different application from the one loaded on the card. This chapter
also presents countermeasures to prevent the linker to be corrupted. Finally, The results shown in

Chapter 9 validate our approach. This thesis concludes by its perspectives.

Page 3

A Generic Approach for Protecting Java Card™ Smart Card Against Software Attacks

PART |

STUDY CONTEXT

Chapter 2

The Smart Card

“With the advent of the transistor and the work in semiconductors, it
seems now possible to envisage electronics equipment in a solid block with no
connecting wires. The block may consist of layers of insulating, conducting,
rectifying, and amplifying materials, the electrical functions being connected
directly by cutting out areas of various layers.”

— Geoffroy Dummer

Contents
2.1 The History of the Smart Card 8
2.1.1 The Roots of the Smart Card 8
2.1.2 The Genesis of the Modern Smart Card 9
2.2 The Design of the Modern Smart Card 10
2.2.1 Physical Requirements oo Lo 11
2.2.2 Communication with the External World 12
223 Inmsidethe Chip 13
2.3 Smart Card’s Ecosystemo 14
2.4 Conclusion i e e e e e e e e e e e e 15

In daily life, one uses smart cards which help them to pay money for travel, phone, etc. And
now, it attracts a lot of markets’ attentions. The Eurosmart association forecasts that 7.7 billion
smart secure elements, included smart cards, will be sold in 2014 [Eurl4].

This chapter aims to introduce the smart card. First, its history is presented in Section 2.1.
After describing the invention of the modern smart card, the internal architecture of the recent
card is described in Section 2.2. To finish, Section 2.3 presents often typical applications of smart

cards before concluding this chapter.

2.1 The History of the Smart Card

2.1.1 The Roots of the Smart Card

At the beginning of year 1950 [Mil50], to ease payment of the New Yorker Diners’ club members,
Frank McNamara, in charge of the financial part, proposed a plastic payment card. A customer
who have no cash then could pay the bill easily. The Diners’ club card, Figure 2.1, was the first

bank card and it was used by 200 customers and accepted in 27 restaurants in New York city.

CRET
IBENTIFICATION
CaRD

WARATE AL o f AvimBRIILD Slasin

EIPIRIE JUHE 30, 1'9:1

SUBIL & TEF HEVE

Figure 2.1 — The diners’ club card (from: [WG11]).

The American Express credit card appeared in 1956 and its sample is presented in Figure 2.2.

The Bank of America distributed the card called BankAmericard since 1958. Nowadays, this card
is known as Visa card.

f J\mmu Expresis Companly, ““Eq‘
CREDIT CARD
EXPIRES APRIL 30, 1959

201]00&'750]0]

.7

;;;;;;

Figure 2.2 — The first American Express card. (source: [WG11]).

In the 60s, IBM engineers, in narrow link with the American government, used magnetic strips
to secure the storage system on plastic card. This process is described by Svigals in [Svil2]. London
public transport and the urban area of San Francisco transits set up tickets on magnetic strips

that we use everyday. Today, the MIFARE technology aims at changing tickets on magnetic strips
by contactless cards.

A Generic Approach for Protecting Java Card™ Smart Card Against Software Attacks

Chapter 2: The Smart Card

2.1.2 The Genesis of the Modern Smart Card

Contrary to what the French people think, the invention of the smart card is not only due to the
French Roland Moreno. Indeed, since 1947, the British Geoffroy Dummer laid the foundation for
the future of the smart card. As an Electronics engineer from the Ministry of Defence of England,
he designed a portable memory which could embed at around 64 bits of data. Its memory is made
of a substratum Bakelite! where are printed very fine brass tracks. This memory should be set
under an important electric current. Dummer presented his works [Dumb2] in 1952.

In 1969, two German engineers Jiirgen Dethloff and Helmut Groéttrup, at the Giesecke &
Devrient (G&D) company, invented the first integrated circuit containing a microcontroller in a
plastic card. Their idea did not yet exist on any market and they patented it [Det72] in 1972. They
had to wait until 1982 to see these cards used for the French phone booths.

Quickly after, in 1970, the Japanese researcher Kunitaka Arimura is the first and only one
who patented the concept of smart card in Japan. At the same time, Jules Ellingboe submitted a
patent [E1172] which describes an electronic payment card.

In 1974, the jack-of-all-trades Roland Moreno designed a card what will be the modern smart
card. Through his company, Innovatron, he patented a smart chip dedicated to store and exchange
sensitive data [Mor78]. In [Mor76], Moreno devised a software and hardware mechanism, presented
as inviolable, preventing the memory from non authorised access. For that purpose, Moreno used

an inhibitor mechanism. His proposed inhibitor can be:

an internal comparison of the PIN,

e an error counter which can enable the chip destruction due to the repeated submission of a

wrong PIN,
e a mechanism to execute a simple process,

e an access protection (read and write) on specific areas. Those sensitive areas can contain

secret codes, cryptographic keys, etc.

Those mechanisms, improved today, are still used in the modern smart card. The chip prototype,

designed by Moreno is shown in Figure 2.3.

2.1.2.1 When The Card Becomes Smart

In 1975, the Honeywell Bull company, thanks to the work of Bernard Badet, Francois Guillaume
and Karel Kuzweil patented [BGKS80] a portable card such as a credit card. This card embeds an

electrical signal processing mechanism.

1Tt is the first plastic makes from polymers synthetic.

Page 9

Figure 2.3 — The smart ring (source: http://www.rolandmoreno.com).

In 1977, again, the German Dethloff who patented a card with portable memory embedding
inhibitors into the microcontroller. The main advantage of this technique is that the microcontroller
is easily reconfigurable through a programming mechanism.

One year later, Michel Ugon proposed a patent with the Bull company, a non volatile memory
named Self-Programmable One-chip Microcomputer (SPOM). Through this technology, there is
also possible to embed the Moreno’s inhibitor inside the chip. In 1979, the Bull company presented
the first smart card named Bull CP8, as shown in Figure 2.4. This card has an 27C16 EEPROM

with 16 bytes and a 8-bit microprocessor. So, the card becomes a smart device.

BRDIS 9b542 14185

Av. Marnixlaan 28
1050 Brussel/Bruxelles Bull

TEL.02/5178411

Figure 2.4 — The Bull CPS.

The curious reader can delve into this epic story through this retrospective of the smart
card [She+04].

2.2 The Design of the Modern Smart Card

To interact with its environment, the smart card is compliant with the ISO/IEC 7816 [ISO07].
The ISO/IEC 7816 standard is split into fifteen parts standardised in 1998 and revisited regularly:

e Part 1: Cards with contacts — Physical characteristics;

e Part 2: Cards with contacts — Dimensions and location of the contacts;

A Generic Approach for Protecting Java Card™ Smart Card Against Software Attacks

http://www.rolandmoreno.com

Chapter 2: The Smart Card

e Part 3: Cards with contacts — Electrical interface and transmission protocols;

e Part 4: Organisation, security and commands for interchange;

e Part 5: Registration of application providers;

e Part 6: Interindustry data elements for interchange;

e Part 7: Interindustry commands for structured card query language;

e Part 8: Commands for security operations;

e Part 9: Commands for card management;

e Part 10: Electronic signals and answer to reset for synchronous cards;

e Part 11: Personal verification through biometric methods;

o Part 12: Cards with contacts — Universal Serial Bus (USB) electrical interface and operating

procedures;
e Part 13: Commands for application management in a multi-application environment;

e Part 15: Cryptographic information application.

As presented by the standard, parts 1, 2, 3, 10 and 12 are specific to cards with galvanic
contacts and three of them specify electrical interfaces. The other parts are independent of the
physical interface technology and they apply to cards which can be accessed by contacts and/or

by contactless technology [Wik14].

2.2.1 Physical Requirements

Mainly packaged into a piece of plastic, the smart card is composed by a chip located under
the contact area. On a contact smart card, the contact area measures one square centimetre,
comprising several gold-plated contact pads. Those pads provided electrical signal when the card
is inserted into a reader. Indeed, the card needs not only external power supplies to work but
also clock and reset signal. Specified by the ISO/IEC 7816 part 2, the smart card has 8 contacts

(Figure 2.5) where:

Page 11

o Contact C1 is assigned to supply voltage (Vce);
» Contact C2 is assigned to reset signal (RST);

o Contact C3 is assigned to the external clock signal

4)
C1 - Vee >J C5 - GND (CLK):

C2 - RST (|o6-vpp
03 - CLK C7-1/0 o Contact C4 is reserved for future used (RFU);
C4 - RFU 9) C8 - RFU o Contact C5 is assigned to electric ground (GND);
Figure 2.5 — Smart card’s pin out o Contact C6 is assigned to variable supply voltage
[Wik14]. (Vop)

o Contact C7 is assigned to data I/O signal;

e Contact C8, as the contact C4, is RFU.
Since the USB connection is more and more used to communicate with the smart card, contacts

C4 and C8 are used for to exchange which the host.

Recent smart cards are contactless. The chip is also connected to an antenna integrated into the
plastic body. The communication is done over the air thanks the Radio-Frequency IDentification
(RFID) technology [ISO00,ISO04].

2.2.2 Communication with the External World

To exchange information with the host, a smart card is compliant with ISO/IEC 7816-3. This part
specifies the two low layout protocols used to transmit information. The two transmission protocols
are T=0 — a character-level transmission protocol —and T=1, as a block-level transmission protocol.
For the contactless card, the ISO 14443-4 standardises the transmission protocol based on the T=0
and T=1 protocols.

In additional to those low level transmission protocols, the ISO/TEC 7816-4 defines the Applica-
tion Protocol Data Unit (APDU). There are two categories of APDU messages: APDU commands
from the host to the card and APDU responses sent by the card to the host. An APDU command
contains a mandatory 4-byte header (CLA, INS, P1, P2) and from 0 to 255 bytes of data. The size
of those data is represented by the Lc element and the response size expected is set into the Le

value.

Header Body
CLA | INS | P1 | P2 || Lc | Data field | Le

Figure 2.6 — An APDU command.

An APDU response is sent by the card to the reader. This response contains a mandatory

2-byte Status Word (SW) and from 0 to 255 bytes of data. The length of the data replied by the

A Generic Approach for Protecting Java Card™ Smart Card Against Software Attacks

Chapter 2: The Smart Card

card can be indicated on the begin of the APDU response.

Data length | Data field || SW

Figure 2.7 — An APDU response.

2.2.3 Inside the Chip

Contrary to all other smart card’s parts, the internal elements’ documents are not public by
the manufacturer. One knows that a smart card is a device which embeds microprocessors and
memories. Modern smart cards have a processor and a crypto-processor optimised to compute
cryptographic operations. Its memory is composed by a RAM module, a ROM area and a Non
Volatile Memory (NVM) (like EEPROM module) part. On the new smart cards, the ROM and
NVM modules are merged into a flash memory. The main smart card’s architecture is shown in

Figure 2.8.

Securit
Vee [GND RAM [NVM ROM O

Z 3 SENsors

N
j I I I
RST < address / data / control bus >
]

/\ 3 Random Number Symmetric Asymmetric
1/0 Generator (RNG)

CLK

crypto. crypto.

Figure 2.8 — General architecture of the smart card internal circuit [Barl2, with modifications].

Each memory has a different aim. In a smart card, the Operating System (OS) and miscellaneous
information (programs, Application Programming Interface (API) and data) are stored in the
ROM part. Personal information is set in the card during a personalisation process, and programs
installed after the card delivery are placed into the EEPROM memory.

Inside the plastic body, the smart card’s chip is packaged below the gold-plated contact as
presented in Figure 2.9. Often protected by a shield, the encapsulated chip is sticked with an
adhesive to the gold-plated contact pads. The wires are used to connect the chip to the contact
are often very thin.

To prevent invasive attacks, the smart card’s chip embeds many sensors (for detecting light, ther-
mal modification, etc.), memories’ redundancy and a shield. From a Scanning Electron Microscope
(SEM), the smart card’s chip is like that one shown in Figure 2.10.

The process used to depackage a chip is presented by Skorobogatov in [Sko05]. Once opened,

the chip can reveal crucial information.

Page 13

Chip Aldhesive

' Metal
Active Chip Side etal Contacts

Chi.p

Hotmelt

i Encapsulation i
Card Body Substrate

Bond Wire
Figure 2.9 — Smart card structure and packaging [Wik14, with modifications].

Figure 2.10 — Decapsulated smart card chip [[OA12].

2.3 Smart Card’s Ecosystem

Nowadays, we use smart card for many purposes. A smart card authenticates tis owner to access
the restricted features. For that purpose, the cards embed secrets which prove the owner’s identity.
The secrets contained into the card must not leak outside. Moreover, if the card detects an attack,
it may self-kill.

The main smart card’s market share includes:

The financial world for paying, or for withdrawing from an ATM, etc. upon a credit card
delivered by a bank institute. The best known credit cards are Visa, MasterCard and

American Express;

A Generic Approach for Protecting Java Card™ Smart Card Against Software Attacks

Chapter 2: The Smart Card

Telecommunications company where each user has a Subscriber Identity Modules (SIM) card.
This card, provided by a Mobile Network Operator (MNO), identifies the user through the

mobile network;

Identity e-document are provided by governments (e-governance), companies or schools for
people identification purpose. For instance, Spanish and Belgian governments deliver an
electronic ID card for its citizens. This kind of cards may contain biometric information, as
for example in France for the new driving licence and the news resident cards. It is also the
case of the biometric passport needed by some countries (the USA, for example). This kind

of passport has been introduced in France in 2006.

Smart cards can also be found within some companies, where a specific security level is applied.

They impose their employees to have an electronic ID to access to restricted facilities.

Smart cards are also provided to student at schools, colleges, and universities. In this case,

the card is used:

e to track student attendance,
e as an electronic purse: to pay foods, laundry facilities, etc.,
e to track loans from the library,

e to control the access for admittance to restricted buildings as dormitories, laboratories

and other facilities,

e to access transportation services;

The public transit when one moves. To travel on a bus or metro, transit companies provide a

smart card which contains the owner session ticket;

Other uses of a smart card has been provided for health care and pay TV. As presented in [Wik14]:
“the smart health cards improve the patient information privacy and security, provide a secure
carrier for portable medical records, reduce health care fraud, support new processes for portable
medical records, provide secure access to emergency medical information, enable compliance
with government initiatives (e. g., organ donation) and mandates, and provide the platform

to implement other applications as needed by the health care organisation”.

Another example is the pay TV cards which contain information to decipher channels provided
by a TV company. This process, linked with the customer’s subscription, are used to protect

the company’s assets.

2.4 Conclusion

In this chapter, after an overview of the smart card history, the modern smart card architecture

and its applications were presented.

Page 15

Generally, smart cards are used for the authentication and the storage of critical data and also
for processing data (crypto-processor). There are two main categories of smart cards. On one
hand, the closed platforms, which do not allow the installation of applications other than those
already embedded in the card by the manufacturer. On the other hand, the open platforms offer
the possibility of installing several applications even after insurance of the card. This type of
platform is articulated around a public specification (Java Card smart cards for example) or not

(cards which embed a virtual .Net machine for example).

A Generic Approach for Protecting Java Card™ Smart Card Against Software Attacks

Chapter 3

The Java Card Technology

“Bvery time a Gonda wanted something new, some clothes, a trip, some
objects, he would pay with his key. He would bend his middle finger, would
enter his key and his account at the central computer would immediately be
reduced by the value of the merchandise or the requested service.”

— René Barjavel, The dawn of time

Contents

3.1 The Java Technology i i i it it 18
A Brief Overview of Java 18

3.1.2 How to Run a Java Application? 18
3.1.3 The Java Sandbox 20
3.1.4 Java and Portability o 21

3.2 JavaCard Platform e, 21
Java Card Platform: a Technology Constantly Evolves 22

3.2.2 The Java Card Security Model 24
3.2.3 Java Card Architecture 28

3.3 Conclusion i i e e e e e e e e e 30

Developing smart card applications is a long and difficult process. Despite the standardisation

of some elements — as power supply, input and output signals — smart card development required

proprietary APIs provided by each manufacturer. The main drawback of this development approach

is the code of the application. Indeed, it can be executed only in the specific platform. The

companies which developed smart card programs depended of the card manufacturer. When a

developer changes the card model, he should adapt the application to the proposed API.

In this chapter, the Java Card technology is presented. To have a better overview, the Java

technology is introduced through each mechanisms included in the Java architecture. This part is

explained in Section 3.1.

17

To improve the security and the development process, the Java technology is embedded into
the smart card. Due to the resource constraint of this device, the Java Card technology is a subset
of the Java technology. To be compliant with the Java architecture, some trade-offs are made to

be included the power of the Java technology. More details are given in Section 3.2.

3.1 The Java Technology

3.1.1 A Brief Overview of Java

At the end of 1990, Sun Microsystem initiated an internal project about a programming language
to embed into domestic appliances to manage them. This project, named Green, aimed at creating
an universal remote control to manage each domestic appliance.

After trying to extend the C++ language to embed it in various appliances, James Gosling
realised that this approach raised to many difficulties. He decided to create an object-oriented
programming language with the main features of the C++ language. This language was originally
called Oak'. However, as the name was already used as the name of a company, it was renamed
Java to refer to the favourite drink of programmers (the coffee).

The project finished in 1992 with the presentation of Green [Gos07]. This remote control, looks
like a Personal Digital Assistant (PDA), it has an OS (Green OS), a graphical user interface and
a smart assistant named Duke. With this remote control, it is possible to handle each compatible
domestic appliance.

Sun Microsystems succeeded to create a programming language for heterogeneous environments.
At the beginning of 2007, Oracle bought Sun Microsystems.

Nowadays, the Java programming language is the main language used to develop desktop, web

and distributed applications.

3.1.2 How to Run a Java Application?

Java is an object-oriented and strongly typed language. It is syntactically inspired by the C++
language. However, it keeps some things. The most subtle concepts such as pointer are hidden to
the developer. In addition, multiple inheritance likes in C++ language is replaced by the use of
interfaces to reduce code complexity.

To execute a program developed in the Java-language — composed by a set of Java files — it
shall be compiled into a set a CLASS files. The Java-architecture defines a container, with the
extension JAR for Java ARchive. This container type, like the Z1pP format, is used to distribute
a set of CLASS files, resources files and metadata which compose the application. The Java

toolchain mechanism is presented in Figure 3.1.

1This name is a wink to the oak which was front of Gosling’s office

A Generic Approach for Protecting Java Card™ Smart Card Against Software Attacks

Chapter 3: The Java Card Technology

Metadata

CLASS

file 1
CLASS

file 2

Java file 1

Java file 2

Java compiler

(javac)

CLASS
file Y

Java archive

Java file N

Java API and

dependencies

Figure 3.1 — The figure presents the Java building mechanism. The Java-toolchain takes as input a set of
Java file with the extension .JAVA. Based on the Java-API and other dependencies provided as
CrLass files or JAR files, the Java-toolchain builds the CLASS files associated to each classes
declared into the given Java files. If a JAR container is asked as output, the Java-toolchain
creates metadata needed to correctly execute the Java application. This part is dashed in the
figure.

Each obtained CrASS file describes a Java class declared into the program source code. This

file type is a set of the following binary basic sections:

The magic number indicates the file type. Therefore, for a Java-Class file, this value shall be
OxCAFEBABE.

The version of Class file format gives information to the Java Virtual Machine (JVM) to

check the compatibility with the Java-Class loading.

The Constant Pool table contains the literal constant values of the current Java class (numeri-
cal values and character string) and more complex elements as data type, method references,

etc.

Access flags indicates is the current class type is abstract, static or final and its visibility as

public, private, protected or nothing.
The Name of the current class.
Its superclass.
Interfaces Any interfaces implemented by current class.

Class Fields Any fields in the current class.

Page 19

Methods All abstract methods and all implemented methods in the current class.

Attributes Any attributes of the current class.

This file is executable by any interpreter and does not contain native instructions but an
intermediate code structured by some byte codes. Each byte code is executed through an abstracted
layer provided by the JVM. This Virtual Machine (VM) is specified by Oracle [Gos+13,Lin+13]
and it offers, for the Java applications, an independence with the host execution platform. The

JVM implementation is in charge to execute each Java-instruction.

3.1.3 The Java Sandbox

Since the Java design started, Java creators focused on the security side. To prevent the JVM
from an unauthorised behaviour, the Java platform includes, at different layers, some security
mechanisms in order to execute an application which is compliant with the Java security rules. An

exhaustive description of the Java security mechanisms is available in [Oak01].

3.1.3.1 The Security Aspects included in the Java-Language

The Java-language is strongly typed. In contrast with the C++ language, performing pointer
arithmetic is forbidden. Moreover, the use of pointer is hidden. It’s the role of the JVM to manage

the memory. The JVM checks too the array bounds.

3.1.3.2 The Security Elements

The Byte Code Verifier (BCV) insures that each CLASS file loaded is compliant with the
Java language rules and the structure respects the one expected by the JVM. Not all Java
classes are checked. Only the external ones are statically verified by the BCV. For the

internal classes, the checks are done dynamically by the Just In Time (JIT) compiler.

The Java-Class loader: the Java platform, dynamically loads into memory the classes needed
by the application. The JVM uses at least one class loader. The last one shall be the system
loader reserved to load the standard API classes. Each class loader is responsible for calling
the BCV to check the classes to load.

The class loader shall only load a class if:

e The application allows to import the required class.
e The class was not loaded. If a more recent version of a loaded class is needed, the class

loader disallows the replacement.

The access controller verifies each call from the standard API to the OS. The verifications are

based on rules, defined by the user.

A Generic Approach for Protecting Java Card™ Smart Card Against Software Attacks

Chapter 3: The Java Card Technology

The security manager is a main security element between the standard API and the OS. It
has the ultimate choice to allow an access to a resource of the system. However, for historic

reasons, it keeps the same choice as the access controller.

The security package is a set of classes which extends the security features of the applications.

Moreover, this package provides functions to sign Java CLASS.

The keystore is a set of keys used into the Java infrastructure to create and verify signatures.

In the Java architecture, this part is included in the security package.

3.1.4 Java and Portability

An application is portable when its source code can be used, without modification, on different
architectures. Indeed, the program source code shall be translated to a language recognised by the
targeted platform.

Java architecture is designed to be a standardised platform where an intermediate code com-
posed by byte code is executed. This byte code is interpreted by the runtime environment.

Java interoperability is guaranteed by the Java specification [Oralld]. The Java architecture
is independent of the execution layer. The Java leitmotiv which is “ Write once, run anywhere”.
Moreover, Oracle provides an open-source reference implementation under the GNU General
Public License (GPL) licence for most of its platform. A program developed in the Java language
is portable in the sense that it runs independently from the hardware and software configurations.

Since a Java platform is deployed on an environment, it may be necessary to allow any Java
applications to execute fragment of code developed in another language. This code shall be executed
through the native layer. Historically, the developers adopted the Java platform in order to execute
classic applications written in C or C++ language. Due to the investments done on the existing
code, over many years, the Java applications included frameworks developed in C/C++ language.

To extend the JVM, the Java Native Interface (JNI) [Lia99] provides a way to execute some
fragments of code coded in another language. As this interface is embedded in the JVM, the JNI
allows a Java application to execute native code. Figure 3.2 synthesised the Java architecture.

To ensure that an implementation is compliant with the Java specification, Oracle provides tests
cases in the Java Compatibility Kit (JCK). This JCK checks each part of the JVM implementation

(each instruction is checked, each API is compliant with the specification, etc.).

3.2 Java Card Platform

Developing an application which supports a set of smart card models is a very expensive work. In Oc-
tober 1996, to reduce the development cost, some engineers from Schlumberger designed [Bae+99]
the first Java Card smart card specification (Java Card platform 1.0). This future standard com-

bined the power and the portability of Java platform with the limited resources of a smart card.

Page 21

Java Java Java

Application 1 Application 2 Application 3

3 Java Frameworks & user’s API Java Runtime 3
: Java Environment 3
i Native 3
3 Interface Java Virtual Machine 3

Operating System

Hardware Layout

Figure 3.2 — This figure illustrates a global view of the Java architecture. In this graphic, the green coloured
parts are executed via the Java byte code. Next, in orange colour, one sees the OS layout.
Finally, in red colour, the hardware layout, only accessible through the OS, is shown.

The Java Card technology embeds a subset of the Java technology. The first smart which embeds
the Java Card platform is out in November 1996 [VB13]. On this card, the Java applications have

been executed into the card through proprietary scripts.

3.2.1 Java Card Platform: a Technology Constantly Evolves

Few months later, Bull, G&D and Gemplus met Schlumberger to create the Java Card Forum
(JCF)2. At the end of 1997, the JCF specified Java Card 2.0 platform. This version is split in
two parts. The first one describes an API to access to the smart card memory and includes some
cryptographic functions. The other part specified the Java Card Virtual Machine (JCVM) where
it is designed as a simple JVM that embeds a subset of the Java-language.

As presented by Baentsch et al. in [Bae+99], this Java Card 2.0 platform version does not take

into account the interoperability and the Java Card program portability because:

e The API specification provides a file system access that could not be adapted on various

proprietary implementations;

e Some missing cryptographic features into the API was not flexible enough regarding the

exportation rules;

e The Java-application compilation and installation always depend on a proprietary program

provided by the smart card manufacturers;

2In 2014, the JCF, in partnership with Oracle, includes the main smart card companies (Athena, Gemalto, G&D,
Morpho, NXP Semiconductors, Oberthur Technologies, STMicroelectronics and Watchdata).

A Generic Approach for Protecting Java Card™ Smart Card Against Software Attacks

Chapter 3: The Java Card Technology

e The API is very abstract. Thus, the development for different Java Card devices is rather

complex.

In March 1999, the Java Card 2.1 platform is specified through three entities. Each entity

corresponds to a part of the Java Card architecture. Those entities are:

1. The JCVM specification;
2. The API specification;

3. The Java Card Runtime Environment (JCRE) specification.

The proposed architecture is not based on an application executed on the native layout but
executed through a VM embedded in the card. This VM, compliant with the Java Card specification,
translates each Java instruction to a set of native ones understandable by the OS.

This version is improved, in June 2002, by the Java Card 2.2 platform and the update 2.2.1
which adds the support for latest SIM card standards, the advanced memory management, an easier
design and development of applications, the strict compatibility testing, the latest cryptography
algorithms and a backward compatibility with all previous versions. In 2006, the Java Card
platform had an incremental update titled 2.2.2 which added some new features to the Java Card

platform. A list of features included by this specification is:

o APIs for Tag Length Value (TLV), Binary-Coded Decimal (BCD), short and int;
o Management of multiple contact/contactless interfaces;

« Support for up to 20 logical channels?;

e [SOT7816-based extended length APDU support;

o Additional cryptography algorithms;

e Signature with message recovery;

o Partial message digest;

e External memory access API.

Since March 2008, the Java Card platform 3 is specified by Oracle. This version introduces
two different platforms: the Java Card “Classic Edition” [Oralld] and the Java Card “Connected
Edition” [Oralle]. The Java Card 3 high-level architecture is shown in Figure 3.3.

3Specified by the ISO/IEC 7816-4 [ISO07], a logical channel can be viewed as a session which allows the concurrent
execution of multiple applications on the card. From the terminal, the logical channels allow it to handle different
tasks at the same time.

Page 23

Web App | Web App Applet App Applet App Applet App

el l|lee |2 =8 | =2 2

111 28 23 | 23

oy fo cy o 25 2% g8 : g :
(=9 f=4 f=4

| Servlet API] | Applet Framework API - |
—_

[Connected APIs)! Java Card Qassic APIs '

Strict Java Card (assic
Java Card VM VM View

Host Operating System and Device Hardware

Figure 3.3 — High-level architecture of the Java Card 3 platform [Sun08].

The Java Card 3 “Classic Edition” is an evolution of the Java Card platform version 2.2.2 and
supports traditional card applets on more resource-constrained devices. The Java Card “ Connected
Edition” adds a network manager into the Java Card smart card. The network manager aims
at embedding new secure components as HTTP(s) web server, network identification or access
to network resources into the smart card. So, this edition is based on a device which embeds
more resources in order to execute web applet named servlet. A complete analysis of the platform
security was studied by Kamel’s PhD thesis [Kam12] and Barbu’s PhD thesis [Bar12]. Currently,
no product embeds this technology.

For this study, I focused on the smart cards which embed a JCVM compliant with the Java
Card 3 “Classic Edition”. In this memory, each discussion on Java Card refers to the “Classic
Edition”.

3.2.2 The Java Card Security Model

To be compliant with the Java security rules, the Java Card security model verifying the semantics
of the Java program. It ensures that the checked applet file format respects the specification
(structural verification) and that all methods are well-formed and verify the type system of Java.
It is a complex process for a card which involving an elaborate program analysis using a very
costly algorithm in terms of time consumption and memory usage. Next is the Java Card converter
which translates each Java Card package into a Converted Applet (CAP) file. A CAP file is a
lightweight CLASS based on the tokens. This file format is designed to be optimized for the
resource-constraint devices. The organisation which provides the applet may sign? the application

for the on-card loader that will verify the signature. The signature is an optional step. This

4Due security reasons, the ability to download code into the card is controlled by a protocol defined by Glob-
alPlatform [Glo11]. This protocol ensures that the owner of the code has the necessary authorisation to perform the
action.

A Generic Approach for Protecting Java Card™ Smart Card Against Software Attacks

Chapter 3: The Java Card Technology

verification ensures the loader the origin of the code, and thus that the code is compliant with the

Java security rules. This step is shown in Figure 3.4(a).

s prisieees :
- - i | Installed | :
| Java CLASS Files | | Java Card Files | Card BCV :
i| applet |:
Files So— ;
| Byte code Converter Byte code Signer| Firewall
(a) Off-card security model. (b) On-card security model.

Figure 3.4 — The Java Card security model.

The second part of the security model is embedded into the smart card (Figure 3.4(b)). The
loader verifies the signature and optionally a BCV might verify the Java security compliance of
the CAP file to be installed. Currently, just a few Java Cards embed an on-card BCV component.
The applet to be installed is linked after some potential checks. Once an applet is installed, the
segregation of different applets is enforced by the firewall which is based on the package structure
of Java Card and the notion of context.

The Java Card platform is a multi-application environment where the critical data of an applet
must be protected against malicious access from another applet. To enforce protection between
applets, classical Java technology uses the type verification, class loader and security managers to
create private namespaces for applets. In a smart card, complying with the traditional enforcement
process is not possible. The type verification is also executed outside the card due to memory

constraints. The class loader and the security managers are replaced by the Java Card firewall.

3.2.2.1 The Byte Code Verifier

Allowing code to be loaded into the card after post-issuance raises the same security issues as
for web applets. An applet which is not built by a compiler (hand-made byte code) or modified
after the compilation step may break the Java sandbox model. Thus, the client must check that
the Java-language typing rules are preserved at the byte code level. Java is a strongly typed
language where each variable and expression has a type determined at compile-time, so that if a
type mismatch arises from the source code, an exception is thrown. The Java byte code is also a
strongly typed one. The BCV guarantees type correctness of code, which in turn guarantees the
Java properties regarding memory access. For example, pointers are not supported by the Java
programming language although they are extensively used by the JVM where object references from
the source code are handling as a pointer. Thus the absence of pointers at the development level
reduces the number of programming errors. But it does not mitigate to break security protections
with unfair uses of pointers. Moreover, using a symbolic execution, the BCV is able to detect type

confusion in the application.

Page 25

The BCV is an essential security component in the Java sandbox model: any bug created by
an ill-typed applet could induce a security flaw. The byte code verification is a complex process
involving an elaborate program analysis using a very costly algorithm in terms of time consumption
and memory usage. For these reasons, many cards do not implement this kind of component and
it is relied on the responsibility of the organisation, which provides signature to ensure the code of

the applet is well-typed.

3.2.2.2 The CAP file

As shown in Figure 3.4, the CLASS files are converted to the CAP file. This file format, specified
in [Oralld, §6 — The CAP File Format|, is a binary representation that contains the twelve

following components:

e The Header component contains general information about the CAP file and the package it

defines;
e The Directory component lists the size of each component defined in the CAP file;

e The Applet component contains an entry for each applet defined in the package. If no applet
is defined, this component is not in the CAP file;

e The Import component lists the set of packages imported by the classes defined by the CAP
file;

e The Constant Pool component contains the references of each class, method and field used in
the Method component of this CAP file. The referencing elements in the Method component
may be an instruction in the method or exception handler catch types in the exception
handler table;

e The Class component describes each class and interface defined in the package;

e The Method component describes each method declared in the package, excluding <clinit>
methods and interface declarations. Abstract methods defined by each class are also included.

Moreover, the exception handlers associated with each method are also described;

e The Static Field component contains all of the information required to create and initialise

an image of all of the static fields defined in the package, referred to as the static field image;

e The Reference Location component represents the lists of offsets into the method_info

field of Method component to items that contain indexes into the Constant Pool component;

e The Export component referees all static elements in the package that may be imported by
classes in other packages. Instance fields and virtual methods are not represented in this

component;

A Generic Approach for Protecting Java Card™ Smart Card Against Software Attacks

Chapter 3: The Java Card Technology

o The Descriptor component provides sufficient information to parse and verify all elements
of the CAP file;

o The Debug component contains all the metadata needed for debugging a package on a suitably

instrumented JCVM. This component is optional;

e The Custom component is a new component added to the CAP file. This new component
must conform to the general component format. It is silently ignored by a JCVM that does

not recognise the component.

Each component depends to each other. The representation of the dependencies is shown in

Figure 3.5.

9 Reference Location 3 Applet Component |[¢———————— 1 Header Component ———p | 10 Export Component
Component
,,,,,,,,,,,,,,,,,] 1 f
i
I

i
‘ ‘ \
I
777777777 feesesasecenscenaad 5| T Method Component \; 2 Directory Component ———p| 4 Import Component
! i
! I «— |
|
: T % i 4
i
i
; } |
12 Debug Component |--------- ----p| 6 Class Component |4—— | —— 11 ‘ Descriptor Component
i J
i
i
i

— |

Component Component

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 3.5 — Dependencies between each CAP file component [Ham12].

3.2.2.3 The Java Card Firewall

The firewall aims at controlling access in the Java Card. The separation of different applets is
enforced by a firewall, based on the package structure of Java Card and the notion of context.
When an applet is created, the JCRE uses a unique Application IDentifier (AID) to link it with the
package where it has been defined. If two applets are instances of classes defined in the same Java
Card package, they share the same context. There is also a super user context called the JCRE
context. Applets associated with this context may access the objects from any other contexts in
the card. In defencive card, the privileges are reduced.

Each object is assigned to a unique owner context, which is the context of the created applet.
An object’s method is executed in the context of the instance. This context provides information
which will or will not allow access to another object. The firewall prevents a method executing in

one context from accessing any attribute or method of objects to another context.

Page 27

Through the firewall, there are two ways to access to resources out of the owner’s context. One
is through JCRE entry points and the other one is through shareable objects. JCRE entry points
are the objects owned by JCRE, specifically entitled as objects that can be accessed from any
context. A significant example is an APDU buffer which contains the sent and received commands
to the card. This object is managed by JCRE and in order to allow applets to access to this object,
it is designated as an entry point. Another example is the elements of the table containing the
AlDs of the installed applets. Entry points can be marked as temporary. References to temporary

entry points cannot be stored in objects and this rule is enforced by the firewall.

3.2.3 Java Card Architecture

The Java Card architecture is illustrated in Figure 3.6. The Java Card architecture looks like the
Java one except few differences. Each applet is executed upon a specified API [Oralla] implemented

by the device. Unlike Java, the developer is not allowed to extend the API with any native function.

Next, to manage the applets on open platforms (load, installation and deletion) and applet
lifecycle, the GlobalPlatform (GP) specifies [Glo11] implementation and management of tamper-
resistant chips. GP is the on-card entity is in charged to dispatch commands, manage card content,
secure management operations and secure inter-application communication. Moreover, an API is

provided to interact with an applet when a GP’s event arises.

Finally, the last element which differs from the Java platform is the JCVM instruction set as
presented in Section 3.2.3.1.

Applet 1 Applet 2 GP APIs
&
Framework APIs Applet Manager '
Java Card Runtime

Environment
Java Card Vir-

tual Machine

Native API

Card Operating System

Hardware layers

Figure 3.6 — This figure represents a global view of the Java Card architecture. In this graphic, the green
coloured parts are executed via the Java byte code. Next, in orange colour, one sees the OS
layout. Finally, in red colour, the hardware layout, only accessible through the OS, is shown.

A Generic Approach for Protecting Java Card™ Smart Card Against Software Attacks

Chapter 3: The Java Card Technology

3.2.3.1 The Java Card Virtual Machine Instructions Set

A JCVM compliant with the specification implements a subset of the JVM instructions set. 1|
summarised the Java Card instructions set [Oralld, §7 — Java Card Virtual Machine Instruction

Set] and split it as follow:
e Stack and local variables operands:

— Push a constant onto the operand stack instructions: aconst_null, sconst_<s>,
iconst_<i>, bpush, sspush, bipush, sipush iipush with <s> and <i> € {m1, O,
1, 2, 3, 4, 5}

— Load a local variable onto the stack instructions: aload, aload_<n>, sload, sload_<n>,
iload, iload_<n>, aaload, baload, saload, iaload with <n> € {0, 1, 2, 3}.

— Store element from the operand stack into the local variable stack instructions: astore,
sstore, istore, astore_<n>, sstore_<n>, istore_<n>, aastore, bastore, sastore,

iastore with <n> € {0, 1, 2, 3}.

— Untyped instructions which modified the operand stack: pop, pop2, dup, dup2, dup_x,

swap_x

o Type conversion instructions: s2b, s2i, i2b, 12b

e Numeric arithmetic instructions: sadd, iadd, ssub, isub, smul, imul, sdiv, idiv, srem,

irem, sneg, ineg, sinc, sinc_w, iinc, iinc_w
o Logic operations:

— Arithmetic shift instructions: sshl, ishl, sshr, ishr, sushr, iushr

— Bitwise Boolean instructions: sand, iand, sor, ior, sxor, ixor
¢ Object accessors:

— Object operations: getstatic_<t>, putstatic_<t>, getfield_<t>, getfield <t>_w,
getfield_<t>_this, putfield_<t>, putfield_<t>_w, putfield_<t>_this, new,
checkcast, instanceof with <t> € {a, b, s, i}.

— Specific array operations: newarray, anewarray, arraylength
e Operations that influence the control flow:

— Branching instructions:

x Conditional branching operations: if<cond>, if<cond>_w, ifnull, ifnonnull,

if_acmp<cond>, if _acmp<cond>_w with <cond> € {eq, ne, 1t, le, gt, gel}.

Page 29

* Branching always instructions: goto, goto_w
— Comparison operation: icmp
— Table jumping: stableswitch, itableswitch, slookupswitch, ilookupswitch
— Exceptions operation: athrow
— Finally clauses: jsr, ret
— Method instructions:

* Method call instructions: invokevirtual, invokespecial, invokestatic,

invokeinterface

* Method return operations: areturn, sreturn, ireturn, return
e nop instruction.

Each instruction is executed by the JCRE through the JCVM. The security model ensures that,
through the firewall, each instruction is checked in order to verify if the current context allowed

the execution of the current instruction.

3.3 Conclusion

This chapter presents the Java Card technology. Based on the Java platform, this technology aims
to provide a secure and friendly development environment into a limited-resources device as the
smart card. This technology succeed to be embedded in most of smart card in the world.
Nevertheless, some attacks have been successful in retrieving secret data from the card. To
improve its security, the state-of-the-art attacks against the Java Card platform will be introduced
in Chapter 4. Regarding to these flaws, the card manufacturers have implemented countermeasures

explained in Chapter 5.

A Generic Approach for Protecting Java Card™ Smart Card Against Software Attacks

PART Il

STATE OF THE ART

Chapter 4

Attacks on Java Card Smart Card

“Garin: So that is what hell is. I would never have belicved it. You
remember: the fire and brimstone, the torture. The burning marl. There is
no need for torture: Hell is other people.”

— Jean-Paul Sartre, No Fxit

Contents

4.1 Pr