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Abstract

In this dissertation, we are interested in the data gathering with energy constraint

for Wireless Sensor Networks (WSNs). Yet, there exist several challenges that may

disturb a convenient functioning of this kind of networks. Indeed, WSNs' applications

have to deal with limited energy, memory and processing capabilities of sensor nodes.

Furthermore, as the size of these networks is growing continually, the amount of data

for processing and transmitting becomes enormous. In many practical cases, the

wireless sensors are distributed across a physical �eld to monitor physical phenomena

with high space-time correlation. Hence, the main focus of this thesis is to reduce the

amount of processed and transmitted data in the data gathering scenario.

In the �rst part of this thesis, we consider the Compressive Sensing (CS), which is a

promising technique to exploit this correlation in order to limit the number of trans-

mission and therefore increase the lifetime of the network. Typically, we are interested

in the mesh network topology, where the sink node is not in the range of sensors and

routing schemes must be applied. We propose a joint Space-Time Compressive Sens-

ing (STCS) by exploiting jointly the inter-sensors and intra-sensor data dependency.

Moreover, since the routing and the number of retransmission a�ect signi�cantly the

total energy consumption, we introduce the routing in our cost function in order to

optimize the selection of the transmitting sensors. Simulation results show that this

method outperforms the existing ones and con�rm the validity of our approach.

In the second part of this thesis, we attempt to address nearly the same twofold

energy saving scheme that is investigated in the �rst part with the use of the Matrix

Completion (MC) methodology. Precisely, we assume that a restricted number of

sensor nodes are selected to be active and represent the whole network, while the rest

of nodes remain idle and do not participate at all in the data sensing and transmission.

Furthermore, the set of active nodes' readings is e�ciently reduced, in each time

slot, according to a cluster scheduling with the Optimized Cluster-based MC data

gathering approach (OCBMC). Relying on the existing MC techniques, the sink node

is unable to recover the entire data matrix due to the existence of the completely empty

rows that correspond to the inactive nodes. Thereby, we propose a complementary
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interpolation technique, based on a minimization problem, that bene�ts from nodes

inter-correlation, to guarantee the reconstruction of all the empty rows, despite their

large number. The proposed three-stage MC-based reconstruction pattern, combined

with the aforementioned data sampling one, is evaluated under extensive simulations.

The results con�rm the validity of each building block as well as the e�ciency of the

whole uni�ed structured approach and prove that it outperforms the baseline schema.

Generally, in the WSNs, ensuring long-term survival of the wireless sensor devices

is crucial, especially for the non energy harvesting networks. Thus, there is a huge

need to further optimize the use of WSN resources. Although applying a high data

compression ratio extremely reduces the overall network energy consumption, the

network lifetime is not necessarily extended due to the uneven energy depletion of the

sensor nodes' batteries. To this end, in the third part of this thesis, we have developed

the Energy-Aware Matrix Completion based data gathering approach (EAMC), which

designates the active nodes according to their residual energy levels. Furthermore,

since we are mainly interested in the high data loss scenarios, the limited amount of

delivered data must be su�cient in terms of informative quality it holds in order to

reach a good and satisfactory recovery accuracy for the entire network data. For that

reason, the EAMC selects the nodes that can best represent the network depending

on their inter-correlation as well as the network energy e�ciency, with the use of a

combined energy-aware and correlation-based metric. This introduced active node cost

function changes with the type of application one wants to perform, with the intention

to reach a longer lifespan for the network. Therewith, relying on the three-stage MC

based approach for data recovery, the proposed scheme achieves an attractive and

competitive trade-o� between the data reconstruction quality and the network lifetime

for all the investigated scenarios.



Résumé

Dans cette thèse, nous nous intéressons à la collecte de données avec la contrainte

d'énergie pour les réseaux de capteurs sans �l (RCSFs). En e�et, il existe plusieurs

dé�s qui peuvent perturber le bon fonctionnement de ce type de réseaux. Par exemple,

les applications des RCSFs doivent faire face aux capacités très limitées en termes

d'énergie, de mémoire et de traitement des n÷uds de capteurs. De plus, à mesure

que la taille de ces réseaux continue de croître, la quantité de données à traiter et à

transmettre devient énorme. Dans de nombreux cas pratiques, les capteurs sans �l

sont répartis sur un champ physique a�n de surveiller les phénomènes physiques à

forte corrélation spatio-temporelle. Par conséquent, l'objectif principal de cette thèse

est de réduire la quantité de données traitées et transmises dans le scénario de collecte

de données.

Dans la première partie de cette thèse, nous utilisons le Compressive Sensing (CS),

une technique prometteuse pour exploiter cette corrélation a�n de limiter le nombre

de transmissions et ainsi augmenter la durée de vie du réseau. En règle générale, nous

nous intéressons à la topologie de réseau maillé, où le point de collecte de données

n'est pas situé dans le rayon de communication du capteur transmetteur et des schémas

de routage doivent être alors appliqués. Nous proposons le Space-Time Compressive

Sensing (STCS) en exploitant conjointement la dépendance de données inter-capteurs

et intra-capteur. De plus, comme le routage et le nombre de retransmissions a�ectent

de manière signi�cative la consommation totale d'énergie, nous introduisons le routage

dans notre fonction de coût a�n d'optimiser la sélection des capteurs de transmission.

Les simulations montrent que cette méthode surpasse les méthodes existantes et con-

�rment la validité de notre approche.

Dans la deuxième partie de cette thèse, nous tentons de traiter un désign d'économie

d'énergie presque similaire à celui proposé dans la première partie avec l'utilisation

de la méthodologie de Matrix Completion (MC). Précisément, nous supposons qu'un

nombre limité de n÷uds de capteurs sont sélectionnés pour être actifs et représenter

l'ensemble du réseau, tandis que les autres n÷uds restent inactifs et ne participent

pas du tout à la détection et à la transmission de leurs données. En outre, l'ensemble
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de lectures de données des n÷uds actifs est e�cacement réduit, à chaque intervalle

de temps, conformément à une plani�cation de cluster avec l'approche de collecte

de données Optimized Cluster-based MC (OCBMC). En se basant sur les techniques

existantes de MC, le point de collecte de données n'est pas en mesure de récupérer

l'intégralité de la matrice de données en raison de l'existence de lignes complète-

ment vides correspondant aux n÷uds inactifs. Ainsi, nous proposons une technique

d'interpolation complémentaire, basée sur un problème de minimisation, qui béné�cie

de l'inter-corrélation entre les noeuds de capteurs, a�n de garantir la reconstruction

de toutes les lignes vides, malgré leur grand nombre. Le modèle three-stage MC-based

reconstruction proposé, combiné à celui de l'échantillonnage/compression des données

susmentionné, est évalué avec des simulations approfondies. Les résultats con�rment

la validité de chaque bloc constitutif ainsi que l'e�cacité de toute l'approche structurée

et uni�ée et prouvent qu'elle surpasse le schéma le plus proche.

Généralement, dans les RCSFs, il est crucial d'assurer la survie à long terme des cap-

teurs sans �l, en particulier pour les réseaux sans récupération d'énergie. Ainsi, il

existe un énorme besoin d'optimiser davantage l'utilisation des ressources énergétique

du réseau. Bien que l'application d'un taux de compression des données élevé réduit

considérablement la consommation d'énergie globale du réseau, la durée de vie du

réseau n'est pas nécessairement prolongée en raison de l'épuisement inégal des bat-

teries des n÷uds de capteurs. A cette �n, dans la troisième partie de cette thèse,

nous développons l'approche de collecte de données Energy-Aware Matrix Comple-

tion (EAMC), qui désigne les n÷uds actifs en fonction de leurs niveaux d'énergies

résiduelles. De plus, étant donné que nous sommes principalement intéressés par les

scénarios de perte de données élevées, la quantité limitée de données fournies doit être

su�sante en termes de qualité informative qu'elle détient a�n d'atteindre une précision

de récupération bonne et satisfaisante pour l'ensemble des données du réseau. Pour

cette raison, l'EAMC sélectionne les n÷uds qui peuvent représenter le mieux le réseau

en fonction de leur inter-corrélation ainsi que de l'e�cacité énergétique du réseau, avec

l'utilisation d'une métrique combinée qui est éco-énergétique et basée sur la corréla-

tion. Cette fonction de coût, qu'on a introduit, change avec le type d'application

que l'on veut e�ectuer, dans le but d'atteindre une durée de vie plus longue pour

le réseau. Sur ce, en s'appuyant sur l'approche three-stage MC-based reconstruction

pour la récupération des données, le schéma proposé permet un compromis attractif
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et compétitif entre la qualité de la reconstruction des données et la durée de vie du

réseau pour tous les scénarios étudiés.
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1.1 Research Context

With the rapid progress achieved in the information technology �elds, the Internet

of Things (IoT) has emerged as a new business model composed of billions of con-

nected devices. Hence, it has gained much attention in both industry and scienti�c

community, since it promises to revolutionize the life quality society and industries

by bridging the gap between the physical and the digital word. According to [1], it is

estimated that, by 2025, around 41.6 billion sensor-based devices, generating 79.4 ZB

of Data, will be connected to the Internet as part of the IoT. On the other hand, we

expect that the global IoT market will grow from US $190 billion in 2018 to US $1.1

trillion in 2026 [2]. The current need for Machine-Type Communications (MTC) has

led to a variety of communication technologies in order to satisfy the heterogeneous

IoT requirements1 [4]. Recently, the massive IoT access has been considered as a part

of the 5th generation mobile communication system (5G). Nevertheless, researchers,

scientists, and engineers are facing emerging challenges to e�ectively incorporate the

IoT based systems, especially the resource allocation, in the 5G [5]. In fact, the inclu-

sion of the IoT into the 5G and their evolution still represent a formidable technical

challenge due to the huge number of sensors and the generated information. Note that

one of the main challenges of the 5G is the massive connectivity for MTC and the

management of its coexistence with the high data-rate continuous tra�c generated by

Human-Type Communications (HTC) in an e�cient and e�ective manner.

Wireless Sensor Networks (WSNs), which represent a key pillar of IoT, take place in

the center of this revolution. Typically, these networks consist of a large set of sensor

nodes that are self-organising and geographically distributed across the monitored

area. Despite the miniaturization of these sensor-based devices, they are able to

probe di�erent magnitudes. Indeed, they are usually deployed to supervise various

physical phenomena with a high resolution and at a low cost, such as in forests,

under water and in civilian and habitat application areas [6]. In usual data gathering

techniques, each sensor node takes measures and sends periodically its raw data to

the sink, which is the collector node, via multi-hop transmission. If nodes face packet

losses, due to collisions or bu�er over�ows, packets are retransmitted, which leads to

1Speci�cally, it aims to automate as much as possible the data communications between devices,
in such a way that these latters can occur rightly without any human intervention [3].
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a high cost and a heavy tra�c. Nevertheless, this kind of data collecting is either

impossible or impractical, especially for the large-scale networks, due to the energy

and memory limitations of nodes. In fact, these tiny devices operate in an unattended

mode and are usually unable to renew their batteries. Hence, reducing the network

energy consumption while gathering and forwarding sensory data is the main challenge

for these networks since it directly a�ects their lifetimes and thus their sustainability.

This can be achieved by minimizing the amount of information to be communicated.

Indeed, establishing energy-e�cient data gathering and acquisition schemes, while

obviously keeping a good quality in the recovered data, is always welcomed.

The spatial and the temporal correlations that characterize most of the WSNs signal

pro�les represent a key for the adaptive and e�cient data gathering schemes. While

the temporal correlation, re�ecting the intra-sensor dependency, �nds out the time

evolution of the signal, the spatial correlation, re�ecting the inter-sensors dependency,

captures the spatial variation of the signal between the di�erent sensed locations of

the network. Bene�ting from this property, sensors' resources can be further saved by

eliminating the useless and redundant information.

1.2 Problems Statement

In this thesis, we investigate the challenging scenario of data gathering in WSNs. Most

of related works have considered the resource access problems like data collisions,

losses and re-transmissions. Recently, some researches have focused on the scheduling

of data collecting strategies, through the use of compressive sensing. Moreover, the

burgeoning demand of many recent applications to deploy more sensor nodes, with

their crucial nature of limited power and computational capacities, urges for the es-

tablishment of energy-e�cient data gathering and acquisition schemes in order to save

as longer as possible the sensors' limited batteries.

Usually, the activities for which a sensor node consumes its energy are sensing, pro-

cessing, and data communication. Most of the existing energy management strategies

assume that radio transmission and reception, and in some setups the acquisition/sam-

pling, are the most energy-consuming operations [7]-[9]. Several papers have mainly

focused on data compression in order to minimize the energy consumption by reducing

the packets size, such as transform coding or entropy coding [10]-[12]. However, these
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kinds of in-network processing-based compression schemes require full data signal, and

afterwards most of the information is thrown away at the compression stage. Further-

more, they require explicit computational and communication overheads leading to a

high space and time complexity at the sensor side, which is preferable to avoid in this

type of networks.

In parallel with the consideration of sensors' resources, a second factor, of prime im-

portance, to be taken into account, is the quality of the decompressed data and the

accuracy of the missing data recovery in data loss scenarios. Indeed, after receiving

the compressed data, the sink node should perform data reconstruction algorithms.

That being the case, the purpose of this thesis is to reduce drastically the amount

of data readings, while ensuring a su�ciently good data recovery quality at the sink

node.

In addition to the minimization of the sensors energy consumption, preserving an

energy load balancing between nodes in order prolong the overall network lifetime is

another big challenge to tackle. Indeed, due to the multi-hop systems con�guration

that most of the WSNs adopt, energy consumption between nodes is uneven, leading

usually to fast batteries depletion of some nodes, typically the ones that are situ-

ated around the sink. Generally, the supervised environments are of harsh nature,

which makes the re-change of the exhausted batteries either impractical or a costly

task. Therefrom, to ensure a long term monitoring and enhance the network lifespan,

there is a need to provide a suitable energy-aware based data gathering technique.

Note that the case of rechargeable power supplies of the Energy-Harvesting Wireless

Sensor Networks (EHWSNs), where sensor devices can replenish their batteries with

energy from the surrounding environment, is out of scope of this thesis, but can be an

underlying technique to prolong the lifespan of WSNs.

Motivations

As it is well-known, the principle key that underlies the data sampling techniques and

the analog-to-digital conversion in the current used consumer devices is the Nyquist-

Shannon sampling theorem [13]. This theorem reports that if the signal sampling rate

represents at least twice its maximum frequency component (i.e the so-called Nyquist

rate), the recovery process of that signal can be acheived successfully. However, usually

in the resource-limited sensors, the signal samples acquisition is speci�cally followed by
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a data compression phase, where the gathered information has to be encoded in a re-

duced size manner. Accordingly, a substantial portion of the expensively acquired data

is eventually thrown away at the compression stage prior to storage or transmission.

Moreover, in several emerging applications that we can face in the WSNs, the Nyquist

rate is still very high regarding the network capability [14]. Hopefully, under certain

conditions, a new paradigm called the Compressive Sensing (CS), or the Compressed

Sampling, goes against the common and known wisdom in data acquisition [13], and

states that a perfect reconstruction of the whole data may be possible using a number

of measurments or data samples that are far lower than those required by the tradi-

tional methods (i.e. the rate that respects the Nyquist property) [15]. Particularly,

analog CS, denoted also by the Low-rate CS, violates the conventional sampling notion

and allows to sample the signal nonuniformly and at a sub-Nyquist frequency [16] [17],

permitting to realize savings on the number of data samples to be gathered. Roughly

speaking, instead of sampling the compressible signals at the Nyquist frequency and

then performing a compression algorithm, the aforementioned presented technique

captures them directly in a compressed form using a sub-Nyquist frequency2, i.e. a

simultaneous sampling and compression mecanism. Here, the resulting data measure-

ments don't need to be manipulated for processing in any way before being delivered,

except some quantization eventually [18]. To this end, for the case of WSN appli-

cations, the principal asset of the CS technique is its common and simple encoding

phase [16]. Note that a data vector might hold many small elements and few large

ones, in such a way that most of the data signal information is carried by the larger

coe�cients. Such a data vector is known to be a compressible signal [19]. Among

the conditions that one must a�ord to ensure a ”perfect” reconstruction after the CS,

we have the signal sparsity feature. That is, the data vector to be processed should

hold only a few non-zero elements3. Since correlation structure and redundancy that

characterize most of the WSNs' signal pro�les are often synonymous with sparsity, the

CS method seems to be a good �t for such data gathering frameworks. Afterwards, a

data reconstruction algorithm is executed at the sink node, who has less energy and

computational constraints. Hence, the computation complexity is moved from sensor

nodes to the sink. This meets well the resource-constrained devices of WSNs and sig-

2In this dissertation, the "sub-Nyquist data acquisition feature" performed with CS refers to
measuring and sensing an analog source, by reducing the measurements' projections. The latters
denote the discrete-time data measurements obtained from (2.2).

3More details are available in 2.1.1.
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ni�cantly reduces their energy consumption. Indeed, unlike the measurement phase,

the recovery phase of CS requires a lot of calculation. For that reason, we assume

that the collector node possesses the necessary resources to execute the data recovery

operation as it is far less constrained compared to the low powered sensor nodes [20].

1.3 Key Contributions

In this thesis, we focus on the data gathering task in the WSNs, and we seek for a

good trade-o� between the network limited-resources constraint and the end-user re-

quirements. In fact, we have investigated the following questions; how to e�ciently

reduce the number of data readings to be gathered by sensor nodes, while

being able to recover the missing ones? and how to accomplish this task

with a near-optimal utilization of sensors resources in order to further ex-

tend the overall network lifetime ?

Trying to provide answers to these questions, in this work, we have developed adaptive

and energy-e�cient distributed data gathering schemes, each of which is accompanied

by the suitable data reconstruction framework. The preponderant work of this thesis

is assembled in the following three contributions;

In our �rst contribution , we address the �rst question. We take advantage of the

spatial and temporal correlations to perform simultaneously both the distributed CS

and the local CS, where a subset of well designated active sensors are deterministically

chosen to be representative of the network for the entire detection period, and to

gather measurements only in speci�c time slots, i.e. according to a given sampling

ratio. Indeed, they only acquire the required amount of data readings. Relying on

the techniques of [21], to compute adaptive compression and sparsifying matrices that

vary with the signal correlation structure, we consider a di�erent design that enables

us to treat the signal in its matrix form instead of the standard use of the data in CS,

i.e. the data vector form. To further improve the network energy savings, the routing

is jointly considered with the correlation criteria in the active node selection. Withal,

the simulation results shows that we are able to keep a good data reconstruction

performance, while reducing signi�cantly the energy consumption. This work was

validated in our original paper [22].
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In our second contribution , we attempt to address nearly the same issue that is

investigated in the �rst part with the use of di�erent techniques. We propose a data

gathering approach based on the Matrix Completion (MC) method, a data sampling

and reconstruction technique that, on the heels of CS, has recently emerged. The

theory of MC states that if the data matrix has a low-rank or approximately a low-

rank structure4, it can be recovered with high accuracy using the partially received

elements [23]. The existence of inactive sensor nodes that do not participate in the

data sensing during the entire detection period entails the existence of completely

missing data rows in the received data matrix, which unfortunately not only impedes

the MC resolution but also pollutes the received data [24]. In this context, we de-

velop a novel structured MC-based framework that guarantees the reconstruction of

a signi�cant number of missing data rows thanks to the proposed complementary

minimization-based interpolation technique5. Furthermore, In order to improve the

data reconstruction quality, we propose to perform a sensor nodes clustering phase, so

that the participation of the active sensing nodes is scheduled according to the clus-

ters assignment. This preliminary phase is done in order to involve all the detected

clusters in the data sensing and avoid disregarding sensor nodes that belong to the

small clusters, a de�ciency or a slip that can occur with high probability in the purely

random data sampling, which is usually used in the conventional MC. This work was

validated in our original paper [25].

Although the two previous data gathering schemes provide an e�cient solution to re-

duce the amount of sensed data, minimize the network energy consumption and save

its energy, mastering the load balancing between nodes remains a relevant challenge.

In our third contribution , we undertake the aforementioned second question issue

and propose an energy-aware data gathering strategy aiming to alleviate the uneven

4In the context of data matrices, the signal low-rank feature is analogous to the sparsity [19].
5The proposed framework is also useful for another challenging scenario; when we have a small

number of sensors that have to be deployed in a spacious area. Indeed, either the sensor nodes are
costly or the environment is large enough to be content with the limited number of sensors. This
may concern also the harsh environments that are di�cult to access such as volcanoes and other
troublesome environments, where the deployment of many sensor nodes is not practical and becomes
expensive. However, in many applications, the amount of gathered data must be signi�cant enough
to be processed. The idea here is to place a relatively small number of spatially spaced sensor nodes
to control the correlated �eld under a compression ratio. These sensor nodes represent other sensor
nodes that do not really exist.Particularly, the sensory data �eld is, most of the time, highly correlated
and redundant between nearby sensor nodes, which makes possible to estimate readings at locations,
where the signal cannot be sensed.
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energy depletion problem that may occur in most of the WSNs. The proposed data

gathering strategy extends the previous one and selects the representative nodes that

can report more information about the others and at the same time a�ord the sus-

tainability as long as possible for the network lifetime. Since the schemes performance

usually vary with the network con�gurations, we evaluate our approach under dif-

ferent network topologies and scenarios, while selecting, in each time, the adequate

energy-aware cost selection function. For each case, the trade-o� between the data

recovery error and the network lifetime is measured, and the performance behaviour

of the proposed data gathering approach is studied for both types of sensor nodes;

the low-power nodes and the greedy-power ones (in terms of sensing). This work was

validated in our original paper [26].

1.4 Manuscript Organization

This dissertation contains two parts that are divided into 6 chapters. Following this

introduction, we discuss some related works in the next chapter. Before going into

details, overviews on the CS and MC theories will be introduced. Then, in the second

part, we detail the main proposed techniques of this thesis. The subsequent chapters

3− 5 are orderly arranged in accordance with the contributions that have been stated

herebefore. More precisely, in chapter 3, we present our routing-aware CS-based ap-

proach and describe its components and its design in details, where, di�erently to

most of the existing CS-based schemes, the proposed one integrates both the tempo-

ral and the spatial dimensions not only in the data recovery phase but also in the data

acquisition one. In chapter 4, we address a challenging compression pattern, which

is composed of both structured and random losses, that we successfully manage with

the use of a structured MC-based data recovery framework. Chapters 3 and 4 propose

also a description of the signals generation models that have been used for the eval-

uation of the proposed schemes. In chapter 5, we present how the energy constraint

can be jointly considered with the correlation criteria in the active node selection

cost function in order to maintain a load balancing among nodes and maximize the

network lifetime, while still preserving a low data reconstruction error. Finally, we

conclude this thesis in chapter 6 by recapitulating our contributions and presenting

some eventual perspectives that can be worth pursuing in the future. We present all
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the publications of this thesis in Appendix A.
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With the emergence and expansion of WSNs applications, reporting a su�ciently accu-

rate description about the monitored environmental phenomena remains of paramount

importance. For that reason, investigating and setting e�cient data gathering schemes

in WSNs have motivated many researchers over the past years.

In this chapter, we start with an overview of the used theories of CS and MC and we

discuss some existing data collection schemes from the literature.

2.1 Overview of Compressive Sensing

CS provides a new paradigm that makes possible a high-dimensional sparse signal

recovery with the use of a small number of measurements. It is based on two principal

conditions: sparsity, which is directly related to the signals of interest, and incoher-

ence, which concerns the data sensing modality [13].

2.1.1 Sparsity Condition

Consider an N -dimensional signal vector x = [x1, x2, ..., xN ]tr ∈ IRN×1 and suppose

that x can be represented in some invertible transformation basis Ψ = {ψ1, ψ2, ...,

ψN} ∈ IRN×N as:

x =

N∑
i=1

αiψi = Ψα, (2.1)

where α = [α1, α2, ..., αN ]tr holds the transform domain coe�cients in Ψ. We say

that x is k-sparse in Ψ, if α has at most k << N non-zero entries, i.e. ‖ α ‖0≤ k,

where ‖ α ‖0=| {i | αi 6= 0, i = 1, ..., N} |1. In many applications, signals have a few

k large coe�cients, while the remaining ones are small; in this case we say that x

is approximately k-sparse. CS work can be extended to compressible signals which

are not exactly sparse. We say that the signal x is compressible if the magnitude

of its transform coe�cients typically decay according to a power law, that is, |αi |<
Ri−1/p ∀i, where |α1 | ≥ |α2 | ≥ ... ≥ |αN |, R is a constant, and 0 < p < 1, i.e, the

energy in α is concentrated [27].

1| . | presents the cardinality for a discrete set.
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2.1.2 Under-sampling and Sparse Signal Recovery

The k-sparse/compressible signal x can be accurately recovered from M < N linear

projections (y ∈ IRM×1) with high probability [15]. These projections are obtained

through an M ×N matrix Φ according to the following equation:

y = Φ.x

= Φ.Ψ.α

= Θ.α.

(2.2)

Yet, this underdetermined system is ill-posed as the numberM of equations is smaller

than the number N of unknown variables. Consequently, there exists an in�nity of

vectors α satisfying (2.2). However, according to the CS theory, if α is sparse or

approximately sparse and if the matrix product Θ satis�es the Restricted Isometry

Property (RIP) for some isometry constant 0 < δk < 12 [14, 28]:

(1− δk)‖α‖22 6 ‖Θα‖22 6 (1 + δk)‖α‖22, (2.3)

then, it has been shown that recovering the signal x from the projections of y can be

achieved through the use of specialized optimization techniques. As an example, we

have the Basis Pursuit (BP) convex optimization technique which uses `1 norm3 and

involves linear programming techniques [15,29,30]:

α̂ = arg min
α∈IRN×1

‖α‖1 s.t. y = Θ.α. (2.4)

Note that solving (2.2) through the `1-minimization problem has been adopted as

the best alternative convex approximation to the original NP-hard `0-minimization

problem:

α̂ = arg min
α∈IRN×1

‖α‖0 s.t. y = Θ.α. (2.5)

In the state-of-art, many e�cient convex relaxation and greedy pursuit-based solvers

have been proposed such L1-MAGIC [30] and Orthogonal Matching Pursuit (OMP) [31].

2Broadly speaking, we loosely denote that a matrix Θ obeys the RIP of order k if δk is not too
close to 1 [13].

3The norm `1 of a vector x ∈ IRN×1 is de�ned by ‖ x ‖1=
∑N

i=1 | xi |, whereas, its `2 norm is

de�ned by ‖ x ‖2=
√∑N

i=1 x
2
i .
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Similarly, we can directly minimize the `0 norm using the Smoothed `0 (SL0) [32].

In [16, Table. 1], authors have provided details on the di�erent classes of many exist-

ing CS recovery algorithms.

Finally, once α̂ is estimated, (2.1) is used to compute the signal x̂. Figure 2.1 provides

an illustrative schematic representation of the CS method.

In the case of noisy data, we take into account the additive noise in the obtained

measurements, and we replace (2.2) by (2.6), as follows:

y = Φ.x+ no

= Θ.α+ no,
(2.6)

where no ∈ IRM×1 is a vector representing the noise. In most cases, it is considered

to be a Gaussian white noise with a zero mean and a variance σ2
no. To approximate

the noisy version of (2.5) and search for the sparsest solution α̂ that is consistent with

the known or received measurements y, instead of (2.4), we solve (2.7):

α̂ = arg min
α∈IRN×1

‖α‖1 s.t. ‖y −Θ.α‖2 6 ε, (2.7)

where ε is an upper bound of the noise [33].

Figure 2.1: Data under-sampling and recovery using CS thechnique.
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2.1.3 Incoherence Condition

To achieve a successful CS reconstruction of the signal, another condition must be

satis�ed, that is, the mutual coherence µ(Θ) between Ψ and Φ is required to be small:

µ(Θ) = max
i 6=j , 16i , j6N

|〈θi, θj〉|
‖θi‖2‖θj‖2

. (2.8)

In this equation, θi and θj denote the columns of Θ. The mutual coherence µ(Θ)

determines the number of required projections for an accurate recovery. According

to [13], unlike the signal of interest x, the mutual incoherence property (MIP) means

that the sensing/compression matrix Φ holds an extremely dense representation in the

basis Ψ, and the smaller the coherence (2.8) is, the fewer measurements are required.

Di�erently, the RIP of Θ ensures the measurements or projections to approximately

preserve the Euclidean length of all k-sparse signals [34]4. Since it is di�cult to check

whether a matrix satis�es the RIP or not, in practice, it is replaced by the mutual

incoherence property as shown in [31]: The MIP implies the RIP but the reverse is

not true.

Interestingly, the independent and identically distributed (i.i.d) Gaussian and Bernoulli

(random ±1) Φ exhibit a very low coherence with any given orthonormal basis Ψ then

satis�es the RIP and ensures an exact data reconstruction with overwhelming proba-

bility, ifM ≥ C0.k.log(N/k), where C0 is a small positive constant [13,35]. Typically,

in practiceM = c.k with c ≈ 3 or 4 can be su�cient to meet this condition [18]. How-

ever, these dense random matrices5 still cause high inter-communication costs between

sensors and thus limit the e�ciency for the applications of CS in WSNs. To overcome

such limitations, [27, 36]-[38] proposed to use sparse random matrices that contain

very few non-zero elements but require a multi-hop routing algorithm establishment.

Besides a�ecting the data recovery performance, the encoding matrix Φ determinates

the data readings gathering structure. For that reason, a notable attention has been

paid to the design structure of Φ [39, 40].

4Namely, we verify whether the matrix Θ preserves the distances between all the k-sparse signals,
i.e. if the matrix Θ satis�es the RIP, then the distance between two measurement vectors y1 = Θα1

and y2 = Θα2 is proportional to the distance between α1 and α2 [20, Chapter. 2].
5The use of dense encoding matrices refers to the digital CS [17].
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2.2 Overview of Matrix Completion

2.2.1 Under-sampling and Low-rank Matrix Recovery

As an extension of CS, MC technique has emerged recently to bene�t from the signal

low-rank feature in order to recover the missing data from a substantially limited

number of matrix entries [23]. That is, a partially unknown matrix M ∈ IRN×T of

rank r � min{N,T} can be entirely reconstructed if a subset of its sampled elements

Mij as well as their indices (i, j) ∈ Ω are available at the receiver side. The entry-

wise partial observation operator PΩ : IRN×T → IRN×T is de�ned by the following

expression:

[PΩ(X)]ij =

{
Xij (i, j) ∈ Ω

0 otherwise.
(2.9)

Note that the signi�cance or indication of the notation M in the MC theory di�ers

from that in the CS theory. Here, M refers to the received data matrix to be recov-

ered, whereas, in the CS theory, M refers to the number of received measurements

that compose the projection vector y (2.2).

Roughly speaking, the goal of the MC is to �nd a low-rank matrix X that is consis-

tent with the observed measurements Mij . According to [23], if Ω contains enough

information and if M ∈ IRN×T is a low rank or approximately a low-rank matrix, we

can �ll the unknown entries by solving the following rank minimization problem:

minimize
X∈IRN×T

rank(X) s.t PΩ(X) = PΩ(M). (2.10)

Yet, problem (2.10) is not convex, and algorithms solving it are doubly exponential.

Fortunately, the nuclear norm ‖ X ‖∗ minimization problem, which is a convex re-

laxation, can be solved. In fact, it is deployed as an alternative to the NP-hard rank

minimization problem [41]. Thus, we have:

minimize
X∈IRN×T

‖ X ‖∗=
r∑
i=1

τi(X) s.t PΩ(X) = PΩ(M). (2.11)

‖ X ‖∗ denotes the sum of the singular values τi ≥ 0 of the matrix X. As it might

be seen, the relationship between the nuclear norm and the rank function in MC is

analogous to that between the convex `1 norm and the `0 norm in CS. Indeed, while
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the rank provides the number of non zero singular values τi > 0, the nuclear norm

measures their sum.

In the literature, various e�cient solvers for this type of systems have been suggested.

For example, the Singular Value Thresholding (SVT) optimizes an approximation of

(2.11) by using a threshold parameter τau and adding a Frobenius-norm term to the

objective function [42]:

minimize
X∈IRN×T

τau ‖ X ‖∗ +
1

2
‖ X ‖2F s.t PΩ(X) = PΩ(M). (2.12)

Di�erent from (2.11), another method has been proposed to approximate (2.10) rather

than the nuclear norm, which is the matrix factorization. Low rank matrix �tting

(LMaFit) [43], Sparsity Regularized SVD (SRSVD) and Sparsity Regularized Matrix

Factorization (SRMF) [44] are among the approaches that use the matrix factorization

method. These approaches are based on the fact that any matrix X ∈ IRN×T of a

rank up to r can be explicitly written as the product of two matrices with the form

X = LRtr, where L ∈ IRN×r and R ∈ IRT×r. Hence, the goal here is to search

over the set of rank-r matrices and �nd a point LRtr that is closest to the set of

matrices, which meets M at all known entries. To solve the problem, an alternating

minimization scheme is used by �xing one of L and R and making the other one as

the optimization variable.

2.2.2 Incoherence Condition

As with the CS theory, from a theoretical point of view, in order to �nd the desired

solution with this kind of methods, the sampling set Ω must be selected uniformly at

random6. However, it has been shown in [23] that it is impossible to get that kind of

guarantees of the MC-based recovery to all the low-rank matrices. To see the problem,

suppose that the rank-r singular value decomposition (SVD) of the known data matrix

M is U ΠV tr, where V ∈ IRT×T and U ∈ IRN×N are two unitary matrices. Besides, we

assume that r = 1 and both (or one) singular vectors are sparse, i.e. their total energy

is carried only by few entries. Yet, when this occurs, the resulting matrix M will, as

well, hold its energy concentrated on just a few number of its entries, i.e. M equals to

6From the matrix-RIP theory point of view, we verify if the operator PΩ preserves or not the
distances between all the rank-r data matrices [45] [46].



CS and MC based data gathering approaches 19

zero in almost all columns or rows [45]. In such particular situations, it is impossible

to �nd M unless all of its elements are observed7. This example illustrates that

one cannot hope to �ll or complete the data matrix if some of the singular vectors are

extremely sparse8 [41]. To avoid such informal considerations and particular situation,

the singular vectors of M should be spread across all the coordinates. The authors

of [23] have introduced a geometric incoherence assumption, that is, M has to satisfy

the incoherence condition with parameter µ0 as follows:

max
16i6N

‖ U trei ‖2≤
√
µ0r

N
,

max
16j6T

‖ V trej ‖2≤
√
µ0r

T
,

(2.13)

where {ei} and {ej} both represent the canonical basis for the appropriate dimension

and 1 ≤ µ0 ≤ min{N,T}
r . Fortunately, this is usually the case in most of the practical

applications. According to [23], most matrices M of low rank r can be perfectly

recovered with probability 1 − n−3
c , and the solution of (2.11) will converge to the

solution of (2.10), if the number of received data samples is in the order of mM ≥
Ccn

6/5
c rlog(nc), where Cc is a constant and nc = max(N,T ) [47, 48].

2.3 CS and MC based data gathering approaches

Environmental WSN signal pro�les exhibit both spatial and temporal dependency.

Such structures generate redundancy and enable a succinct representation of the data

using a number of coe�cients much smaller than its actual dimension. One popu-

lar postulate of such low-dimensional structures is sparsity, that is, a signal can be

simply represented with a few non-zero coe�cients in an invertible proper sparsifying

domain [49]. With a number of measurements proportional to the sparsity level, CS

enables a reliable reconstruction of the signal. Over the past years, plenty of papers

have addressed the data gathering problems in WSNs by the integration of the CS the-

ory to drastically reduce the number of transmitted measurements [21,27,36]-[38,50].

7An analogous situation with the CS is that one evidently is unable to reconstruct a signal, which
is sparse in the time domain, through sub-sampling it in the time domain.

8Generally, in the case where a column (or row) does not have a relationship to the other columns
(or rows) in such a way that they are approximately orthogonals, basically we would require to observe
all the data entries in that column (or row) to reconstruct M .
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Originally, CS-based schemes were designed to sample and recover sparse vectors and

were classi�ed either as purely spatial approaches [27,36,37,50,51] or as purely tem-

poral ones [52]. For the spatially (inter-sensors) CS-based data gathering approaches,

in each time slot, along the multi-hop path that relays the initial transmitting source

node to the sink, the readings of the relaying sensor nodes and the initial transmit-

ting source node are linearly combined using their coe�cients of Φ, resulting to a

measurement projection of a weighted sum. Here, each vector row of the compres-

sion/measurement matrix Φ represents a path and holds non-zero coe�cients only

in the positions of the initial sensor node and the relaying ones. Given the example

of Figure 2.2, suppose that the applied compression ratio imposes the collection of

M = 2 measurements projection, i.e. y = [y1, y2]tr ∈ IRM×1. In this case, each of

the initial transmitting source nodes N2 and N5 initiates a separate projection that

is computed hop by hop until being received by the sink. However, this kind of in-

network aggregation scheme is highly dependent to the considered routing rules and

to the network topology [36,37,53].

Figure 2.2: Example 1 of data gathering process using spatial CS method.

As another example of typical application of the spatial CS, illustrated in Figure 2.3,

all the leaf nodes initiate the data transmission process. For each projecton yj , sensor

node Ni multiplies its probed data reading xi by its coe�cient φj,i. The resulting par-

tial projetion is added to the received ones that are computed by the children nodes

and then forwarded to the higher node. Even though, this method implies the use of



CS and MC based data gathering approaches 21

dense encoding matrices Φ, compared to the baseline data collection, this kind of CS

data gathering scheme reduces the number of messages to be delivered to the sink for

large-scale WSNs, i.e. when M is much smaller than N and N is too large. More-

over and more importantly, the transmission load is uniformly spread out between all

nodes since they forward the same size of information whatever the distance from the

destination is [50].

Figure 2.3: Example 2 of data gathering process using spatial CS method.

For the temporally (intra-sensor) CS-based data gathering approaches, each sensor

node reports to the sink only the CS measurements projection, obtained from a block

of its data readings that are sampled during a number of successive time slots then

bu�ered [52, 54]. Di�erent from the spatial CS methods, this in-node compression

technique is localized and network independent. To this end, chapter 3 relies on the

idea of exploiting both the distributed (spatial) and local (temporal) CS designs to de-

liver only a fraction of data sensory readings to the sink without any on-board sensor

nodes computation9.

The inherent correlation between sensory data readings enables the data, probed by

nodes during a period of time, to exhibit a low rank structure, which is analogous

9Note that a more detailed discussion of how CS methods have been applied in WSNs is a�orded
in the introduction of the chapter 3.
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to sparsity. Following the CS, the MC theory presents a remarkable new �eld that

takes advantage of the low-rank feature of the data matrix to recover the missing en-

tries. In [55], a state-of-the-art of MC-based algorithm for compressive data gathering

has introduced the short-term stability with the low-rank feature. The considered

feature was used not only to reduce the recovery error but also to recover the likely

empty columns appearing in the received data matrix. The existence of the empty

columns was possible since the readings were forwarded according to a presence prob-

ability. Furthermore, authors in [56] addressed joint CS and MC. They used the CS

to compress the sensor node readings then the MC to recover the non-sampled or lost

information. However, this approach has not been compared to other state-of-the-art

approaches to show its real contribution. In addition, they didn't take advantage of

the space-time correlation of the signal as it should be, since they used standard com-

pression and sparsifying matrices for the CS. Di�erent from [56], Wang et al., in [57],

explored the graph based transform sparsity of the sensed data and considered it as

a penalty term in the resolution of the MC problem. Similarly, [58] has combined the

sparsity and the low-rank feature in the decoding part and, as in [57], used the alter-

nating direction method of multipliers to solve the constrained optimization problem.

Since adaptability and e�ciency are two very important issues in WSNs data gath-

ering, [59] proposed an adaptive and online data gathering scheme for weather data

that is purely based on the MC requirements. Yet, the main drawback of this ap-

proach was the computational overhead at the sink to reconstruct and re-reconstruct

the same active window data as well as the extra communication cost between the

sink and the sensor nodes in order to adjust the number of needed measurements. The

process is reiterated until the required error gap is reached, even though they have al-

ready found a very low reconstruction error. In contrast to our proposed approaches,

this paper addressed the sampling side. Indeed, they focused on the sampled data

locations in the received data matrix, whereas, we have considered the sampled data

locations in the network area. Authors of [24] focused on the case of MC recovery

with the existence of successive data missing or corruption, referred to as structure

faults. Indeed, they considered that successive data may be missing or corrupted due

to channel fading or sensor node failures, which creates successive missing data on rows

and/or on columns. Although this successive missing data may result in the existence

of some few empty rows, the proposed data reconstruction approach does not take

into account these particular totally empty rows, and fails to recover the data matrix
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when the number of missing rows becomes signi�cant. Hence, in our work of chapter

4, we investigate how to solve a challenging problem in the WSNs: how to omit a

considerable number of sensor nodes from the monitoring schedule and estimate their

readings from the partially reported readings of a set of representative sensor nodes

using a MC-based approach.

2.4 Energy-e�cient based data gathering approaches

In the state-of-art of the energy-e�cient based algorithms for data gathering, re-

ducing the amount of collected data readings or reducing the packets size are two

well investigated methods that are closely related to the minimization of the network

energy consumption [12, 21]. CS and MC take bene�ts from the redundancy that

occurs in the environmental WSN signals in order to reduce the number of trans-

mitted measurements and thus achieve an appealing progress in the network energy

consumption [7, 24,60]-[62].

Li et al., in [62], have combined the CS and the routing scheme and proposed a

multi-strip data gathering approach for green data collecting. Using this approach,

the network is partitioned into multiple strips, where nodes around each strip for-

ward data to the center with data fusion technique. The amount of data readings

undertaken by sensors is relatively balanced since the transmitting nodes are chang-

ing. Yet, according to [63], this scheme doesn't use an adaptive distributed technique

to minimize the complexity in data gathering. On the heels of MC, Tan et al., in [61],

targeted to enhance the network energy e�ciency and proposed a low redundancy

data collection scheme. This MC-based approach serves to quickly compensate the

set of collected data in cases of packet loss. In order to not a�ect the network lifetime,

this approach takes advantage of the energy surplus, remaining away from the sink

area, and conceives the backup data set to satisfy the minimum number of measure-

ments required by the MC theory. Di�erent from the compression-based aspect that

the aforementioned schemes have proceeded, the authors of [64] have addressed the

network lifetime issue by reducing the number of nodes' state transitions, pointing out

that the processor consumes energy through state transition. This technique bears a

resemblance to ours in the sense that, in our scenario, a set of sensor nodes is scheduled

to not sense the environment for a large number of consecutive time slots in order to
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reduce their power consumption.

In line with the consideration of the transmission path to increase the network lifetime,

Yao et al., in [65], have developed an energy-e�cient delay-aware lifetime-balancing

data collection algorithm for heterogeneous WSNs, in which nodes holding poor com-

munication links and less remaining energy have a lower chance to be chosen as for-

warders. At the beginning of each collection period, a set of nodes is selected to be

the sources. However, in our proposed approaches of chapter 4 and chapter 5, the

source nodes di�er from a time slot to another ensuring a diversity in the reported

data and thus a better monitoring quality and energy balancing. Similarly, the pa-

per [66] has proposed two algorithms, where a sensor node always chooses, as next

hop, the node that has the highest residual energy. Yet, the proposed techniques have

been proved in [67] to be unable to manage the problem of void hole. To overcome

the energy hole problem, authors in [68] have introduced a new layer, referred to as

the charging layer, into the basic node network protocol stack. As soon as the battery

level of a node goes done, it is charged wirelessly using witricity (wireless electricity).

In this context, the EHWSNs, where nodes can replenish their batteries with energy

from the surrounding environment, have got attention of several researchers. Among

the in-network processing-based schemes, an m-hop averaging data compression tech-

nique, with energy harvesting, has been proposed in [12] in order to deal with the

unevenness of the energy levels among the nodes. In this algorithm, each node has

to continuously assemble the usable energy levels of other nodes then make a decision

about how much it needs to compress the forwarded data packets after comparing its

own energy level with those assembled from the next m nodes within m hops. As the

packet is relayed towards the sink, the data packet length becomes smaller leading

to a gradual decrease in the energy cost. Di�erent from [12], in [60], authors have

presented an adaptive collection scheme-based MC, which adjusts the amount of data

to be gathered at each moment depending on the residual usable energy absorbed

from solar radiation. This scheme has been designed to improve the network energy

utilization, increase the duty cycle of sensors far away from the sink and gather as

less data readings as possible, when there is no su�cient usable energy and vice versa.

Yet, this is not the case with our scenario since our deployed sensor nodes can neither

charge their batteries nor renew them. Dealing only with the nodes' batteries, we

have investigated in chapter 5 tow to extend the network lifetime and prevent it from
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being prematurely partitioned or dead by considering the residual energy of the entire

multi-hop path that links the source node with the sink. Furthermore, at the end of

the network lifetime, the remaining energy of the border nodes (i.e. nodes far away

from the sink) is almost close to the average remaining energy thanks to the introduced

energy-aware cost functions that select the representative sensor nodes. Without any

extra communication between nodes, the proposed metrics aim not only to achieve

energy e�ciency but also to preserve a su�ciently good quality of data reconstruction

as they take into account correlation among sensors to select those who can report

more information about the network.
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3.1 Introduction

Recently, it has been shown that the incorporation of CS techniques has enhanced

WSNs scenarios since they have been introduced as a good �t for such applications in

both, the acquisition as well as in the reconstruction of the signal [69].

To achieve a successful application of CS in WSNs, incoherence condition between

the transformation matrix Ψ and the measurement matrix Φ must be present while

simultaneously considering data gathering problems and communication cost. In this

context, [36] and [27]1 addressed the impact of the network topology and the routing

system on the CS process in WSNs. [36] found that none of the standard transfor-

mations can sparsify the signal in question while being simultaneously incoherent

with the measurement matrix Φ, which badly a�ects the recovery performance. [27]

presented a centralized algorithm that iteratively build projections and choose paths

that minimize the intermediate coherence with a given Ψ in order to reduce the recon-

struction error. However, no performance improvement was found compared to the

randomized downsampling. Likewise, [37] studied the problem of data gathering using

CS in WSNs and graph theory. They provided mathematical foundations for a novel

approach leading to a non-uniform collection of measurements through a random walk

based manner. Yet, the problem with this approach is the direct in�uence of the ran-

dom selected paths on the compression performance. As a sequel of [36], Quer et al.,

in [51], came with the idea of the online estimation of Ψ, exploiting the Principal

Component Analysis (PCA) approach, referred by many authors as Karhunen-Loève

Transform (KLT), to capture the temporal or the spatial characteristics of the received

signal. Basically, the idea of the PCA technique is to rotate the axes of the data in

order to minimize the correlation that can be interpreted as redundancy between co-

e�cients and as a result increase the energy concentration. Particularly, the basis

vectors of the PCA matrix are given by the orthonormalized eigenvectors of the data

autocorrelation or covariance matrix [70]. The results of paper [51] have attracted

the attention to the CS when it is used as a recovery tool in WSNs. [21] and [52]

used also the PCA technique by making adjustments according to their applications.

Hooshmand et al., in [21], added the covariogram computation to the standard PCA

to get a better estimation of the spatial transformation matrix. On the other hand,

1They are two state-of-the-art studies for the CS-based approaches in WSNs.
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Chen et al., in [52], used the incremental PCA to calculate the temporal dictionary,

which stores in memory just the k largest eigenvalues of the covariance matrix.

Since environmental WSN signals have, most of the time, both temporal and spa-

tial dependency, this characterization was then exploited by the incorporation of the

kronecker CS framework [21, 28, 34, 71]. However, in [34] and [21] the integration

of the multi-dimensional CS aspect was done on the sparsifying level, ignoring the

compression one which is highly important in the case of WSNs. Wang et al., in [71],

proposed a 2D data gathering strategy called CS²-collector, which applies CS locally

at each sensor as well as in the whole network. However, the proposed approach didn't

take advantage of the 2D-correlation existing in the signal as it should be, since it

uses standard transformation matrices. These data independent matrices ignore how

the signal is correlated and when its correlation changes, which leads to a limited

reconstruction performance. Inspired by the CS²-collector model, and relying on the

CS mechanisms used for the CB-CS (Covariogram-Based Compressive Sensing [21]),

we include in our design, the temporal sampling and sparsifying pattern to compress,

then, reconstruct the signal in an e�cient way through the Space-Time Compressive

Sensing (STCS) approach.

WSNs possess a �nite and limited power supply capacity [72]. For that reason, the

primary factor to consider is the minimization of the energy consumption, even though

this may a�ect or degrade a little bit the recovery performance. As the CS approach

is based on transmitting a small number of coe�cients rather than the full set of the

signal coe�cients, it provides schemes that can reduce e�ciently the network power

consumption, as shown in [7,73,74]. In this direction, to further increase the network

energy saving, we integrate the routing in the active node selection process through the

STCS-Routing Aware (STCS-RA). Several researches used the routing in conjunction

with compression in order to linearly combine sensors readings along the multi-hop

selected paths [27, 36]-[38]. However, in this work, the routing is used in conjunction

with the spatial correlation in order to select the nodes that can best present the whole

network, when at the same time, are "near" the sink.

The main contributions of this chapter are summarized as follows:

� In the data gathering part, only a small subset of sensor nodes is selected to be

active and report their readings to the sink. These sensor nodes should capture
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enough information to be chosen as the representative of the network. In the

following, we de�ne the node selection criterion that allows the sink to recover

the entire data. Correlation among sensors is calculated and those holding the

greatest informative values are better ranked to be chosen.

� Both distributed and local data gathering based on CS technique are e�ciently

investigated in this work. Di�erent from [71], the temporal compression pattern

of our approach with its sparse combination does not entail on-board sensors

computation. Making use of this kind of conception for the compression matrices

meets well the constraint of limited computational capacities that characterizes

the sensor devices. Consequently, the proposed STCS consumes less energy

than [71], while reaching higher data recovery quality.

� If the gathered data is expressed in the vector form, as it is usually the case in

the standard CS, spatial and temporal correlations can not be handled together.

Thus, to take bene�ts from both inter and intra-dependency, the signal is treated

in its 2D form, using tools from linear algebra.

� Finally, the sensor route length is taken into account with the STCS-RA in

the active node selection phase in order to signi�cantly improve the trade-o�

between minimizing the energy consumption of the network and maintaining a

good reconstruction quality.

This chapter is organized as follows. Section 3.2 de�nes the network model and the

signal model. Section 3.3 presents the proposed algorithm and describes its com-

ponents and its design in details. In Section 3.4, we carry out with simulations to

show the performance of our STCS and STCS-RA. Finally we conclude the chapter

in section 3.5.

3.2 System Model

3.2.1 Network Model

We consider a multi-hop wireless sensor network consisting of a set N∫ = {1, . . . , N}
of randomly distributed sensors in a square observation area. We assume that the sink

is located at the center of the area to gather the transmitted measurements, and we
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suppose that it has an in�nite power supply. We consider that two nodes are connected

only if the Euclidean distance between them is shorter than some transmission radius

(r) that scales with �(
√
logN/N) to guarantee the connectivity of the network with

high probability [37, 75].

To route the data towards the sink we use the shortest path tree computed by Dijkstra

algorithm [76]2. Figure 3.1 includes an example of a routing tree, found by Dijkstra

algorithm, for a network composed of N = 50 sensor nodes.

Figure 3.1: A routing tree for a network composed of N = 50 sensor nodes.

3.2.2 Signal Model

Since the temporal and the spatial correlations represent a huge potential for com-

pressing especially in the WSN signal pro�le, it will be interesting, if we can vary

numerically their degrees to �gure out how would be the performance of any pro-

posed compression scheme [21]. This solution was introduced by [77], which allows

the e�cient generation of a synthetic continuous space-time signal �eld, where spatial

2According to [76], paths established by Dijkstra algorithm usually present a lower number of
connections, hence, the average delay of message dissemination decreases which reinforces the energy
management.
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(γ > 0) and temporal (ρ ∈ [0, 1]) correlation parameters can be separately adjusted3,

since their corresponding functions are independent.

To generate the signal of interest, we suppose that D = [−xD, xD]× [−yD, yD] is the

space domain, where x and y are the space coordinates. Moreover, we suppose that

the time is slotted into equal time slots t = 1, 2, . . . ., Tcs. Algorithm 1 states how to

generate a correlated stationary signal �eld z(p, t) : D×T → IR, where T is the time

domain and p is a point in (x, y) plan D.

To start the signal generation process, for t = 1, we de�ne w(p, t) : D × T → IR to

be an i.i.d random Gaussian �eld. More precisely, for any speci�c position p = (x, y),

w(p, 1) is a Gaussian random variable with zero mean and unit variance.

To obtain a temporally correlated signal, authors of [77] have used an autoregressive

�lter to enforce the temporal correlation in the signal model (step 3 of the algorithm 1).

Since the time is slotted into equal time slots, they only consider the one-step time

correlation and use a simple coe�cient ρ. Note that it has been shown in [77, Eq. 8 and

Eq. 9] that the performed autoregressive model maintains the statistical properties

and preserves the mean and the variance of the initial used signal w(p, 1), i.e µw(p,t) = 0

and σ2
w(p,t) = 1, ∀t ∈ T .

Regarding the spatial correlation, we apply to the signal, to be generated, a 2D �lter-

ing procedure using a speci�c correlation function rs(p) (step 6 of the algorithm 1).

Among the numerous existing models in the literature, we generate the signal using

the Gaussian �ltering4, used in [21, Eq. 2], which can be controlled by the parameter

γ:

rs(p) = exp(
−(x2 + y2)

γαs
). (3.1)

In (3.1), αs is a scaling parameter that depends on the size of the �eld. In [77], authors

stated that the coloration of the signal with rs(p) has to be done in the frequency

domain. Hence, before modeling the spatial correlation, a Fourier transformation is

performed (step 5 of the algorithm 1). Note that it has been proven in [77, Eq. 12]

that the signal �eld z is still stationary and Gaussian with zero mean (µz(p,t) = 0).

3The values of γ and ρ are in the same order of magnitude as those of the empirical values found
in [77].

4The Power Exponential model, when ν is equal to 2 [78].
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Algorithm 1 Model for generating the correlated signal �eld.

Input: the generated �eld for t = 1 : w(p, t), the temporal correlation parameter
ρ, the spatial correlation parameter γ, the spatial correlation function computed in
the frequency domain Rs(ω) = F (rs(p)).

1: for t = 1 to Tcs do
2: if (t 6= 1) then
3: w(p, t) = ρ×w(p, t− 1) +

√
1− ρ2 × ε(p, t), where ε(p, t) is a N (0, 1) i.i.d

random Gaussian noise.
4: end if

5: W (ω, t) = F (w(p, t)).
6: Z(ω, t) = W (ω, t)×Rs(ω)1/2.
7: z(p, t) = F−1(Z(ω, t)).
8: end for

Output: the space�time correlated signal �eld z(p, t).

By construction, the signal �eld z(p, t) is a 3D matrix of size (2yD × 2xD × Tcs). The
data matrix of interest, Xcs ∈ IRN×Tcs , denotes the 2D signal discretized from z(p, t)

by the N sensor nodes along the Tcs time slots, where the (i, t)th entry of Xcs, xcsi,t ,

represents the tth data reading (t ∈ [1, Tcs]) sensed by the ith sensor node (i ∈ N∫ ).

3.3 Space-Time Compressive Sensing Routing-Aware ap-

proach (STCS-RA)

3.3.1 Space-Time compression matrices

3.3.1.1 Spatial sampling pattern

In this part, we explain how routing can be jointly considered with the correlation crite-

ria for the active sensor selection in order to minimize the overall network consumption.

At the beginning of each sensing period, the sink selects a setMs = {1, ...,Ms < N}
of sensors that can best represent the whole network and, at the same time have the

shortest path towards the sink. Relying on the the Enhanced Correlation Based De-

terministic Node Selection (ECB-DNS) procedure [21], we select the Ms sensor nodes

according to their conditional variances, computed through [21, Eq. 11], which help

selecting the sensor g∗ with the maximum informative value m′ respecting to the set
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of sensors that are not yet selected: S1. That is
5:

g∗ = argmax
g∈S1

(m′g), (3.2)

where

m′g =

∑
i∈S1

σ2
ig

σ2
g

 . (3.3)

In equation (3.3), σig is the covariance between the variable xi of node i and the

variable xg of node g and σ2
g is the variance of the variable xg. Di�erently to [21], in

which all the N sensors participate in the transmission along the Tcs slots, in STCS,

only Ms sensors will be the representatives and transmit for the entire sensing period.

To see the problem when considering only the metric of (3.2), suppose that the selected

node is faraway from the sink, while there is another node with slightly the same metric

but near the sink. In this case, it would be a waste of energy for the network, if we

keep using the selected node. Figure 3.2 illustrates a simpli�ed clari�cation of the

problem. As mentioned above, the node selection process for the STCS-RA takes into

(a) Selecting a sensor node
without routing consideration.

(b) Selecting a sensor node
with routing consideration.

Figure 3.2: Active sensor node selection.

consideration not only correlation between sensors but also their paths cost, measured

5Basically, the overall conditional variance mg of sensor node g is de�ned by mg =(∑
i∈S1

σ2
i −

∑
i∈S1

σ2
ig

σ2
g

)
. Since the �rst sum does not depend on node g, we rely only on the

second sum for reasons of simplicity.
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with number of hops. Therefore, we add to (3.2) an additional penalty modeled by

the sensors paths costs. For a given sensor g ∈ N∫ , the balance between its m′ value

of (3.2) and its path cost towards the sink, nbHops(g), is controlled by a tuning

parameter β. Thus, (3.2) is replaced by (3.4) for our STCS-RA:

g∗ = arg min
g∈S1

(−m′g + β.nbHops(g)). (3.4)

Generally, the covariance takes its values in the interval [-1, 1]. Thus, the fractions

(σ2
ig/σ

2
g)� 1. Furthermore, at each selection iteration, these values still decrease until

being insigni�cant, as it will be explained hereafter. Besides, nbHops is an integer >

1 and it varies according to the transmission radius. Therefore, the values assigned

to β must be much less than 1 in order to not neglect the weight of the correlation

presented by m′.

For the rest of this chapter, we refer to STCS when we use (3.2) and STCS-RA when

we perform (3.4) for the transmitting source nodes selection procedure.

The node selection algorithm is detailed as follows. At the iteration n ∈ {1, . . . ,Ms},
a sensor g∗(n) is selected and moved from set S1 to set S2. Note that S2 is the set

containing the sensors that are already selected over the previous selection iterations.

The metrics m′ of the sensors of the set S1 will be recomputed in order to cancel out

the impact of the selected node g∗(n) on the rest of the sensors of S1 and to prepare for

the selection of the next sensor node g∗(n+1). The selection of the node g∗(n+1) will

be done as if the node g∗(n) did not exist in the network. The process is reiterated

until the selection of Ms < N sensors. The node selection process, especially the

manner how we remove the correlation e�ect of node g∗(n) from S1, follows the steps

outlined in algorithm 2. At the initialization and before the �rst sensing period, we

de�ne the data matrix Xlp = [xtrlp 1, x
tr
lp 2, . . . , x

tr
lpN ]tr ∈ IRN×Tlp that is delivered during

a short learning period Tlp � Tcs, where all sensor nodes report their information to

the sink6. We assume that the spatial correlation feature inherent in Xlp re�ects that

in Xcs.

Once the best Ms sensors are selected, the compression operation can be represented

6xlp i ∈ IR1×Tlp , considered as a Tlp-dimensional data points, holds the readings sent by the sensor
node i during the learning period.
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Algorithm 2 The representative sensor nodes selection process.

Input: n = 1, S1 = N∫ , S2 = {∅}, Ms = {∅}, X1 = Xlp, a zero-vector
X2 ∈ IR1×Tlp .

1: for n = 1 to Ms do

2: if (n == 1) then
3: Compute the covariance matrix Σ ∈ IRN×N of Xlp.
4: According to (3.3) and using Σ, compute the metricsm′. Then, select g∗(n)

using (3.2) or (3.4).
5: Remove the reading xlp g∗(n) of node g∗(n) from X1 so that it becomes

X1 = [xtrlp 1, x
tr
lp 2, . . . , x

tr
lp g∗(n)−1, x

tr
lp g∗(n)+1, ..., x

tr
lpN ]tr ∈ IRN−n×Tlp and X2 takes

the values of node g∗(n) so that X2 = xlp g∗(n).
6: Following that removal, Σ can be written as:

Σ =

[
Σ1,1 Σ1,2

Σ2,1 Σ2,2

]
, (3.5)

where Σ1,1 ∈ IRN−n×N−n is the covariance matrix of X1, Σ1,2 = Σtr
2,1 ∈ IRN−n×1

is the covariance vector between X2 and X1, and Σ2,2 is the variance of X2.
7: else if (n ≥ 2) then
8: Following the removal of node g∗(n−1) from S1, re-compute the conditional

covariance matrix of X1 knowing X2 = xlp g∗(n−1); Σ1,1|2 ∈ IRN−(n−1)×N−(n−1),
where:

Σ1,1|2 = Σ1,1 − Σ1,2(Σ2,2)−1Σ2,1. (3.6)

9: According to (3.3) and using Σ1,1|2, re-compute the metrics m′. Then,
select g∗(n) using (3.2) or (3.4).

10: Σ takes the values of Σ1,1|2.
11: Perform step 5 then step 6.
12: end if

13: S1 = N∫ \ {g∗(n)} and g∗(n) ∈ S2.
14: end for

Output: Ms = S2.
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by a left multiplication of the 2D signal Xcs with the spatial projection matrix ΦS ∈
IRMs×N as:

YS = ΦS .Xcs +No, (3.7)

where YS ∈ IRMs×Tcs is the spatially compressed 2D signal, No ∈ IRMs×Tcs is the

measurement noise and ΦS is a sparse matrix that consists of a single '1' in each row

and at most a single '1' in each column7. Note that '1' corresponds to a selected

sensor node iMs ∈ Ms, which means that exactly Ms nodes are selected as sampling

nodes and they cannot transmit their readings twice. According to [13], this kind of

data sampling is denoted as the Nonuniform Sampler (NUS). Here, the ithMs row of YS

holds the set of Tcs data readings, sensed by the ithMs sensor node belonging toMs.

The columns of the matrix ΦS are thus orthogonal, and according to [27], ΦS is a

valid compression matrix8.

As a result, in contrast to [21], where they have to generate a di�erent compression

matrix for each time slot t to compress separately the columns of Xcs, our approach

needs just one ΦS to compress the entire data matrix Xcs.

3.3.1.2 Temporal sampling pattern

Di�erent from [21], for an entire sensing period, the selected sensors are the same.

This allows us to compress also the timing signal at each sensor. Thus, each of the

selected Ms sensors applies the CS locally on its temporal data vector in order to

reduce its dimension, from Tcs to Mt < Tcs readings, using a sparse random sampling

pattern. This can be easily implemented by sharing the seed of random generator.

For example, the sink can broadcast the seed to all the sensors at the beginning of

each sensing period. These operations can be represented by a right multiplication of

the matrix YS with the temporal projection matrix ΦT ∈ IRTcs×Mt as:

Y = YS .ΦT = ΦS .Xcs.ΦT +No′, (3.8)

7Note that the use of this kind of sparse measurement matrices refers to the analog CS, called
also Low-rate CS [17].

8According to the analysis made by [27], the coherence between the sensing/compression matrix
and the sparsifying one is determined by the column vectors of Φ. Since Ψ is an orthonormal basis
matrix, we require that ΦtrΦ ≈ I in order to get a small coherence value, i.e. the column vectors of
Φ are required to be approximately orthogonal.
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where No′ ∈ IRMs×Mt and No′ = No.ΦT .

In this equation, ΦT has a sparseness structure similar to that of ΦS since it holds

a single '1' in each column and at most a single '1' in each row. This multiplication

consists of randomly selecting Mt moments among Tcs moments for which a given

active sensor will transmit its readings to the sink. To summarize, if it is selected as

a transmitting source node among the Ms selected nodes, this sensor node has just

to collect measurements according to a designated temporal schedule and transmit

them to the sink. As a result, we obtain a much lower number of measurements in

Y ∈ IRMs×Mt compared to the original 2D signal Xcs ∈ IRN×Tcs .

3.3.2 Kronecker sparsifying basis

To reach an accurate recovery of the received 2D compressed signal Y , we take ad-

vantage of the space-time correlation existing in the original signal Xcs to highlight its

sparseness in its two dimensions. In fact, each of the signal dimensions owns a sparse

representation in a proper transform domain, denoted as ΨS ∈ IRN×N for the spatial

basis and ΨT ∈ IRTcs×Tcs for the temporal one. Thus, we have:

Xcs = ΨS .α.ΨT , (3.9)

where α ∈ IRN×Tcs is the 2D-sparse representation of Xcs in ΨS and ΨT . The deter-

mination of these two bases is very important since they are deeply involved in the

reconstruction step of CS as shown in expressions (2.4) and (2.7). Therefore, we detail

hereafter how these transformation bases have been implemented.

3.3.2.1 Signal transformation in the spatial domain

To construct the spatial sparsifying basis ΨS , we resort to the online estimation PCA

approach merged with the covariogram theory, proposed in [21]. In order to estimate

the spatial correlation inherent in the signal Xcs, this related approach relies on the

computation of the experimental variogram γexp(d) using the learning data matrix
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Xlp. That is, for a given geographical distance d > 0, we have:

γexp(d) =
1

2Nd

∑
p′ s.t. ‖p−p′‖2=d

[xlp(p)− xlp(p′)]2, (3.10)

where xlp(p) denotes the data sample of Xlp sensed from the space location p, and

Nd represents the number of pairs (p, p′) that are separated by the same distance

d. According to [79], for a stationary data �eld, the experimental variogram can be

computed through the experimental covariance variables of the signal of interest. That

is, for a given geographical distance d, we have:

γexp(d) =
Cexp(0)

N0
− 1

Nd

∑
p′ s.t. ‖p−p′‖2=d

Cexp(d), (3.11)

where Cexp(0)/N0 denotes the average variance computed from the considered data

samples (xlp)p since Cexp(0) denotes the sum of the covariances that correspond to

zero distances, N0 denotes the number of the considered data samples (xlp)p, and

Cexp(d) denotes the covariance computed from the pair (p, p′).

To estimate the average variogram γexp(d) for a set of samples pairs on an irregular

grid with distance d, Jindal et al., in [80, Section. 2], have stated a simple and detailed

method for that:

1- For each pair of samples, distance d between them and the squared di�erence be-

tween their data values [xlp(p)− xlp(p′)]2 are calculated.

2- The entire range of distances is divided into discrete contiguous intervals9.

3- Attribute each of the pair of samples (p, p′) to one of the distance intervals, then

calculate the average variogram for each interval through the division of the sum of

the squared-di�erences between data values by the total number of pairs lying in that

distance interval.

Generally, performing (3.10) or (3.11) is followed by the search of the theoretical var-

iogram values γth(d), which represent the values of the variogram expression model

that is chosen from a set of prede�ned variogram models (such as the spherical, gaus-

sian, circular, etc.) so as to �t the best the experimental values γexp(d). This step

is done in order to provide correlation information between locations where there is

no gathered data. Indeed, the expression (3.10) or (3.11) estimates the average of the

9The interval size can be �xed according to the average distance to the nearest neighbor.
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experimental variograms for distances d using only the available data samples.

Once the best suited variogram �t γth is obtained, it is integrated in the computa-

tion of the covariogram matrix Σc ∈ IRN×N using the following expression, where the

element (i, j) of Σc can be written as:

σc i,j = sill − γth(di,j). (3.12)

In this equation, sill = limd→∞ γth(d) is a parameter that is obtained during the

selection process of the suitable variogram model and di,j is the geographical distance

between sensor i and sensor j.

Once Σc is estimated, we consider the orthonormal basis ΨS whose columns are the

eigenvectors of Σc, corresponding to the eigenvalues sorted in decreasing order. As

it will be validated with simulations in the next section, this combined covariogram-

PCA method exploits well the correlation among sensors10 and makes improvements

compared to the sample covariance-PCA method used in [51]. The advantage of this

method is that ΨS is dynamically adapted to the signal model and is not �xed for all

the sensing periods.

3.3.2.2 Signal transformation in the temporal domain

Regarding the temporal basis ΨT , we use the Discrete Cosine Transform (DCT), given

by the following expression [20]:

ΨTi,j = Cdct.cos((i− 1)(1 + 2(j − 1))
π

2Tcs
), (3.13)

where Cdct =
√

1/Tcs if i = 1 and
√

2/Tcs otherwise. The DCT is very similar to the

Discrete Fourier Transform (DFT) in the sense that it gives a spectral analysis of the

data [70]. The DCT makes a sparse signal by concentrating most of its information

into few low frequency components. The remaining high frequency components tend

to be weak values and become less important, and thus they can be removed without

visual losses [20]. Both of the bases DCT and DFT worked well with our approach

and gave similar results.

It is noteworthy that in contrast to [21], where new ΨS and ΨT are computed in each

10As it has been stated in [21], the proposed method works well with signals that are non-stationary.
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time slot t to recover the correspondent data vector (column vector t of Xcs)
11, in this

work, these bases are calculated once to rebuild the entire sensing data Xcs.

Note that the data learning Xlp is used only for the �rst sensing period T 1
cs, where the

sink node does not have information corresponding to the sensor nodes. Yet, for the

following sensing periods T Tcs, i.e. T > 1 , it makes use of the just previous recovered

data matrix X̂T−1
cs of the previous sensing period T T−1

cs to adaptively estimate both

the compression matrix and the transformation basis that will be used during the

current sensing period T Tcs. Besides, these appropriate matrices are computed, known

and used only by the sink. As we can see, our algorithm imposes neither inter-

sensor communication nor on-sensor computation. Hence, our STCS algorithm is

characterized by its simple encoding and complex decoding as required in the CS for

WSNs. Figure 3.3 illustrates a �owchart that simpli�es the design of the proposed

approach. For simplicity reasons, the index referring to the ordering of the sensing

periods is used only in this part to better explain the working of the proposed approach.

3.3.3 From matricial product to kronecker product

As illustrated in expressions (2.6) and (2.7), the resolution of standard CS is formu-

lated with x and y in vector form. Therefore, we use tools from linear algebra in

order to reformulate the 2D problem as a 1D problem. It is worth noting that this

conversion does not lose or change any information and preserves the intra and inter-

correlations [36]. Using [36, Eq. 13 and Eq. 14], we consider the vec(.) function, which

converts a P ×Q matrix to a P.Q vector by vectorizing it by column. Then, we can

write : vec(Xcs) = (xcs(1, 1), ..., xcs(N, 1), xcs(1, 2), ..., xcs(N, 2), ..., xcs(1, T cs), ...,

xcs(N,Tcs))
tr, and (3.8) becomes:

y = (Φtr
T ⊗ ΦS).vec(Xcs) + vec(No′)

= Φ.vec(Xcs) + vec(No′),
(3.14)

where Φ ∈ IRMt.Ms×Tcs.N is the kronecker product between ΦS and the transpose of

ΦT and y ∈ IRMt.Ms×1. As in [28], we can obtain a single sparsifying basis Ψ for an

11In [34], authors have used a kind of sliding window processing that covers the data of W < Tcs

successive time slots to estimate the data vector of the current time slot and re-estimate those of the
previous W − 1 time slots.



Space-Time Compressive Sensing Routing-Aware approach (STCS-RA) 43

Fig. 3.3. A �owchart simplifying the design of the proposed approach.
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entire 2-dimensional signal as the Kronecker product of sparsifying bases for each of

its 2-sections. Considering the same tools used previously in (3.14) with the projection

matrices, we carry out the same conversion to (3.9):

vec(Xcs) = (Ψtr
T ⊗ΨS).vec(α)

= Ψ.vec(α),
(3.15)

where vec(α) is a vector-reshaped representation of α and Ψ ∈ IRTcs.N×Tcs.N is the

joint sparsifying basis over space and time. The expressions (3.14) and (3.15) take us

back to the standard CS formulation:

y = Φ.Ψ.vec(α) + vec(No′). (3.16)

3.4 Numerical Results

In this section, we analyze the performance of STCS and we compare our results to

those of CS²-collector and CB-CS. Then, we evaluate the STCS-RA with respect to

di�erent parameter values of β, see equation (3.4). The metrics, that we use for the

simulations, are the normalized Mean Squared Error (MSE) and the Compression

Ratio (η) de�ned as follows:

MSE =
‖Xcs − X̂cs‖2F
‖Xcs‖2F

and η =
(υ − δ)
υ

, (3.17)

as well as E, the average consumed energy per sensor per time slot (µJ) [21]. Xcs

and X̂cs represent respectively the sensed 2D signal before compression and the 2D

recovered one by the sink for a given sensing period, whereas, ‖.‖F is the Frobenius

norm. υ and δ present respectively the number of elements in Xcs and in the 2D

compressed data Y .

For the network parameters, we consider N = 50, Tcs = 90 and the observation area

size is 100× 100 units. Regarding η, we vary Mt between 9 and Tcs, and Ms between

5 and N .
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Fig. 3.4. The signal accumulated energy percentage with di�erent sparsifying
basis for (ρ = 0.9, γ = 2).

To begin, before going into the CS-based approaches performance comparison, the

signal accumulated energy percentage with the studied transformation bases are cal-

culated, according to the method of [57], then depicted in Figures 3.4 and 3.5, with

the variation of the spatial correlation parameter γ. As we can note, the combined

covariogram-PCA transformation basis sparsi�es better the signal than the sample-

PCA transformation basis for both cases. As an example, when γ = 5, while approx-

imately 10% of the covariogram-PCA coe�cients assemble 80% of the signal energy,

approximately 10% of the sample-PCA coe�cients assemble less than 70% of the sig-

nal energy. Here, we added the curve for the DCT basis to be a reference, since the

DCT matrix is considered as a standard transformation basis in the CS theory.

In the next simulations, we compare our algorithm STCS with the CS²-collector in

terms of normalized MSE and η with the variation of the spatial correlation γ pa-

rameter. From Figure 3.6, we can see that the reconstruction accuracy (lower MSE)

increases with the number of measurements Mt and Ms (lower η), and STCS pro-

vides considerable improvements compared to CS²-collector across the entire range of

η, especially when the transmitted signal is correlated in space. This is due to the

fact that with STCS we exploit well the spatial dependency in the signal thanks to

the node selection strategy and the covariogram-PCA method of [21] to construct ΦS

and ΨS . This is di�erent to CS²-collector that chooses to select nodes randomly and

uses a simple DCT matrix as ΨS . Even for the moderately correlated signal in space,
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Fig. 3.5. The signal accumulated energy percentage with di�erent sparsifying
basis for (ρ = 0.9, γ = 5).

Fig. 3.6. A performance comparison in terms of reconstruction error between
STCS and CS²-collector for (ρ = 0.9, γ = 2) and (ρ = 0.9, γ =5).

STCS outperforms CS²-collector, which linearly combines all the Tcs sensors readings

along with a dense random Gaussian matrix. Di�erent from the CS²-collector, our

STCS sub-samples the sensors readings by taking only a fraction of them.

Regarding E, in order to be comparable with [21], we use the same hardware imple-

mentation, i.e, an MSP430 Micro-Controller with CC2420 radio. In Figure 3.7, we

compare the average consumed energy per sensor per time slot of our proposed STCS
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Fig. 3.7. A performance comparison in terms of energy consumption between
STCS, CS²-collector and CB-CS.

with CB-CS and CS²-collector. The energy consumption in Figure 3.7 takes into ac-

count the energy for transmission, reception and on sensor processing. A noticeable

observation in Figure 3.7 is that our STCS scheme consumes much less energy than the

other schemes especially the CB-CS due to the communication cost. Regarding the

computation cost, the reason that makes STCS reduce its total energy consumption

compared to CS²-collector is that the STCS has no on-board computation thanks to

the sparse combination of their compression matrices compared to the CS²-collector (it

requires Mt × [Tcsmultiplications+(Tcs−1) additions] in each sensor since the tempo-

ral compression matrix ΦT is a dense Gaussian matrix and the temporal compression

precedes the spatial one). We consider respectively 395 and 184 clock cycles for the

multiplication and the addition operations [81], and Ecc =0.726 nJ the energy con-

sumption per clock cycle for an MSP430F1612 [21]. The minimization or even the

cancellation of the number of operations improves the runtime and consequently op-

timizes the response in real time.

Obviously, the radio consumes the bulk of the total power consumption of WSN sys-

tems as shown when comparing with CB-CS but considering as well the computation

cost can be more bene�cial for further improving the overall energy e�ciency as shown

when comparing with CS²-collector.

Figures 3.8 and 3.9 depict the trade-o� between the normalized MSE and E for di�er-

ent values of β (note that β = 0 corresponds to STCS according to (3.2)). In order to
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Fig. 3.8. Normalized MSE for STCS (β = 0) and STCS-RA with respect to
di�erent β for (ρ = 0.9, γ = 5).

Fig. 3.9. Energy consumption E for STCS (β = 0) and STCS-RA with respect to
di�erent β for (ρ = 0.9, γ = 5).

vary the normalized MSE, we changed η from 0.19 to 0.91. For each case, the energy

is calculated and then depicted in Figure 3.9. We note the improvement of sensor

lifetime by considering the routing in the metric. For example, when Ms = 35 (η =

0.51), the normalized MSE is about 0.11. Thus, we can save 11,11% of energy when
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β = 10−15. As it can be seen, the curves for β = 10−4 and β = 1 are superposed

in Figure 3.9 but slightly di�erent in Figure 3.8. It means that the performance is

very dependent to the number of hops, and because it is an integer value, among all

the paths with the same hop number, the one giving the best correlation properties

is selected. Another observation from these two plots is to say that the optimum sen-

sor selection is sensitive to the correlation criteria (γ). Therefore, for small Ms (big

Compression Ratio), it is important to weaken the e�ect of routing by reducing β.

As a perspective, it is possible to include the residual energy of sensors in the cost func-

tion (3.4). In this way, even though the energy consumption will not be minimized,

the overall lifetime can be extended.

3.5 Conclusion

Motivated by reducing e�ciently the number of representative measurements to be

transmitted to the sink node, thanks to the redundancy nature of most WSNs signals,

we addressed in this chapter the STCS approach. We proposed a joint space-time

compression scheme that adaptively learns the signal model from the past received

data to schedule when and where to sample the 2D time-varying spatial �eld. Then, we

recover the entire 2D signal from the small number of measurements using appropriate

transformation bases, that can well sparsify the signal according to the correlation

structure inherent on it.

Characterized by a much lower number of transmissions and no on-sensor computation,

STCS reduces the energy consumption compared to other CS-based schemes, while

still achieving appealing reconstruction performance. This trade-o� between energy

saving and reconstruction accuracy has been further improved with the STCS-RA,

which takes into account the routing in the representative node selection process.
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4.1 Introduction

In some applications, especially the densely deployed WSNs, the sensed data is in

general highly correlated, and redundancy exists between sensor nodes belonging to the

same geographic area. To enhance the network management, nodes can be arranged

into groups or clusters. Since they are monitoring the same targets or events, collecting

raw data from all cluster members becomes ine�cient and energy wasteful. Therefore,

as a sequel of the previous chapter 3, a su�cient subset of nodes can be selected from

each group to be the representative of the whole network. These active nodes deliver

their readings to the sink under a compression ratio, while the rest of nodes remain

silent and do not participate in the data sensing operation.

The CS is an interesting proposal since it reduces the number of active agents at

a given time slot, while remaining able to recover the sensing data. However, to

reach a su�ciently satisfying data interpolation quality with a higher compression

rate, i.e. fewer delivered data readings, the signal correlation should be fully captured

simultaneously in both space and time dimensions. To do so with the kronecker CS

framework, as we have already seen in the previous chapter 3, tools from linear algebra

are still be needed in order to reformulate the data matrix into the vector form since

the standard resolution of CS is still formulated in the 1D form. Without the need

of computing an adaptive sparsifying basis Ψ, the MC, viewed as an extension of the

CS, has emerged recently using another type of structural sparsity1 [44], which is the

matrix low rank property [23]. Since it treats the data matrix as a genuine matrix,

MC can take advantage of the correlation in its two dimensions and capture more

information2.

In this chapter, we carry on with the twofold data compression scenario, where we

�rstly assume that part of nodes do not sense the environment at all. We can con-

sider that these sensors are inactive or idle for a long period or that these nodes are

absent. The second compression level is that, at each time slot, only a subset of the

active nodes, referred to as the transmitting source ones, send their sensing data to

the sink. Note that di�erent from the previous work, where according to the temporal

1A low-rank matrix holds singular values composing a sparse spectrum.
2In [82, Fig. 3], we have illustrated that a simple MC-based approach requires a smaller fraction

of sensor node readings to reach the same data recovery accuracy.
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sampling pattern (3.8) there are several time slots during which no data is transmit-

ted, in this work, at every time slot, we ensure the transmission of a number of data

readings sensed from di�erent locations belonging to di�erent clusters of the moni-

tored network area. This kind of strategies not only minimizes the energy cost and

extend the network lifetime, but also helps to avoid other problems such as the tra�c

congestion [50,83].

Yet, the application of these atypical high-loss scenarios leads to a signi�cant number

of empty rows in the received data matrix3, which completely disagrees with MC

fundamentals. In fact, since MC approaches are based on the minimization of the

matrix rank, they become useless when there is any empty row or empty column in

the matrix. Indeed, MC techniques have been conceived to recover matrix containing

random missing elements [84]. Even though the existence of the inactive sensor nodes

has already been considered, in the previous work of chapter 3, the recovery of their

missing data has been achieved using the CS technique with the Kronecher framework.

In the state-of-art of MC-based algorithms in WSNs, to the best of our knowledge,

[24] is the only paper who dealt with the case where there are some missing rows

in the received data matrix. They appeal a spatial pre-interpolation technique that

recovers data from neighboring sensor nodes. However, as the number of active nodes

decreases, we face absent nodes having absent neighbor sensors as well. Thus, this

framework becomes unable to recover the data rows of these isolated sensor nodes.

Although this approach is interesting, it seems to be not well suited for the addressed

scenario and fails to take into account the existence of the isolated sensor nodes (absent

nodes having all their neighbors absent). In this context, we present our developed

scheme, which �rstly, schedules the sampling pattern after e�ciently identifying the

di�erent clusters and their representative nodes. Secondly, it treats the case of high

compression ratios with a considerable number of inactive sensor nodes (empty rows)

using a combination of three di�erent interpolation techniques.

The main contributions of this chapter are summarized as follows:

� We generate a synthetic space-time signal composed of di�erent Gaussians, each

of which presents a cluster of wireless nodes. As in all the WSNs signals' pro-

�les, the portions are correlated in space and time, where spatial and temporal

3A row (resp. column) is called an empty row (resp. column) if and only if all the values of the
row (resp. column) are un-sampled.
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correlation parameters di�er from one Gaussian (portion) to another and can

be separately adjusted.

� To perform an adaptive data gathering, a preliminary phase is established, where

nodes are arranged into a number of clusters. Then, in order to equitably involve

all the detected clusters in the sensing schedule and ensure the diversity in the

transmitted data, in each time slot, using the same percentage and according to

a given sampling ratio, a subset of nodes is picked from each cluster to ensure

data sensing.

� For the reconstruction part, we propose to use three di�erent techniques to

accurately rebuild the entire data matrix. In the �rst step, we �ll the missing

readings of the active sensor nodes by applying the MC. Then, we carry on with

the spatial pre-interpolation to handle a part of the empty rows while adjusting

the topology matrix to the presence of the disjoint clusters in the monitored �eld.

Finally, we recover the rows of the isolated sensor nodes using a minimization-

based interpolation technique with a spatial correlation matrix.

� Through extensive simulations, we show that the proposed framework outper-

forms other existing techniques in the literature, especially when the number of

inactive nodes increases.

The remainder of the chapter is organized as follows. The next section discusses

the problem formulation of this work. In section 4.3, we present the signal model

that we used for the evaluation of our approach. Then, in section 4.4, �rstly, we

introduce the e�cient clustering method that we propose. Secondly, we describe in

detail our strategy for an adaptive data sampling. Section 4.5 is dedicated to the data

reconstruction framework. Before concluding the chapter in section 4.7, we carry out,

in section 4.6, with extensive simulations in order to evaluate the performance of the

proposed approach.

4.2 Problem Formulation

Consider a WSN composed of a set N∫ = {1, . . . , N} of N sensor nodes. Let X ∈
IRN×T denote the data matrix that contains measurements collected by the set N∫
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during a sensing period of length T time slots. Precisely, the entry in the ith row

and tth column of X, xi,t, represents the t
th data reading (t ∈ [1, T ]) sensed by the

ith node (i ∈ N∫ ). The considered scenario aims to obtain all sensor nodes readings,

X, through the use of a small subset Nrep = {1, . . . , Nrep � N} of active sensors,

denoted by representative sensor nodes. It is worth mentioning that the number of

active sensors is relatively small compared to the number of inactive ones. Speci�cally,

decreasing the number of active sensors can likely generate a set of absent sensors that

have also all their neighbors absent as well. We call them isolated (IS) sensor nodes.

We propose to group together sensor nodes having similar readings in the same cluster

using a spectral clustering technique. In fact, the whole network is organized as follows:

N∫ =
⋃J
j=1CLj and N =

∑J
j=1 clj , where clj is the number of sensor nodes belonging

to CLj (clj = card(CLj)), J is the number of detected clusters and CLj is the cluster

j. It will be shown, in the sequel, that the representative node selection as well as the

data transmission schedule depend on the detected clusters.

To further reduce energy consumption, the representative sensors do not transmit

their raw data to the sink. Instead, they trade on the data sensing along the T time

slots and deliver a part of their readings according to a given compression ratio, that

is, m < Nrep readings rather than Nrep readings per time slot. Consequently, the

received data matrix M ∈ IRN×T is composed of Nrep partially empty data rows and

(N − Nrep) completely empty data rows. Note that to replace any missing entry in

M , we set a �zero� as a placeholder. We use a binary sample matrix ΩM ∈ IRN×T

that we call sensing and transmitting schedule to indicate, in each time slots t, which

nodes sense and transmit measurements. That is,

ΩM(i,t) =

{
1 if xi,t is available

0 otherwise.
(4.1)

Note that xi,t is available, when the location i is sampled and transmitted at time slot

t. We refer to a location by i when it is sampled by the sensor node i. Hence, the

incomplete delivered data matrix M can be expressed as follows:

M = X. ∗ ΩM , (4.2)

where ·∗ represents a Hadamard product of two matrices.
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Fig. 4.1. An illustrative miniature WSN with the resulting transmitted data
matrix M .

The �rst aim of our work is to well identify the matrix ΩM as it represents the sampling

schedule, which is of prime importance in the recovery performance.

The second aim of our work is to successfully recover all the missing entries using

a limited number of received readings. Therefore, we opted for the MC technique

because of its numerous bene�ts. Indeed, the application of MC with the existence

of a signi�cant number of empty rows is still a challenging task to tackle since the

presence of empty rows or columns impedes the MC reconstruction. Thereby, we

propose in this chapter a novel interpolation technique that will be annexed to the

MC one in order to recover the empty rows. It is noteworthy that the MC, as the

�rst step in the reconstruction operation, is an important part since the performance

of the subsequent proposed interpolation technique depends on the recovery accuracy

of the MC. Figure 4.1 illustrates an example of a WSN consisting of N = 16 sensor
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nodes, among which Nrep = 6 sensor nodes are selected to be active. The proposed

combined reconstruction approach targets to �ll all the missing entries corresponding

to the non-transmitted readings.

4.3 Multi-Gaussian Signal Model

4.3.1 The Signal Generation

In this section, we investigate the generation of a synthetic signal composed of di�erent

Gaussians, each of which presents a portion of the whole monitored geographic area.

Each portion of the signal is correlated in space and time, where the spatial correlation

as well as the temporal correlation parameters di�er from one Gaussian to another.

The proposed signal model is inspired by [77] that has introduced the solution of

reproducing a signal retaining the behavior of a given real world data by adjusting the

correlations parameters. In their model, all the generated samples of the whole signal

are Gaussian random variables with a zero mean and a variance following the spatial

correlation function used in the signal generation. Indeed, according to [77, Eq. 14], for

p = (x, y) with x = {1, 2, ..., ND} and y = {1, 2, ...,MD}, representing a space point of
a sensor grid of ND ×MD points, the resulting variance of z(p, t) following algorithm

1 is σ2
z(p,t) =

∑ND
i=1

∑MD
j=1 rs(x − i, y − j)2. However, in this chapter, we consider

heterogeneous �elds that are divided into a number of regions. Each one is modeled

by a speci�c Gaussian (mean, variance) and di�erent correlation characteristic. The

number of di�erent Gaussians as well as their distribution in the �eld can be �xed or

de�ned according to the kind of the signal one wants to reproduce. Thereupon, this

method represents an e�ective alternative to the real world signals.

As in chapter 3, to generate the signal of interest, we suppose that D = [−xD, xD]×
[−yD, yD] is the space domain, where x and y are the space coordinates. Then, we

consider that we have H di�erent regions, where Dh is the space domain of region

h = 1, 2, . . . , H, and D =
⋃H
h=1Dh. Without loss of generality, for a given pair

(ρh, γh) of speci�c temporal and spatial correlation parameter values, we suppose that

algorithm 1 of chapter 3 describes how to generate a correlated portion of the signal

zh(ph, t) : Dh × T → IR representing one region, where T is the time domain and
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ph is a point in (x, y) plane corresponding to region h. Note that the signal of the

whole area is the combination of all the generated portions. The resulting zh holds

generated samples with zero mean and variance that depends to the performed spatial

correlation function. Accordingly, in order to obtain an heterogeneous signal �eld for

the entire network, for each region h, we enforce a non-zero mean ηh ∈ IR 6=0 to its

corresponding generated signal zh as follows:

z
′
h(ph, t) = zh(ph, t) + ηh. (4.3)

In addition to the mean, the variance amplitude σ2
h of the signal �eld that one wants

to produce can be tuned by multiplying the samples zh(ph, t) by a constant parameter

cstσh > 1, according to the following expression:

z
′
h(ph, t) = cstσh .zh(ph, t) + ηh. (4.4)

Algorithm 1 followed by (4.3) or (4.4) outlines how to produce a portion z
′
h(ph, t) :

Dh × T → IR of the whole signal �eld z
′
(p, t) : D × T → IR, which represents the

(x, y) signal. Similarly to what we have done in section 3.2.2, z
′
(p, t) represents a 3D

matrix of size (2yD × 2xD × T ), and the data matrix of interest, X, denotes the 2D

signal discretized from z
′
by the N sensor nodes along the T time slots.

Figure 4.2 illustrates an example of an area of size 100m×100m monitored by N = 50

sensor nodes. We can notice through the colors that this �eld is divided into three

di�erent regions (H = 3) presented by three di�erent Gaussians.

4.3.2 The Low-Rank feature

To ensure the use of the MC, the manipulated data matrix should exhibit a low rank

or approximately low-rank structure. To do so, one can use the SVD method [55]. In

fact, any real N × T matrix X can be written as follows:

X = U ΛV T , (4.5)

where V ∈ IRT×T and U ∈ IRN×N are two unitary matrices and Λ ∈ IRN×T is a

diagonal matrix assembling the singular values τi of X. Typically, τ1, τ2, ..., τr are
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Fig. 4.2. An example of a monitored area composed of three portions, each of
which is presented by a di�erent Gaussian.

arranged in a decreasing order so that τi ≥ τi+1, where r denotes the rank of X. If

we �nd out that the top l singular values of the data matrix X occupy the near total

or the total energy, then X holds the low rank feature. The metric that we use to

check this property is the fraction of the nuclear norm captured by the top l singular

values [55]:

g(l) =

l∑
i=1

τi

‖ X ‖∗
=

l∑
i=1

τi

r∑
i=1

τi

. (4.6)

As we have mentioned before, the low rank property, inherent in the signal, enables

the use of the MC tools to recover the raw data matrix from the received entries.

Figure 4.3 plots the fraction of the total variance captured by the top l singular values

for a signal generated from the monitored �eld presented in Figure 4.2. The signal

generation parameters for this example are summarized in Table. 4.1. We note from

the plot that the top 5 singular values capture nearly 93% of the nuclear norm, which

indicates that the signal matrix X has a very good low-rank approximation. Hence,

we are able to apply the MC technique.
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Table 4.1: Signal generation Parameters

Parameter Portion 1 Portion 2 Portion 3

ηh 35 20 5

ρh 0.9 0.7 0.5

γh 7 5 2

Fig. 4.3. Fraction captured by the top l singular values for a multi-Gaussian
synthetic signal, generated using the values of Table. 4.1.

Even though the low-rank feature studied above may indicate the existence of re-

dundancy and dependency structure in the data matrix X, which re�ects the spatial

correlation and the temporal correlation properties of the data, we have provided as

well, in the appendix B, a separate study for each of them; B.1 and B.2.

4.4 Sampling Pattern

4.4.1 Clusters Detection

In this part, we investigate the partition of the deployed sensor nodes into J clusters.

The main reason for partitioning the nodes is to involve all the detected clusters in the

data sensing. In the conventional MC, it is well-known that transmitting source nodes

are selected in a purely random way during the T time slots. This kind of selection

can disregard sensors belonging to small clusters, which can heavily deteriorate the

recovery process. However, if we ensure that all the clusters contribute in the data

sensing and transmission process, we can fortify the diversity in the delivered data
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set and thus enhance the data reconstruction quality. Therefore, for each time slot

t, according to a given compression ratio and using the same shared percentage, a

set of sensor nodes is picked from each cluster to form the sampling and transmission

schedule. It will be shown, in the simulation section, that taking into account the

detected clusters during the sampling process signi�cantly enhances the data recovery

performance, especially for high compression ratios. Indeed, our aim is to partition

the sensor nodes into di�erent clusters, where nodes in the same cluster have similar

readings. Namely, we attempt to minimize the inter-clusters similarity and maximize

the intra-clusters similarity, and such a successful grouping can be achieved using the

normalized spectral clustering, unlike the unnormalized one that implements only the

�rst objective [85].

Fig. 4.4. Civilian and habitation deployment areas for sensor nodes.

Usually, sensor nodes, which are situated spatially close to each other, have similar

readings. Nevertheless, there are some cases, where nearby nodes are separated by a

certain barrier and have readings relatively di�erent from each other. In the example

of Figure 4.4, sensor nodes are deployed in a city to monitor the air pollution. Suppose

that we have a public garden located next to a road. Hence, the nearby nodes, which

are placed on the two di�erent sides of the borders, do not necessarily have similar

readings. Therefore, to cluster the nodes, the sink relies on their delivered readings4

and considers the set of data vectors, χlp = {xtrlp 1, x
tr
lp 2, . . . , x

tr
lpN}, that we want to

partition into J clusters. The spectral clustering technique performs data clustering

4As in chapter 3 with the STCS, at the initialization, we let all the sensor nodes send their
information during a short learning period Tlp � T .
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and treats it as a graph partitioning problem without setting any assumption on the

clusters form. It transforms the given set χlp into a weighted graph G = (V,E)

using some notion of symmetric similarity matrix A ∈ IRN×N , where each vertex vi

represents xlp i, and each edge between two vertices vj and vi represents the similarity

aj,i ≥ 0 [86]. As mentioned above, it is recommended to use the normalized spectral

clustering. Hence, we implemented the NJW5 algorithm [87], which is detailed in

algorithm 3.

Algorithm 3 The NJW spectral clustering algorithm.

Input: The set of data vectors χlp = {xtrlp 1, x
tr
lp 2, . . . , x

tr
lpN}, the number J of

clusters to detect.

Pre-processing:
1: Calculate the similarity matrix A.
2: Calculate the degree matrix Dg, which is a diagonal matrix de�ned by : dg i,i =∑N

j=1 ai,j .
Spectral representation:

3: Compute the Normalized graph Laplacian matrix Lsym = D
−1/2
g (Dg −A)D

−1/2
g

6.
4: Proceed the eigenvalues decomposition of Lsym and �nd the J eigenvectors corre-

sponding to the smallest eigenvalues, arranged in increasing order.
5: Form the matrix U , by stacking the J eigenvectors in columns: U = [u1, . . . , uJ ] ∈

IRN×J .
6: Normalize the U 's rows to norm 1 in order to get the matrix Un ∈ IRN×J , that

is, Uni,j = ui,j/(
∑

j u
2
i,j)

1/2.
Clustering:

7: Treat each row of Un, (uni)i=1,. . . ,N , as a data point in IRJ , then partition them
into J subgroups, Q1, . . . , QJ , using the k-means algorithm 4.

8: Attribute the original points xlp i to cluster j if and only if row i of the matrix Un
was attributed to cluster j.

Output: Clusters CL1, . . . , CLJ with CLj = {i | uni ∈ Qj}.

Commonly, identifying the number of clusters J in an optimal manner is the main

concern of all clustering algorithms. Generally, with spectral clustering, we �nd the

number J by analyzing the Laplacian matrix eigenvalues that are computed using A

5The algorithm name, NJW, is attributed according to the authors' names, that is, Ng, Jordan
and Weiss.

6The unnormalized graph Laplacian matrix is de�ned by L = (Dg − A), which refers to the
unnormalized spectral clustering.

7As an example, we can �x a threshold for the sum of the distances that are computed between
the nodes and their respective prototype vectors.
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Algorithm 4 The k-means algorithm.

Input: Choosing randomly J di�erent prototype vectors (centroids) y1, ..., yJ
among the data vectors un1 , ..., unN .

repeat:
1: Assign each data points uni to the closest centroid yj (in an Euclidean sense). Qj

presents thus the cluster, which contains the objects uni that are closest to yj .
2: Update the new prototype vectors as follows: yj = (1/ | Qj |)

∑
uni∈Qj

uni , ∀j ∈
[1, J ].
until an allocated time ends or convergence7.

and according to the chosen clustering method. In the ideal case, the multiplicity of

the eigenvalue 0 equals the number of clusters J . However, this criterion is only valid

when the groups are well separated in the graph. In this work, we choose to apply

the eigengap heuristic [85], which de�nes J by �nding a drop in the magnitude of

Laplacian eigenvalues, {λ1, λ2, . . . , λN}, sorted in increasing order. That is:

J = arg max
16i6N

(λi+1 − λi). (4.7)

The idea here is to pick the number J in such a way that all the Laplacian eigenvalues

λ1, . . . , λJ are very small compared to λJ+1, which marks relatively a large value.

Regarding the similarity matrix A, we opted for the Gaussian kernel to measure the

similarity between the data points {xlp i} [87], where σ is a scaling parameter that

controls the neighborhoods width:

ai,j = exp(−
‖xlp i − xlp j‖2

2σ2
). (4.8)

According to [87, Theorem. 2], an appropriate σ can be �xed automatically after

repeatedly running the algorithm using a number of values and choosing the one that

forms the least distorted partition in the spectral representation space. To determine

the appropriate parameter σ, in [85, Section. 8], authors had provided several rules of

thumb that are frequently used. For example, the method that we have used states

that σ can be chosen to be in the order of nearly the mean distance of a point to its
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Fig. 4.5. The Laplacian matrix Lsym eigenvalues of the generated signal of section
4.3 that are computed using the similarity matrix of (4.8).

kthm nearest neighbor, where km ∼ log(N) + 1.

Using the �rst four steps of the aforementioned clustering algorithm 3, Figure 4.5

plots the sorted eigenvalues of the Normalized Laplacian matrix that is computed

from the generated signal of the example of section 4.3. Since we used the Gaussian

kernel as a similarity matrix, the resulting graph is fully connected, which consists of

one connected component. Hence, eigenvalue 0 has multiplicity 1. Clearly, there is

a relatively large gap between the 3th and 4th eigenvalue of this trace. According to

metric (4.7), the data set contains three clusters, which is well approved.

4.4.2 Sensing and Transmission Schedule

In this part, we determine how we take into account the detected clusters in the

representative sensor node selection as well as in the sensing and transmission schedule.

Relying on the method of chapter 3, the active node selection process is achieved

by considering the inter-spatial correlation between nodes, which can be estimated

through (3.2). Di�erent from the previous work of chapter 3 and in order to cover all

the clusters, the set Nrep consists of the combination of J subsets, (Nrepj )j=1,. . . ,J ,

where Nrepj includes Nrepj representative nodes picked from cluster CLj using the
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same shared percentage pctNrep. That is:

Nrep =
J∑
j=1

Nrepj , (4.9)

where

Nrepj = pctNrep%× clj . (4.10)

In (4.10), if pctNrep% × clj is not an integer, we round Nrepj to the nearest integer

greater than or equal to the value of that element. Here, the selection of the sets

Nrepj of the clusters' representative nodes is independent from one cluster to another.

Hence, the set S1 appearing in expression (3.2) of chapter 3 is replaced by the set Sj1,

which represents the set of sensor nodes of the cluster CLj that are not yet selected.

Thus, we have:

g∗ = argmax
g∈Sj

1

(m′g), (4.11)

where

m′g =

∑
i∈Sj

1

σ2
ig

σ2
g

 . (4.12)

The selection process is the same for the J sets Nrepj . Thus, for each cluster CLj ,

according to (4.11), at each iteration n ∈ {1, . . . , Nrepj}, a sensor node g∗(n) is selected

and moved from set Sj1 to set Sj2. Note that S
j
2 represents the set of nodes of cluster

CLj that are already chosen during the previous iterations. To proceed with the

representative nodes selection procedure, we make use of the learning data matrix

Xlp = [xtrlp 1, x
tr
lp 2, . . . , x

tr
lpN ]tr ∈ IRN×Tlp that we partition into J sub-matrices Xj

lp ∈
IRclj×Tlp , where Xj

lp holds data sent by nodes belonging to CLj . Without loss of

generality, for each cluster CLj and using its corresponding data matrix Xj
lp, we

perform the steps of the nodes selection process that have been outlined in algorithm

2 of chapter 3, in order to get the set Nrepj , while replacing (3.2) and (3.3) by (4.11)

and (4.12) respectively. Here, the proposed data gathering scheme is referred to as

the Optimized Cluster-based MC data gathering approach (OCBMC). We denote the

OCBMC as the updated version of the Cluster-based MC data gathering approach

(CBMC) that has been presented in our paper [25]. Precisely, with the CBMC, the set

Nrep of the representative nodes is randomly chosen and with clusters consideration,
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whereas, with the OCBMC, the set Nrep of the representative nodes is neatly chosen

according to the correlation-based metric (4.11) and with clusters consideration.

Given the example of Figure 4.1, we can note the existence of three detected clusters

within the network. We suppose that pctNrep = 30. Thus, 30% of nodes will be

selected from each cluster to be active. That is to say that we should pick Nrep1 = 2

sensors from CL1, Nrep2 = 1 sensor from CL2 and Nrep3 = 3 sensors from CL3. That

is, in total Nrep = 6 representative sensors. Based on the correlation among the sensor

nodes and using algorithm 2, the obtained subsets are as follows: Nrep1 = {13, 1},
Nrep2 = {9} and Nrep3 = {12, 6, 16}.

Once the set Nrep of representative sensor nodes is de�ned, the sink focuses on the

sensing and transmitting schedule, ΩM , by assigning m transmitting source nodes for

each time slot t. Obviously, these sensor nodes are picked from the setNrep. Hence, the
binary matrix ΩM consists of Nrep (0, 1) binary row vectors and (N−Nrep) completely

zero row vectors. As it has been stated in the previous subsection, in order to ensure

the diversity in the delivered data, the m transmitting source nodes are chosen in such

a way that we randomly pick, with the same shared percentage pctm, mj nodes from

each subset Nrepj corresponding to cluster CLj . Likewise (4.9) and (4.10), we have:

m =

J∑
j=1

mj , (4.13)

where

mj = pctm%×Nrepj . (4.14)

Let us focus again on the example of Figure 4.1. We suppose that pctm = 20. Thus,

for each t, 20% of sensors from each subset Nrepj are randomly designated to deliver

their data to the sink. Since the used number N of this example is very small, we end

with mj = 1 transmitting source node from each cluster for each t. Note that without

enforcing the involvement of all the clusters in the data sensing and transmission

process, cluster 2 that contains only sensor 9 could be totally ignored.

To conclude, rather than selecting in a purely random way the measurement locations,

as usually used in the conventional MC method, in this part, we presented how to

intelligently assign transmitting source nodes that can well represent the network

relying on their correlations with the OCBMC.
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4.5 The Three-stage MC-based reconstruction approach

After revealing in detail how to select the Nrep representative sensor nodes and how

to schedule their participation in the data sensing and transmission, we focus, in this

section, on how to approximate the entire N × T data matrix X based on the limited

amount of reported readings. Isolating (N − Nrep) inactive sensor nodes from the

sampling and transmission schedule entails the existence of (N − Nrep) fully empty

rows in the received data matrix M ∈ IRN×T , which impedes the MC technique that

is completely unable to estimate the original matrix. Therefore, the use of other

complementary interpolation techniques becomes needful. In this context, we develop

a structured MC-based recovery framework that is able to ensure the reconstruction

of the entire N × T data matrix X.

4.5.1 Stage 1

Obviously, it is not feasible to directly apply the MC technique with the existence of

(N −Nrep) fully empty rows. Therefore, we have to remove these rows from M . We

denote the resultant matrix as MMC ∈ IRNrep×T , containing the partially delivered

readings of the representative sensor nodes. We carry on with the same removal from

ΩM to obtain ΩMC ∈ IRNrep×T . Then, making use of the solution introduced in (2.12)

or any other method proposed for the MC resolution, we �ll the missing entries of

MMC that correspond to the non-transmitted data readings of the Nrep sensor nodes.

As it has been introduced in [42], the threshold parameter τau roughly equals 100 times

the largest singular value ofMMC . We denoteX ′ ∈ IRNrep×T as the combination of the

MC-based estimation and the directly observed data. Finally, we update X ′ ∈ IRN×T

by adding the (N −Nrep) empty rows and placing them in their proper corresponding

locations of M .

4.5.2 Stage 2

After �lling the random missing readings, remain the (N −Nrep) completely missing

rows that correspond to the inactive sensor nodes. In this phase, we carried on with

the spatial pre-interpolation technique of [24, Section. VI], which rebuilds the data of
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an empty row using the available data of the neighboring sensor nodes. This method

relies on a spatial constraint matrix Hsc ∈ IRN×N , whose computation steps are

presented as follows:

1-We start with an identity matrix Hsc.

2-For each row i ∈ {1, . . . , N} of M that corresponds to an inactive node, replace

Hsc(i) by Yc(i) , where Hsc(i) and Yc(i) represent respectively the ith row of Hsc and the

ith row of the topology matrix Yc, stated in B.1. Then, replace H
(i)
sc by an all-zero

vector, where H
(i)
sc represents the ith column of Hsc. To apply this method, we adjust

the 1-hop topology matrix Yc to the presence of the disjoint clusters in the monitored

�eld, according to B.1, in order to avoid untrustworthy data reconstruction.

3-Finally, the rows of the resulting matrix Hsc are normalized in such way that the

sum of the elements of a row is 1.

Once Hsc is calculated, the spatial pre-interpolation technique can be performed by

multiplying Hsc by X
′. Here, the missing data of an inactive node is obtained using

the average of the data readings of its one-hop neighbors.

As mentioned before, the number Nrep of the active sensor nodes is very small com-

pared to the total number N , which means that the (N −Nrep) inactive sensor nodes

constitute the preponderant portion of the network. Consequently, there are several

IS nodes in the network (having all their neighbors absent). Hence, with the use of the

stated topology matrix Yc, this interpolation technique can achieve the data recon-

struction only for the absent sensor nodes, whose neighbors are belonging to the set

Nrep. We suppose that the network distribution contains NIs isolated sensor nodes.

Then, the resulting data matrix X ′′ ∈ IRN×T , obtained at the end of this stage, i.e.

X ′′ = Hsc ×X ′, still holds NIs empty rows to be recovered (NIs all-zeros rows).

4.5.3 Stage 3

Since the above interpolation technique is limited to recover only a part of the total

empty rows (absent nodes), we resort to a second spatial interpolation to rebuild the

remaining part of the empty rows (isolated nodes). Bene�ting once again from the

spatial dependency among the sensor nodes, we �ll the remaining empty rows using
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the following minimization problem:

minimize
X̂∈IRN×T

(fac1 × ‖X̂ −X ′′‖2F + fac2 × ‖S × X̂‖2F ), (4.15)

where S represents a spatial constraint matrix, whose computation steps will be de-

tailed hereafter, fac1 and fac2 are two tuning parameters and X̂ ∈ IRN×T is the �nal

reconstructed data matrix. The resolution of this optimization problem can be easily

accomplished using the semide�nite programming (SDP). To solve (4.15) and obtain

X̂, we opted for the CVX package [88], implemented in Matlab, as an advanced convex

programming solver.

In this equation, the matrix S ∈ IRN×N relatively re�ects our knowledge about the

spatial structure inherent in the data since it is computed based on the learning data

matrix Xlp ∈ IRN×Tlp . This spatial matrix expresses the similarities between the sen-

sor nodes readings. Suitably, we use the Euclidean distance as a distance function,

computed in the data domain of the sensor nodes, to model the similarity between

the rows of Xlp. Indeed, the smaller the distance between two rows, the closer they

are. Below are the steps to determine S [44]:

1-We initiate these steps with an all-zeros matrix S.

2-The similarity between the rows in Xlp is not evident as the ordering of the sensor

nodes indexes in Xlp is arbitrary. Thus, for each row i of Xlp, we search for the set j′i

of indexes of the K closest rows to i, that is, j′i = {jk 6= i | k = 1, ...,K}.

3-Assuming that the row i can be approximated through the linear combination of

the rows of set j′i, we perform the linear regression to compute the weight vector

Wi = [wi(1), . . . , wi(K)] ∈ IR1×K through the following equation:

Wi = Xlp(i, :)×Xlp(j
′
i, :)

T × [Xlp(j
′
i, :)×Xlp(j

′
i, :)

T ]−1. (4.16)

4-Finally, we assign 1 to S(i, i) and −wi(k) to S(i, jk).

As soon as these steps have been carried out for all the rows i, we obtain the matrix

S, with which we interpolate X̂ as in (4.15).

Now, remains the last adjustment to realize, that is, the scaling of the two parameters,

fac1 and fac2 of (4.15). The regularization parameters fac1 and fac2 are introduced



Numerical Results 70

in order to establish a trade-o� between a close �t to the matrixX ′′ and the intention of

ful�lling the NIs remaining empty rows using S. It will be shown through simulations

that adjusting these parameters nicely improves the reconstruction performance [44],

and the founded values of fac1 and fac2 are independent of the size of the matrix (N

and T ).

Let us focus again on the example of Figure 4.1. The dotted lines refer to the neigh-

borhood relation between sensors. As we can see, the sensors {5, 8, 10, 11, 14} are each
linked at least to a representative sensor. Thus, their data readings can be easily re-

covered through the spatial pre-interpolation method of stage 2. However, the nodes

{2, 3, 4, 7, 15} are considered as isolated from the network. Thus, their readings are

recovered thanks to the minimization (4.15) of stage 3.

4.6 Numerical Results

In this section, we compare the performance of our proposed structured approach to

that of a benchmark scheme, which was designed basically on what was proposed

in [24] and in line with our scenario requirements. Indeed, at the end of their work,

Xie et al. considered in [24] that there is a small number of empty rows in M , that

is, for N = 196, 14 data rows were missing, namely 7% of N (i.e. 93% of N of

representative sensors). As we have already stated at the beginning of this chapter,

treating an important number of missing data rows has not been the main focus of

their work. Thus, their proposed approach has not taken into account the existence

of the isolated nodes in the network. In fact, they focused basically on the existence

of successive missing or corrupted entries in the received data matrix M . However,

to the best of our knowledge, this is the unique approach that has treated a similar

case using MC, and with which we can compare our approach in the �rst part of this

section. Then, in the second part, we try to evaluate separately the bene�ts of each

building block of the proposed approach, namely:

� Involving all the detected clusters equitably in the sampling process using (4.9,

4.10) and (4.13, 4.14).

� Selecting the representative sensor nodes using algorithm 2 with (4.11) and

(4.12).
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� Adding the minimization (4.15) to the reconstruction pattern.

Making use of the multi-Gaussian signal model of section 4.3, we perform our struc-

tured approach over di�erent scenarios to illustrate the impact of these aforemen-

tioned techniques on the interpolation accuracy of the data matrix. To measure the

reconstruction error, we opted for the following metrics, where X and X̂ represent

respectively the initial raw data matrix and the reconstructed one:

1-NMAEtot: The Normalized Mean Absolute Error on all missing entries:

NMAEtot =

∑
i,t:ΩM (i,t)=0 |X(i, t)− X̂(i, t)|∑

i,t:ΩM (i,t)=0 |X(i, t)|
. (4.17)

2-NMAEMC : The Normalized Mean Absolute Error on the partially missing entries,

which correspond to the non-transmitted readings of the Nrep representative nodes:

NMAEMC =

∑
i,t:(i,t)∈Ωmc

|X(i, t)− X̂(i, t)|∑
i,t:(i,t)∈Ωmc

|X(i, t)|
, (4.18)

where Ωmc is the set of indexes of the partially missing entries, found in the received

data matrixM ∈ IRN×T . This metric measures the error ratio following the 1rst stage

of the reconstruction pattern.

3-NMAEER: The Normalized Mean Absolute Error on the missing entries of the fully

empty rows, which correspond to the inactive sensor nodes readings:

NMAEER =

∑
i,t:i∈ΩER

|X(i, t)− X̂(i, t)|∑
i,t:i∈ΩER

|X(i, t)|
, (4.19)

where ΩER is the set of indexes of the (N −Nrep) empty rows, found in the received

data matrix M ∈ IRN×T . This metric measures the error ratio following the 2nd and

the 3rd stages of the reconstruction pattern.

4-CR: The Compression Ratio:

CR =
N × T − card(Ω)

N × T
, (4.20)

where Ω = {(i, t) | ΩM (i, t) = 1}. Hence, card(Ω) denotes the number of observed
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Fig. 4.6. NMAEtot for the proposed technique and for the Benchmark.

entries in M .

To assess the proposed approach under di�erent CRs, we vary pctNrep from 10 to 80,

and for each given pctNrep, we vary pctm from 10 to 80. It is obvious that the range

of the values of CR depends on the value assigned to pctNrep. The larger pctNrep, the

higher CR range can be used. Note that we are mainly interested in the small values

of pctNrep and pctm since we are considering the high loss scenarios.

Speci�cally, we consider thatN = 50 sensor nodes are randomly distributed in a square

observation area of size 100m× 100m, and we monitor the WSN during T = 100 time

slots. To perform the minimization (4.15) of stage 3, the parameters that we have

used during all the simulations have been determined empirically, and are given as

follows; K = 5, fac1 = 10−13 and fac2 = 1. To �nd out how we have chosen these

tuning parameters, see B.3 in appendix B.

To begin, we implement a benchmark approach based on what was proposed in [24].

The sampling pattern of this approach consists in choosing the set Nrep of represen-
tative sensor nodes in a purely random way, which is exactly the same as randomly

selecting the empty rows. Likewise, for each time slot t, m nodes are uniformly se-

lected from the setNrep to deliver their readings to the sink. Here, neither the selection
of the representative sensors nor the selection of the transmitting source ones takes

into account the detected clusters. As for the reconstruction pattern, to obtain the

�nal recovered data matrix X̂, this approach performs the MC then the spatial pre-

interpolation. The temporal pre-interpolation was omitted since we don't consider

the existence of empty columns in the observed data matrix M8. In Figure 4.6, we

8This is not the case with our scenario since, at every t, we ensure the transmission of m readings
sensed in di�erent m locations.
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Fig. 4.7. NMAEMC for the proposed technique and for the Benchmark.

Fig. 4.8. NMAEER for the proposed technique and for the Benchmark.

have measured the NMAEtot with respect to the variation of CR, namely pctm, for

di�erent values of pctNrep. As we can note from the plots, our approach distinctly

outperforms the benchmark one across the entire ranges of CR. We are able to go

up to 90% of missing rows (pctNrep = 10) with an interesting reconstruction perfor-

mance, NMAEtot of about 0.08, while the benchmark technique yields an NMAEtot

of [0.46, 0.5]. Figures 4.7 and 4.8 illustrate the 3-D bar graph of respectively the

NMAEMC and the NMAEER values with the variation of pctNrep and pctm. For the

convenience of comparison, we have implemented the NMAEMC and the NMAEER
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Fig. 4.9. Energy consumption for the proposed technique and for the Benchmark.

in order to separate the error ratios and demonstrate the recovery performance en-

hancement achieved by our proposed approach on respectively the partially and the

fully missing readings.

Note that the considered framework extremely reduces the overall network energy

consumption since we only use a small set of representative sensors for the data trans-

mission. Furthermore, compared to the benchmark approach, the proposed one can

further improve the sensors lifetime. In fact, for a given NMAEtot target of 0.02 and

pctNrep = 60, we compute the energy consumption during the T time slots for the

both compared approaches depending on the number N of sensors. In this simula-

tion, as in chapter 3, we consider that two nodes i and j can directly communicate

with each other, without the need for relaying, only if the Euclidean distance dsti,j

between them is within some transmission radius (r) that scales with �(
√
logN/N),

and to route the data towards the sink node, we perform the shortest path tree com-

puted by Dijkstra algorithm. In order to compute the energy consumption during

data transmission, the following model is used [89]:{
ETx(L, dsti,j) = Eelec × L+ εamp × L× dst2i,j
ERx(L) = Eelec × L,

(4.21)

where ETx(L, dsti,j) and ERx(L) represent respectively the amount of energy con-

sumed by a speci�c node i, to deliver and receive an L-bit packet through a distance

of length dsti,j . In (4.21), Eelec is the energy required by the transceiver circuitry at the
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sender or the receiver and εamp is the energy consumed by the transmitter ampli�er.

Hence, depending on the distance dst between the transmitter and the receiver, the to-

tal energy cost for forwarding L bits of data is ETx(L, dst)+ERx(L). Regarding the pa-

rameters setting, L = 120 bits [21], Eelec = 50 nJ/bit and εamp = 100 pJ/bit/m2 [89].

Figure 4.9 illustrates the energy consumption for the proposed framework as well as

for the benchmark one. Indeed, our approach requires far less sensor nodes' read-

ings, consequently much less energy consumption, to achieve the same reconstruction

performance.

Let us focus now on the bene�ts of the clusters selection. We show that taking into

account the detected clusters during the representative nodes selection process as well

as during the assignment of the sensing and transmitting schedule signi�cantly ame-

liorates the data recovery performance. Thus, we compare our approach to another

one, for which we proceed regardless the existence of the di�erent clusters. The set

Nrep of representative sensor nodes is selected according to (3.2) and (3.3) instead of

(4.11) and (4.12), i.e. the spatial correlation criteria is present during the nodes se-

lection process. Nevertheless, we do not have equitable representation of the di�erent

regions that compose the whole network. Withal, for each t, them transmitting source

nodes are picked from the set Nrep in a purely random way to sense then deliver their

data readings, i.e. m = pctm% × Nrep instead of (4.13) and (4.14). To recover the

received data matrix, both algorithms apply the three-stage MC-based reconstruction

pattern of section 4.5. Figure 4.10 illustrates the 3-D bar graph of the NMAEtot

values with the variation of pctNrep and pctm. This simulation shows how curiously

interesting the clusters consideration is. The barres depict that our approach pro-

vides a considerable improvement in terms of NMAEtot compared to the algorithm of

comparison, especially in the high compression ratios, i.e. when the number of trans-

mitting source nodes is very limited. Note that without enforcing the involvement of

all the clusters in the data sensing and transmission process, sensor nodes belonging

to the small clusters could be totally ignored, which gravely deteriorates the recovery

process. In Figures 4.11 and 4.12, we have measured respectively the NMAEMC and

the NMAEER with respect to the variation of CR, namely pctm, for di�erent values

of pctNrep. Figures 4.11 and 4.12 highlight the e�ect of the introduced block on the

data recovery of respectively the representative nodes and the inactive nodes readings.

Although both techniques apply the same MC resolution method, the NMAEMC of
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Fig. 4.10. NMAEtot with and without clusters consideration.

Fig. 4.11. NMAEMC with and without clusters consideration.

Fig. 4.12. NMAEER with and without clusters consideration.
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Fig. 4.13. The impact of the representative node selection technique on the
NMAEtot.

our approach is much lower than that of the benchmark, especially for the small values

of pctm. The NMAEER also seems to be heavily a�ected, despite the fact that the

clusters consideration, at the base, targets only the �rst stage of the reconstruction

pattern, which is the MC resolution. For example, with (pctNrep = 20, pctm = 10),

(pctNrep = 40, pctm = 10) and (pctNrep = 60, pctm = 10) we can reach an improve-

ment, on the NMAEER, respectively of 89.619%, 88.587% and 81.443%, when we

enforce the involvement of all the clusters in the data sensing and transmission.

The next scenario aims to prove the importance of neatly selecting the Nrep repre-

sentative nodes. Making use of the spatial correlation in the selection process, these

nodes are selected under the criterion of having the best representation of the whole

network. To investigate the e�ciency of the proposed selection process, we compare

our algorithm to another one that selects its representative nodes randomly. However,

in order to be comparable, this one takes into account the existing clusters when se-

lecting its representative nodes. Hence, the set Nrep of representative nodes consists
of the combination of J subsets, (Nrepj )j=1,. . . ,J , where Nrepj includes Nrepj repre-

sentative nodes selected randomly from cluster CLj using the same shared percentage

pctNrep, where Nrep =
∑J

j=1Nrepj and Nrepj = pctNrep%× clj . As described in 4.4.2

and according to (4.13) and (4.14), both algorithms design their sensing and trans-

mitting schedules, ΩM ∈ IRN×T , based on their selected sets Nrep of representative

nodes. To recover the received data matrix, both algorithms apply the three-stage

MC-based reconstruction pattern of section 4.5. Typically, the algorithm of compari-

son represents that proposed in our paper [25] (i.e the CBMC). As we have stated in

section 4.4.2, the use of a selection cost function (4.11) represents a developed update
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Fig. 4.14. The impact of the representative node selection technique on the
NMAEER.

or an improvement to the proposed approach of [25]. The results of this simulation

are depicted in Figures 4.13 and 4.14. Figure 4.13 illustrates the NMAEtot, and as

we can see, compared to the random selection process, the selection scheme of algo-

rithm 2 with (4.11) and (4.12) (i.e the OCBMC) provides considerable improvement in

term of NMAEtot across the entire ranges of CRs. The gap between the two curves

decreases as we increase the number Nrep of representative nodes, namely pctNrep,

since we decrease the probability of choosing di�erent sets Nrep. Nevertheless, as we
have already stated, these cases are not of prime interest for us. Let us focus now on

Figure 4.14 that highlights the NMAEER to reveal the impact of our selection process

on the reconstruction performance of the empty rows. Expectedly, we �nd that the

NMAEER is sensitive to the used selection method, which con�rms the aforemen-

tioned hypothesis. That is, in order to guarantee an accurate reconstruction for the

inactive nodes missing data, a great care must be taken when selecting the set Nrep
of representative nodes.

The third simulation highlights the bene�t of the 3rd stage of the proposed recon-

struction pattern. We compare our algorithm to the one that uses only the �rst two

stages of section 4.5 to get its �nal recovered data matrix X̂. Following the same logic

of the previous experiences, in order to be comparable, we use the sampling pattern

of section 4.4 with both simulated algorithms, which yields the same set Nrep of rep-
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Fig. 4.15. The impact of the spatial interpolation technique on the NMAEtot.

Fig. 4.16. The impact of the spatial interpolation technique on the NMAEER.

resentative nodes and consequently the same set of inactive nodes. Noticeably, we can

detect a considerable gap in terms of NMAEtot between the barres of Figure 4.15.

This di�erence for all the pctNrep values comes from the non-reconstructed readings

of the NIs isolated nodes with the algorithm of comparison. Since we simulated the

same network with the same sensor nodes neighboring, the set of the NIs isolated

nodes is the same for both of the compared algorithms. Figure 4.16, which depicts

the NMAEER for both approaches, illustrates that we can reduce the reconstruction

error of the empty rows up to 65.079% for (pctNrep = 10, pctm = 40), 76.842% for

(pctNrep = 20, pctm = 40), 82.857% for (pctNrep = 30, pctm = 40) and 82.353% for

(pctNrep = 40, pctm = 40), when we apply the minimization (4.15). These results show

that the number of isolated nodes is important for the small pctNrep values. Hence,
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adding a third interpolation technique, as our proposed minimization (4.15), becomes

heavily needed. Otherwise, we can end up with a data matrix, which is almost half

built, even less.

4.7 Conclusion

In this chapter, we have proposed to let a signi�cant number of sensor nodes remain

idle. Then, relying on a novel MC-based reconstruction framework, we recover their

readings based on the received ones. The strength of our approach lies in its integration

or inclusivity for both the compression and the reconstruction patterns. For the

sampling part, by making use of the inter-spatial correlation feature, we have used a

cluster-based strategy that neatly selects a restricted number of representative sensor

nodes from each cluster in order to e�ciently afterwards schedule where and when to

sense the �eld. As for the reconstruction part, by taking advantage of the readings

similarities in the WSNs, we propose an optimization technique that is annexed to the

MC resolution. This method, positioned in the third stage of the recovery operation,

guarantees the reconstruction of all the empty rows corresponding to the inactive

sensor nodes. Altogether, these techniques succeed in handling the aforementioned

high loss scenario. We have obtained satisfactory results proving the e�ciency and

the robustness of the proposed techniques as well as the whole uni�ed approach. The

results, obtained with the multi-Gaussian generated signal, outperform those of all the

state-of-art techniques. They revealed that we are able to go up to 90% of missing rows

(i.e. only 10% of N of representative sensor nodes), while we still achieve interesting

data reconstruction accuracy by giving a NMAEtot of about 0.08 compared to the

benchmark one, which is still within the range of [0.46, 0.5].
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5.1 Introduction

In this chapter we carry on with the twofold data compression scenario that has

been addressed in the previous chapter 4 with the OCBMC. Reducing the amount

of sensing data can indeed minimize the power consumption of the network and save

its energy. Nevertheless, it is not su�cient since it does not necessarily alleviate

the problem of energy load imbalance between nodes. Indeed, depending on the

events to be monitored, even though the representative sensors may change from one

detection period to another, the signal in most WSNs is time-stationary. Hence, the

set of selected representative nodes can remain the same for many successive sensing

periods. To avoid the overcharge that may occur over some sensor nodes, and thus

their fast death, the representative nodes should be changed from a detection period

to another. In addition, in the multi-hop WSNs, data packets that are generated

from the transmitting source nodes should be relayed via intermediate nodes to be

routed to the sink. Accordingly, nodes around the sink would exhaust their batteries

faster as they carry heavier tra�c loads than the border nodes, causing the problem

of energy hole. In this case, even if the rest of nodes still hold su�cient energy levels,

communication with the sink will be cut o� leading to the end the network lifespan.

To overcome the issue of uneven energy depletion phenomenon, in addition to the

correlation, we have incorporated the sensors' residual energies in the representative

node selection function with the proposed Energy-Aware MC-based data gathering

approach (EAMC). It is noteworthy that taking into account the residual energy in

the node selection process is related to the type of application one wants to perform.

To this end, we have evaluated our selection strategy under di�erent scenarios and

network topologies while presenting for each one the adequate energy-aware metric.

More speci�cally, our main contributions in this chapter are given as follows:

� As a sequel of chapter 4, in this chapter, we focus on the node selection process

taking into account the reconstruction quality as well as the energy e�ciency. In

addition to the correlation, we have incorporated the sensors' residual energies

in the representative node selection function to develop di�erent energy-aware

cost selection functions for the EAMC. The proposed combined metrics have

been introduced in order to systematically maintain a load balancing among

nodes and thus maximize the network lifetime, while still achieving a low data
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reconstruction error.

� Di�erent topologies and scenarios have been assessed under the adequate energy-

aware proposed metric. Indeed, in the star topology networks, where commu-

nication with the sink is direct, choosing a node to be a representative one

according to its residual energy in order to improve the network energy uti-

lization is su�cient. However, in the mesh topology networks, where routing

schemes must be applied and data is forwarded via relaying nodes, the entire

route should be assessed. In addition to the correlation, a node can be chosen

to be a representative one if there is no depleted relaying node in its route.

� In this chapter, we target to minimize the energy consumption and extend the

network lifespan through nodes energy load balancing, while, at the same time,

ensuring a su�ciently good quality of data reconstruction. In the numerical

results section, we have studied the trade-o� between the data recovery error

and the network lifetime for all the investigated scenarios.

� The assumption that the energy consumed in the data acquisition is much lower

than that consumed in radio communications does not hold for a number of

practical applications, such as the gas sensors which are considered as power

greedy sensors [7]. Therefore, in this chapter, we have assessed our approach

under both sensor nodes types, the ordinary sensors (low sensing power sensors)

and the power greedy ones.

The chapter is organized as follows. The next section is devoted to state the pre-

liminary and the energy consumption system model. In section 5.3, we present the

proposed energy-aware data gathering strategy under di�erent scenarios. Then, in or-

der to evaluate the performance of the proposed scheme, we carry out, in section 5.4,

with various simulations, where we vary the cost selection function, the addressed

scenario and the type of the deployed sensor nodes. Finally, we conclude the work in

section 5.5.
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5.2 Preliminary and Energy Consumption Model

5.2.1 Preliminary

In this work, we keep using the technique proposed in chapter 4, section 4.5, i.e the

three-stage MC-based reconstruction approach. The sink node applies this technique

to recover the entire data matrix X ∈ IRN×T , after receiving a partly empty matrix

M ∈ IRN×T , where N denotes the number of deployed sensor nodes, and T designates

the number of time slots t composing the detection period. The three-stage MC-based

reconstruction framework is considered as a data recovery building block for all the

data gathering schemes that will be introduced in section 5.3. Moreover, note that

we keep using notations used along the previous chapter such as those related to the

representative nodes, transmitting source nodes and clusters consideration.

5.2.2 The Energy Consumption Model

Generally, a sensor node consumes the energy of its battery in three operations that

are communications (i.e. both data transmission and reception), data sensing and

data processing.

Since with the MC method, there is no on-sensor computation, and data is directly

sub-sampled in the compressed form (i.e. the data xi,t is available only if a location

i is chosen to be sensed in the time slot t), we assume here that there is no energy

consumed in data processing. Moreover, the high energy-intensive reconstruction al-

gorithm is executed at the sink node, which is free of energy constraint and whose

energy consumption does not be included in the network overall energy consumption.

Regarding the transmission and reception activities, we consider the model (4.21) of

the previous chapter in which we di�erentiate the amount of energy consumed by the

transceiver circuitry at the sender, i.e Eelec−tr, to that consumed by the transceiver

circuitry at the receiver i.e Eelec−rc:{
ETx(L, dsti,j) = Eelec−tr × L+ εamp × L× dst2i,j
ERx(L) = Eelec−rc × L,

(5.1)
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To monitor the network area and sense the data �eld, we have used the following

expression to compute the energy dissipation by a sensor node when performing the

sensing operation for L bit packet [8]:

Esens(L) = L× Vsup × Isens × Tsens, (5.2)

where Vsup is the supply voltage, Isens is the total current required for the data sensing

operation, and Tsens denotes the time duration allowed to a sensor node for data

sensing.

5.3 Our proposed data gathering scheme

In this section, we present how the energy constraint can be jointly considered with

the correlation criteria in the active node selection process in order to maintain a load

balancing among nodes and maximize the network lifetime, while still achieving a low

data reconstruction error. Since the performance usually vary with the network con-

�gurations, we di�erentiate, in this section, the proposed energy-aware cost functions

for the representative node selection according to the given network topologies.

Usually, nodes are randomly scattered in the area to be monitored, without any infras-

tructure, leading to the existence of di�erent network topologies, which are determined

according to the nodes' locations and the connections between them and the sink node.

Di�erent topologies may exist, in the WSNs, and vary with the kind of application

one wants to proceed. In the sequel, we consider the frequently used topologies, which

are the star and the tree/mesh topologies with the twofold addressed scenario.

5.3.1 Single-Hop Star Topology

The star topology networks are single-hop systems [90] since all nodes operate as

terminal devices and directly communicate with a centralized communication server.

This type of architecture is generally used in wireless micro sensor networks as the

covered area is, most of the time, small and limited by the communication range of

the end nodes. As we have previously stated, the �rst step in the network sampling

proceeding is to partition nodes into J disjoint clusters. Performing this step is of
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prime importance to reach an adaptive and overall representation for the whole mon-

itored area, and thus a more e�cient data sampling. Bene�ting from the dependency

among nodes, the aforementioned representative node selection strategy, using algo-

rithm 2 with (4.11) and (4.12), targets to achieve a better data sampling quality and

hence a much lower data reconstruction error at the sink node, despite the limited

number of reported data readings with the addressed twofold data compression sce-

nario. However, there is still a crucial factor that cannot be overlooked at all, and

must be cautiously taken into consideration, which is the network lifespan and energy

load balancing between nodes. Indeed, depending on the events to be monitored, even

though the set of representative sensors may change from one detection period T to

another, the signal in most WSNs is time-stationary. Hence, the set Nrep of selected
representative nodes can remain the same for many successive detection periods. To

avoid the overcharge that may occur over some continuously operating sensor nodes

and thus the fast depletion of their batteries, the active node selection process should

take into account not only correlation between sensor nodes but also their residual en-

ergies. Accordingly, we incorporate in (4.11) the fraction of the sensor residual energy,

as a complementary factor, in order to choose the sensor nodes that can well represent

the network and at the same time hold the highest residual energy. Precisely, for a

given sensor node g ∈ Sj1, the trade-o� between its informative value m
′
g, computed

in (4.12), and its residual energy with regard to the other sensors' residual energies,

Efresdg , is achieved through a multiplication of the two considered factors. Thereby,

(4.11) is replaced by (5.3) for our EAMC approach:

g∗ = argmax
g∈Sj

1

(
m′g × Efresdg

)
, (5.3)

where

Efresdg =
Eg∑
i∈Sj

1
Ei
. (5.4)

Thus, the EAMC represents an update of the OCBMC. The unique di�erence here

is that, with the OCBMC scheme, the set Nrepj is selected from cluster CLj passing

through the correlation-based cost function (4.11), whereas, with the EAMC, this set

is selected from CLj according to the combined energy-aware and correlation-based

metric (5.3).
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Performing (5.3) means that we attempt to choose the sensor node carrying the maxi-

mum value of the combined metric (m′g×Efresdg). Here, multiplying the two addressed

factors aggregates them into a one single entity, and it is analogous to computing the

needed correlation per unit of energy. In other words, this operation makes the re-

lation between the two factors fusional. If one of them is weak it will automatically

weaken the other, and the carrier sensor node will not be chosen. Since the residual

energy of the operating nodes decreases from one detection period to another, the

metrics (m′g × Efresdg)
g∈Sj

1
vary and the representative nodes will be selected e�-

ciently, according to the available energy in their batteries.

In order to determine the set Nrepj of the EAMC, we perform the same steps of the

nodes selection process that have been outlined in algorithm 2, while replacing only

the metric (4.11) by the metric (5.3).

5.3.2 Multi-Hop Mesh Topology

Compared to the star topologies, the mesh network does not su�er from the limited

scalability. Thus, much wider area can be covered and monitored thanks to the multi-

hop transmissions. In this type of networks, several routes may exist between sensor

nodes and the sink, and most of the time the network software chooses the shortest

one for data delivery. To forward the data towards the sink, we opted for the shortest

path tree, implemented with Dijkstra algorithm. Note that the routing protocol to

use is not the main focus of this work since our aim is to achieve energy load balancing

between nodes and reach a higher lifetime for the network with the already established

routes. Updating the paths systematically according to the remaining energy levels in

order to further prolong the network lifetime is left as a perspective for future works.

A more detailed discussion on this point is a�orded in the last chapter 6, section 6.2.

In light of the importance of energy utilization enhancement, as far as the size of these

networks gets bigger and the diameter of the covered area gets larger, the problem of

uneven energy depletion aggravates and gets worse. In fact, data packets, which are

generated by the transmitting source nodes, have to be relayed through intermediate

nodes to be �nally routed to the sink. Accordingly, nodes that are close to the sink

are susceptible to carry much heavier tra�c loads than nodes of the outer-regions.

Consequently, they would speedily run out of power, leading to the problem of energy
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hole around the sink. In this case, even if the rest of nodes, specially the border ones,

still hold su�cient energy, communication with the sink would be cut o�, causing

probably the end of the network lifespan.

5.3.2.1 The twofold compression pattern

To alleviate the overwhelming issue of energy hole, nodes' residual energies should be

considered when selecting the set of representative nodes Nrep. When all the nodes

are directly connected to the sink, as in the star network topology, performing the

selection cost function (5.3) is e�ective enough to attain the purpose of this work.

Yet, when the data have to be forwarded via relaying nodes to reach the destination,

taking into account only the transmitting source node residual energy is completely

insu�cient. Instead, the residual energy level of all the relaying nodes that would

participate in the data forwarding should be assessed. Indeed, the metric (5.3) does

not consider the entire route. Using (5.3), we will select sensor nodes with the highest

residual energy, while ignoring the continuity ability of the entire route. Suppose a

sensor node g∗, holding the maximum value of the combined metric (i.e. correlation-

energy), is selected and there is a relaying node with a used up battery in its route

towards the sink. In this case, the path will be cut o� announcing probably the end

of the network lifetime. Therefore, in addition to the correlation, a node is chosen to

be a representative one under the condition that there is no depleted relaying node in

its route. That is, the metric (5.5) is chosen for our EAMC for this scenario:

g∗ = argmax
g∈Sj

1

(
m′ 2g ×

Eg ×minhpg∈HPg

(
Ehpg

)
(
∑

i∈N∫ Ei)
2

)
, (5.5)

where HPg represents the set of nodes composing the route of the representative

node g towards the sink1. In (5.5), adding the term (minhpg∈HPg

(
Ehpg

)
) means that

we take into account also the relaying node with the lowest residual energy in the

representative node selection process in order to avoid the fast depletion of the routes

and hence the network partition, while there are still nodes with su�cient remaining

energy that can forward data. Here, if the energy level of the relaying node hpg that

is belonging to the route of node g towards the sink is very low compared to other

1Note that HPg contains only the relaying nodes and neither the representative node g nor the
sink belongs to it.
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nodes, the combined entity value will be weakened, and the node g won't be chosen

as a representative node for the current detection period. As we can notice, in this

energy-aware cost function, we have strengthened the weight of the factor m
′
g, which

re�ects how much the sensor g can represent the network, in order to maintain a

good/e�cient recovery quality. It will be shown in the simulations section that the

introduced cost function is able to achieve an interesting and satisfactory trade-o�

between the data recovery quality and the network lifespan.

5.3.2.2 The single-level compression pattern

Generally, the multi-hop transmission is essential for the dense WSNs as well as for

the the case of large networks (in terms of geographic distance), without being too

much dense, where sensor nodes are far away from the sink. Particularly, in this kind

of network, there is no need to make a signi�cant number of sensor nodes completely

inactive, for the entire current detection period, when executing data sensing. Ac-

cordingly, in this part, we won't pass through the selection of a set of representative

sensor nodes. Instead, we proceed directly for the transmitting source nodes schedule.

Furthermore, we want to evaluate our approach under the ordinary data sampling

scenario, as well, in order to provide an overall work, where nodes can participate at

least once during one detection period T . To do so, in each time slot t, using the same

shared percentage pctm, mj transmitting source nodes are directly selected from the

set CLj of nodes composing the cluster j, according to (5.5), to sense the �eld and

transmit their data readings to the sink. That is, instead of (4.13) and (4.14), we

have:

m =
J∑
j=1

mj , (5.6)

where

mj = pctm%× clj . (5.7)

Here, we proceed as if we set pctNrep = 100 and all the nodes are representative for the

network. Certainly, there will be more computation than the twofold scenario, where

the active node selection process, via (5.5), is e�ectuated only once for the entire

detection period T . Fortunately, the one that is responsible for all that calculation

is the sink, which is free of energy constraint. In fact, we assume that the sink
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node has all the information regarding the sensor nodes' locations. Thus, it can

compute, in advance, the energy to be consumed by the nodes for data sensing and

forwarding. Thereupon, it is able to schedule beforehand the participation of the nodes

during the entire detection period. In order to not increase again the communication

overhead, the sink informs the concerned nodes about their data sensing schedule

at the beginning of the detection period, i.e. we designate only one-shot scheduling

transmission for the entire detection period.

Since, in each time slot t, energy consumption is uneven between nodes due to the

multi-hop systems con�guration, over a period of time we outface some sensor nodes

whose routes hold relaying nodes with low residual energy. Performing (5.5) will keep

these nodes out of the selection range for several successive time slots, until other

nodes take their places. The fact of not being selected as a transmitting source node

for successive time slots and not reporting data to the sink leads to the existence of

successive missing entries in the received data matrixM . This sequence of missing data

entries that may exist in the rows, referred to as a row structure fault in [24], impedes

the MC resolution and highly increases the data reconstruction error. Therefore, for

this single-level compression scenario, an extra step is added to the three-stage MC-

based reconstruction pattern and set at the beginning of the recovery process, in order

to detect the rows that hold structure faults and consider them as completely empty

rows. This step consists simply in �nding the sequence of successive zero entries

holding a length larger than a given �xed size, which represents the minimum size of

successive data missing from which that sequence is considered as a structure fault.

That is:

StrFaultmin = pctstrF%× T, (5.8)

where, in accordance with the duration T of the detection period, pctstrF represents

the parameter that �xes the minimum size of successive data missing from which the

detected sequence is considered as a structure fault. It will be shown in the simulation

part that treating separately the rows that hold structure faults signi�cantly improves

and re�nes the data reconstruction accuracy.
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5.4 Numerical Resutls

In chapter 4, we have compared the performance of the proposed OCBMC versus the

scheme of [24] that had treated a relatively similar scenario to our twofold data loss

one. We have found that our structured approach outperforms the baseline scheme in

terms of both data reconstruction error and overall network energy consumption. For

that reason, in this chapter, we have based on this comparison to carry on with our

structured scheme and improve its design and techniques. The proposed energy-aware

data gathering EAMC, where energy is jointly taken into account with the correlation

criteria, is compared to the OCBMC scheme. This simulation will reveal the impact

of the updated selection cost function on the trade-o� between the data recovery ac-

curacy and the network lifetime under all the investigated scenarios, and for both

types of sensor nodes. Then, to summarize and con�rm our results, this trade-o� is

evaluated in a di�erent manner.

Thereupon, in order to estimate the data reconstruction accuracy for the implemented

schemes, we opted for the metrics (4.17) and (4.20) of chapter 4. To simulate the imple-

mented schemes and evaluate their performance under di�erent CRs, we vary pctNrep

from 10 to 60, and for each given pctNrep, we vary pctm from 10 to 80. Regarding the

network parameters, we consider that N = 50 sensor nodes are randomly deployed in

a square observation area of size 100m× 100m, and we monitor the WSN throughout

a detection period of length T = 100 time slots.

In these simulations, we focus on the principal purpose of this work, which is the

network lifetime improvement. For that reason, we analyze the performance of the

EAMC, where we consider for each scenario and network topology the adequate cost

function. Namely, we evaluate the metric (5.3) for the single-hop star topology and

the metric (5.5) for the multi-hop mesh topology. Moreover, we assess the proposed

approach under both of sensor nodes types; the ordinary sensors, where the energy

consumed in data sensing is quite low, and the speci�c power greedy ones, where

the acquisition energy cost is greater than that of the communication cost [9]. The

parameters of the used energy consumption model are outlined in the Table 5.1.

To begin, we consider the single-hop star network and we compare the EAMC approach

to the OCBMC. Figures 5.1 and 5.2 depict the trade-o� between the NMAEtot and

the network lifetime. The network lifetime denotes the number of detection period
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Table 5.1: Simulation Parameters for energy consumption

Parameter Ordinary sensor Greedy power

node sensor node

Einit 0.8 J 40 J

Isens 50 µA [91] 25 mA [8]

Tsens 0.5 mS [8] 0.5 mS [8]

Vsup 2.25 V [91] 2.7 V [8]

Eelec−tr 50 nJ/bit [92]

Eelec−rc 5 nJ/bit [92]

εamp 100 pJ/bit/m2 [8]

L 1024 bits

T that a scheme can achieve without causing the death of any sensor node in the

network, i.e. Nbrounds. Indeed, the �rst node that exhausts all its battery energy

announces the death of the network and determines its lifetime Nbrounds. Note that

for each case, when we vary the compression ratios pctNrep and pctm, the NMAEtot

and the Nbrounds are simultaneously calculated then depicted in Figures 5.1 and 5.2

for both compared approaches. Moreover, the �nal depicted NMAEtot represents the

average of all the resulting NMAEtot during the ensured Nbrounds
2. Integrating the

residual energy with the correlation, as a second weighty factor, will certainly lighten

the impact of the correlation on the data recovery quality. However, in this chapter, we

target to reach a robust and equitable compromise between the two addressed factors.

As we can note, we still achieve a su�ciently good data recovery accuracy even for

small values of pctNrep (i.e. when there is a signi�cant number of completely empty

data rows in M), while at the same time the network lifetime is highly improved. As

an example, with the ordinary sensor nodes (pctNrep = 20, pctm = 10), the NMAEtot

passes from 0.023 to 0.037 with the EAMC, while the network lifetime is expanded

with a percentage of 416.94% (i.e. Nbrounds passes from 43.34 to 224.04 rounds). On

the other hand, with the greedy power sensor nodes (pctNrep = 20, pctm = 10), the

NMAEtot passes from 0.029 to 0.038 with the EAMC, while the network lifetime

is expanded with a percentage of 303.2% (i.e. Nbrounds passes from 22.52 to 90.8

rounds). Moreover, we can notice that as the number of active nodes is increased,

the gap of NMAEtot between the two compared algorithms is signi�cantly reduced,

2The NMAEtot and the Nbrounds of the simulations of Figures 5.3, 5.4, 5.5, 5.6 and 5.7 have
been calculated following the same manner.
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(a) The NMAEtot for OCBMC and EAMC approaches.

(b) Nbrounds for OCBMC and EAMC approaches.

Fig. 5.1. Performance trade-o� between the data reconstruction error and the
network lifetime for OCBMC and EAMC approaches in the single-hop star topol-
ogy with ordinary sensors.

whereas, that of the network lifetime is still clearly noteworthy. Precisely, with the

greedy power sensor nodes, starting from pctNrep = 40, we start to reach gains on the

network lifetime almost without deteriorating the NMAEtot.

Let us now focus on the second scenario: the twofold data compression in the multi-

hop mesh network topology. For the ordinary sensor nodes, where the consumed

energy during data detection is quite low compared to that used for data transmis-

sion, the trade-o� between the NMAEtot and the Nbrounds is illustrated in Figure 5.3.

Particularly, as we can see, we keep intentionally considering the performance com-

parison of the NMAEtot that has been performed in the simulation of Figure 4.13

between the CBMC and the OCBMC. Interestingly, it is noteworthy that even though

the NMAEtot is slightly increased when considering the sensor residual energy in the

metrics (5.3) and (5.5), it is still quite inferior to that given by the original CBMC,
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(a) The NMAEtot for OCBMC and EAMC approaches.

(b) Nbrounds for OCBMC and EAMC approaches.

Fig. 5.2. Performance trade-o� between the data reconstruction error and the
network lifetime for OCBMC and EAMC approaches in the single-hop star topol-
ogy with the greedy power sensors.
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when the correlation criteria is not taken into account. Let us now compare the met-

rics (5.3) and (5.5), we can observe that the metric (5.5) achieves a better Nbrounds

at the cost of a slight increase of the NMAEtot. Indeed, since the entire route is

considered with (5.5), sensor nodes having depleted relaying nodes in their paths to-

wards the sink are less susceptible to be selected as representative nodes. Here, it

is worth mentioning that as long as we keep achieving a su�ciently good recovery

quality (i.e. a low NMAEtot), we privilege the second crucial factor that is the net-

work lifetime expanding. As we can see in Figure 5.3, for pctNrep equals to 60, the

resulting data recovery error, when we perform the metric (5.5), is almost the same

as when we use (5.3), whereas, the Nbrounds ensured by the retained metric (5.5) is

higher than that given by (5.3). For example for (pctNrep = 60, pctm = 10), with the

same NMAEtot, performing the EAMC using the cost function (5.5) can prolong the

network lifetime with a percentage of 35.69% compared to the OCBMC, whereas, the

yield of (5.3) is limited to 8.7%. This is because metric (5.5) takes into account the

entire route through the value of (minhpg∈HPg

(
Ehpg

)
). Hence, this technique is able

to ensure a much longer lifetime for the network, when the sensor nodes are ordinary

ones. Another example, for pctNrep = 40 and pctm = 10, by increasing the NMAEtot

from 0.025 to only 0.029, the metric (5.5) can prolong the network lifetime with a

percentage of 47.28%.

Nevertheless, when the deployed sensor nodes are greedy power ones, as it has been

depicted in Figure 5.4, the performance of both metrics (5.3) and (5.5) become very

close. Indeed, with this type of sensor nodes, the amount of energy that is consumed

in data forwarding by the relaying nodes becomes much less than that consumed in

sensing by the assigned transmitting source nodes. Consequently, both metrics tend

to choose the same set of representative nodes since the amount Eg (i.e. the residual

energy of the representative node of interest g) represents, with this type of nodes,

the most important and the dominant component that heads the active node selec-

tion process. We can distinctly note the very signi�cant improvement brought by the

EAMC, with both metrics (5.3) and (5.5), compared to the OCBMC in terms of net-

work lifetime, especially for high CRs. As an example, for (pctNrep = 40, pctm = 10),

we can reach an amelioration of 124.4% in terms of Nbrounds with both metrics, while

still maintaining nearly the same NMAEtot compared to the OCBMC.

In order evaluate the scalability of the proposed solution, we have compared in Fig-
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(a) The NMAEtot for CBMC, OCBMC and EAMC.

(b) Nbrounds for CBMC, OCBMC and EAMC.

Fig. 5.3. Performance trade-o� between the data reconstruction error and the
network lifetime for the compared approaches in the twofold compression scenario
and multi-hop mesh topology with ordinary sensors.
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(a) The NMAEtot for OCBMC and EAMC approaches.

(b) Nbrounds for OCBMC and EAMC approaches.

Fig. 5.4. Performance trade-o� between the data reconstruction error and the
network lifetime for the compared approaches in the twofold compression scenario
and multi-hop mesh topology with greedy power sensors.
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Fig. 5.5. Performance trade-o� between the data reconstruction error and the
network lifetime for the compared approaches in the twofold compression sce-
nario and multi-hop mesh topology with ordinary sensors and with respect to the
number of sensor nodes.

ure 5.5 the performance of the implemented schemes, for the scenario of Figure 5.3,

with respect to the number of sensor nodes. To this end, for pctNrep = 50 and

pctm = 10, we vary the number of the deployed sensor nodes, and for each case we

measure the NMAEtot and the Nbrounds. As we can note from this simulation, the

EAMC with the metric (5.5) keeps outperforming both the EAMC with the metric

(5.3) and the OCBMC in terms of Nbrounds with respect to N , although it increases

a little bit the NMAEtot. These simulations con�rm the scalability of the proposed

scheme and show that it keeps the same behaviors, even when we increase or decrease

the number of sensor nodes N . Note that the data recovery error is reduced, for all the

compared schemes as N is raised since the MC-based reconstruction methods work

very well for large-scale data estimation problems. Regarding the network lifetime,

we can note that it is reduced as N is raised since the overall energy consumption is

increased due to packet relaying.

In scenario three (i.e. the single-level compression scenario in the multi-hop mesh

topology), whose results are depicted in Figures 5.6 and 5.7, we have compared

the EAMC scheme using the metric (5.5) with its original version, the CBMC, for

pctNrep = 100. Indeed, since in the WSNs, most of the time, the signal is time-

stationary, using only the correlation criteria via the OCBMC to seek for the m
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transmitting source nodes in each time slot t leads to probably having the same trans-

mitting source nodes during all the detection period T . The resulting con�guration

entails a schedule, where the same chosen source nodes will transmit their data during

all the time slots t composing the detection period T , while the rest of nodes remain

completely inactive. The OCBMC is not suitable for this scenario since, in this part,

we aim to address an ordinary data sampling scenario, where nodes can participate

in data sensing and transmission at least once during one detection period T . As we

can note from Figure 5.6, the NMAEtot achieved by the EAMC (i.e. the dark green

curve) gets worse compared to the original CBMC, despite the amelioration achieved

in terms of Nbrounds. This is due to the existence of the row structure faults that

appear in the data vectors corresponding to the nodes that are remaining outside the

range of selection for several successive time slots. In addition to the fully empty data

rows, the structure faults are among the serious obstacles that not only impede the MC

resolution but also pollute the received data [24]. For that reason, before applying the

MC method, the rows holding these structure faults should be removed from M then

recovered through stage two if the node corresponding to this row is an absent node

or recovered through stage three if the node is an Isolated one. In [24, Section. V],

authors have proposed an algorithm that detects rows holding structure faults. This

technique is implemented here and the resulting performance are depicted with the

dotted black curve. As we can note from the �gure legend, this technique is depen-

dent to two di�erent parameters N
′
and α. Altogether, these parameters give χ2

N ′ ,α
,

which represents the upper α percentage point of the chi-square distribution with the

degree of freedom N
′
. Although they had shown how to choose N

′
, the selection of

α has been done without any explanation, and according to our several simulations,

it should be noted that the slightest variation of any of these parameters makes an

important di�erence in the NMAEtot performance. Here, the value of α has been de-

termined empirically3. As for our proposed structure faults detector (5.8), it has been

evaluated with respect to a threshold parameter pctstrF that, in accordance with the

detection period duration T , �xes the minimum size of successive missing entries from

which the sequence is considered as a structural fault. Surprisingly, we can clearly

note from Figure 5.6 that, despite its simplicity, our proposed method can signi�-

cantly reduce the data recovery error of our EAMC for the entire range of CR, while

still keeping the same Nbrounds, whereas, the improvement brought by the technique

3We report here the simulation of only the most performing value.
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Fig. 5.6. Performance trade-o� between the data reconstruction error and the
network lifetime for the compared approaches in the single-level compression
scenario and multi-hop mesh topology with the ordinary sensors.

of [24] is limited by a restricted range of CR. Moreover, the NMAEtot given by the

EAMC with our structure fault detection method is not only lower than that given by

the EAMC without structure fault detection, but also it is lower than the NMAEtot

resulting from the EAMC with the method of [24], which unfortunately makes the

data recovery accuracy worse for the high CRs (i.e. CR > 0.66). In fact, using the

same parameter value α for both high and low CRs impedes the imposed threshold

for the structure faults detection from maintaining a low error ratio across the entire

range of CR. These simulations show that our technique is not only simpler than that

proposed in [24], but also it is more e�cient.

Figure 5.7 depicts the simulations obtained with the greedy power sensors. It shows

a signi�cant decrease in the NMAEtot corresponding to EAMC compared to those of

the ordinary low power sensors of Figure 5.6. Since the amount of consumed energy in

data forwarding by the relaying nodes becomes far less than that consumed in sensing,

we do not have paths that run out quickly, and the choice of the active transmitting

source node becomes directed only by the energy of the node in question, not the
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Fig. 5.7. Performance trade-o� between the data reconstruction error and the
network lifetime for the compared approaches in the single-level compression
scenario and multi-hop mesh topology with the greedy power sensors.

relaying nodes composing its path towards the sink. As a result, the number of the

structural faults as well as their sizes are reduced. For that reason, we vary again the

parameter α in this simulation since the one used in Figure 5.6 was not suitable for

the present case. As for the network lifetime performance, unexpectedly, for this kind

of data compression scenario and when the deployed sensors are greedy power ones,

the energy consumption is too great that we can make signi�cant improvements in

terms of Nbrounds.

In the �nal part of the simulations section, the trade-o� between the data recovery

error NMAEtot and the network lifetime, measured with Nbrounds, has been inves-

tigated in a more realistic manner. For a given pctNrep = 30, an error ratio upper

bound is �xed. Here, the Fixed NMAEtot is varied from 0.02 to 0.1, and for each

value we compute the maximum number of detection periods that the scheme can en-

sure, despite the eventual existence of dead sensor nodes. As long as the implemented

scheme can achieve an NMAEtot lower or equal to the �xed bound, the network is

considered as operational. When the data recovery error ratio of this scheme exceeds
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Fig. 5.8. Real network lifetime vs. �xed upper bound data recovery error ratio
for the compared approaches in the single-hop star topology with both types of
sensor nodes.

the Fixed NMAEtot value, we consider the network as dead. Doubtless, if a sensor

node runs out of energy, it can no longer participate in data sensing and forwarding.

Likewise the previous simulations, we start with the single-hop star topology. We

can note from Figure 5.8 that the EAMC, using the metric (5.3), can highly prolong

the network lifetime compared to the OCBMC, while still able to maintain a data

reconstruction quality better than the imposed level. Another interesting point is

that the potential improvement of EAMC is higher than OBMC in terms of network

lifetime. In other words, the Real Nbrounds achieved by the EAMC increases faster

than that achieved by the OCBMC, when the upper bound error ratio is expanded.

Figure 5.9 depicts the obtained results for scenario two, which is the twofold data

compression in the multi-hop mesh network topology. As we can notice, the obtained

performance results con�rm those of Figure 5.3 and Figure 5.4 and prove the e�ciency

of the proposed EAMC with both types of sensor nodes. Particularly, we can perceive

the existence of drop points in the plots, namely, Fixed NMAEtot = 0.06 with the

ordinary sensor nodes and Fixed NMAEtot = 0.1 with the greedy power sensor nodes.

Since we perform a discretized CR to reach an NMAEtot that is less than or equal

to the �xed one, i.e. pctm varies from 10 to 70 with step of 10, there is possibility

that a CR under the needed one is used (pctm above the needed one), and some
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Fig. 5.9. Real network lifetime vs. �xed upper bound data recovery error ratio
for the compared approaches in twofold compression scenario and multi-hop mesh
topology with both types of sensor nodes.

speci�c nodes may untimely die. Consequently, the achieved NMAEtot increases and

exceeds the upper bound Fixed NMAEtot, which causes the death of the network.

The latter explanation denotes that a piecewise e�ect appears in these points. As

we can note, the appearance of these particular points is clearer with the case of

the greedy power sensor nodes, where the data sensing activities carried out by the

transmitting source nodes consume the bulk of the total power consumption, and the

selection of the active nodes is mainly based on the residual energy of the sensor of

interest. Nevertheless, note that what mostly interests us is the di�erence, in terms of

network lifetime performance, between the curves that still exists even with the drop

points.

5.5 Conclusion

In light of the importance of the energy saving and lifetime for wireless sensor nodes

that are su�ering from a limited power capacity, in this chapter, we have presented

an adaptive data collecting scheme, called the EAMC. Since the all-node-active con-

dition is completely impractical for WSNs with the energy constraints, the proposed

approach can dynamically designate the transmitting source sensor nodes that can
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a�ord the sustainability as long as possible of the network lifetime and alleviate the

problem of energy load imbalacing, according to an energy-aware cost selection func-

tion. Additionally, the proposed EAMC scheme aims not only for achieving the energy

e�ciency for the network but also for preserving a su�ciently good quality of data

reconstruction as it still takes into account the correlation criteria among sensors in

order to select those who can best represent the network. Furthermore, we have

evaluated our approach under di�erent network topologies and scenarios, while per-

forming, in each time, the adequate energy-aware metric. Moreover, to recover the

entire data matrix, despite the existence of a signi�cant number of completely miss-

ing rows corresponding to the inactive nodes, we have relied on the three-stage data

reconstruction framework of the previous chapter. For the last addressed scenario,

to re�ne and enhance the data recovery quality, we have added a simple step to the

data recovery techniques, which e�ciently detect the structure faults that may ap-

pear in the received data matrix. Simulations have proven that the proposed scheme

can achieve an interesting trade-o� between the data reconstruction accuracy and the

network lifetime compared to the baseline schemes. Accordingly, the EAMC scheme

can be considered as very interesting for research in the �eld of energy saving since,

particularly, it is able to e�ciently overcome the twofold data loss scenarios.
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Chapter 6

Conclusion and Perspectives
G

6.1 Summary of Contributions

In WSN, sensors are deployed in order to collect periodically measures of physical

�elds, which can be related to a wide range of applications as security, science, indus-

try, civil infrastructure, etc. However, their crucial nature of limited power, memory

and computational capacities requires focusing on minimizing energy consumption

and processing complexity to ensure a longer lifetime for the network [72]. There-

upon, the purpose of this thesis is to establish and evaluate energy-e�cient data

gathering schemes for future WSNs. Relying on the CS and the MC methodologies,

this dissertation proposes three di�erent approaches.

We started by evaluating an uncommon space-time CS-based design, where we have

performed a strategy that neatly and determinately selects a subset of active sensor

nodes under the criterion of having the best presentation of the whole network, using

a correlation-based metric, when, at the same time, they are "near" the sink. These

designated nodes will deliver their data readings to the sink for only the same subset of

predetermined time slots, i.e. the data signal is adaptively sub-sampled in the space as

well as temporal dimension. This is di�erent to the existing spatial CS data gathering

patterns, where, in each time slot, the sensors' readings are linearly combined along

a multi-hop routing. Surprisingly, recovering the entire data with such unfamiliar or

unusual situation has worked successfully thanks to the use of an adaptive spatial

sparsifying basis ΨS with a covariogram-based estimation. Since the addressed data
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gathering strategy reduces dimensionally the number of data samples in space and

time, the Kronecker framework has been performed in the data reconstruction process

for the proposed STCS-RA approach to take advantage of the signal sparsity in both

dimensions.

The remaining schemes of this dissertation focused on the application of the MC

methodology because of its numerous bene�ts. In the second contribution, we have

developed a structured MC-based framework that is able to deal with the existence

of a signi�cant number of completely missing data rows in the received data matrix.

These empty rows result from the inactive nodes that do not participate at all in the

data sensing process during the entire detection period. The reconstruction of the

entire data has been achieved successfully with high accuracy thanks to the proposed

minimization-based interpolation technique, which is annexed, as a third stage, to

the MC resolution. Furthermore, since we are mainly interested in the high data loss

scenarios, gathering the limited amount of data to be transmitted from the active

nodes must be neatly scheduled to a�ord the su�cient information about the whole

network area. For that reason, we have proposed the CBMC and the OCBMC data

gathering approaches, which assign the sensor nodes into groups using a data-based

spectral clustering technique. The detected clusters are taken into account in the

representative nodes (active nodes) selection process then in the data sensing schedule

with the use of the same shared percentage between clusters in order to provide an

equitable representation of the monitored area. Through simulations, we have shown

that such an adaptive data sampling deeply a�ects the recovery quality of not only

the missing data corresponding to the active nodes but also those corresponding to

the completely inactive ones.

Aiming to further optimize the use of WSNs resources, we present in our third con-

tribution an adaptive EAMC data gathering approach that extends the introduced

scheme of the second contribution. The proposed data gathering strategy has been

conceived with the intention of systematically maintaining a load balancing among

nodes and maximizing the network lifetime, while still achieving a low data recon-

struction error. Indeed, in addition to the correlation, we have incorporated the

sensors' residual energies in the representative node selection process and developed

di�erent combined energy-aware cost selection metrics. Depending on the variation

that occurs on the nodes inter-correlation as well as on their available power supplies,
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the proposed approach selects nodes that can best represent the network, taking into

account the e�ciency of the network energy utilization. We have evaluated our ap-

proach under di�erent network topologies and scenarios, while performing, in each

time, the adequate energy-aware metric. For each case, the trade-o� between the data

recovery error and the network lifetime is measured, and the performance behaviour

of the proposed data gathering approach is studied for both types of sensor nodes; the

low-power sensors and the hungry-power ones.

6.2 Perspectives

The solutions suggested throughout this dissertation permit the rise of some new

insights and ideas, which can further ameliorate the WSNs performance. Indeed, a

number of mechanisms developed and proposed in this work can be extended and

updated, and then performed in another domain or in a variety of manners.

6.2.1 STCS iterative reconstruction using an adaptive ΨT

Although spatial and temporal correlations have been jointly exploited with the STCS,

as both distributed and local CS have been applied for data compression, and the

Kronecker CS framework have been performed for decompression, only the spatial

matrices ΦS and ΨS have been adaptively computed according to the signal variation.

In this context, a natural modi�cation is to estimate a temporal sparsifying basis

ΨT that can be dynamically adapted to the time-varying statistics of the signal �eld.

Thus, as a perspective, we propose an iterative algorithm, where the estimation of

Xcs can be progressively re�ned. Suppose that X̂cs is reconstructed based on the

received measurements, as described in chapter 3. Then, using this X̂cs as a �rst

estimation denoted by X̂cs1 , we can improve the accuracy of X̂cs2 , of the same current

sensing period, after recalculating ΨT through replacing DCT by the PCA basis or

another data dependent and advanced temporal sparsifying basis in order to better

exploit the intra-sensor correlation. Note that we can refer to a new iteration Itr

each time X̂csItr is re-estimated using X̂cs(Itr−1)
. Besides, for the next sensing periods,

these estimations will be used and the precision may increase. Here, for example, an
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experimental study can be done to �x the number of re-estimations (iterations) that

one should perform to reach a required error ratio.

6.2.2 From a centralized approach to a distributed one

In the proposed approaches, a centralized node, which is the the sink, is the one

that is responsible for the selection of the representative nodes and for their data

sensing activities schedule over each detection period. Even though, this meets well the

constrained resources and computational capacities of the deployed wireless devices,

it may be more desirable to distribute the computation of the active node selection

algorithm and the data sensing schedule between nodes in order to make them more

autonomous. Moreover, suppose that the sink has a �nite power supply, as in many

practical applications. Thus, establishing an adaptive data gathering scheme, with a

decentralized manner, can signi�cantly reduce the computational complexity carried

by the sink node and even speed the data gathering process. To this end, performing

this purpose, while keeping in mind the overall network energy capacity and e�ciency,

makes it an extremely challenging and worth pursuing research issue.

6.2.3 The three-stage MC-based reconstruction approach in Massive

MiMo

In massive Multi-Input Multi-Output (MIMO) systems, a precise acquisition of the

Channel State Information (CSI) is needed for signal detection, resource allocation,

beamforming, etc [93]. Yet, with the explosive growth of the single-antenna user

terminals number, the Base Station (BS) should estimate channels that are associated

with hundreds of users, leading to high pilot overhead. The idea here is to let only

a small number of users transmit their pilots in the training phase of each coherence

interval and, using the proposed three-stage MC-based reconstruction approach of

chapter 4, the BS will estimate all channels, even those corresponding to users who

have not sent pilot signals. This framework can be implemented and introduced as

a channel estimation scheme for the uplink massive MIMO systems based on the

assumption of channel reciprocity in the Time Division Duplexing (TDD) mode [94].

Since most of wireless channels are sparse, the MC method can represent a suitable
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solution for channels estimation [95], [96]. To model the considered massive MIMO

system, we assume that the BS is equipped with an array of a signi�cant number

M of antennas. For the uplink mode, to estimate the channel matrix H ∈ CM×K ,
the BS receives training signal vectors of pilots Φ = [φ(1)tr, φ(2)tr, ..., φ(K)tr]tr sent

by a large number K of users, where K ≤ M . Conventionally, for each coherence

interval, each user should transmit a pilot sequence of length L in the training phase,

where L ≥ K. Accordingly, Φ represents the K×L total training matrix that consists

of K L-length training pilot sequences, and the received signal matrix, denoted by

Y ∈ CM×L, is given by the following equation [97]:

Y = HΦ +N. (6.1)

In (6.1), N ∈ CM×L represents the additive white Gaussian noise matrix, whose

entries are i.i.d N (0, σ2
N )C.

To reduce the number of transmissions during the coherence time, we assume that

a small number Krep � K of the users will transmit their L-length training pilot

sequences, i.e Φrep of size Krep × L, and instead of �nding H ∈ CM×K , the BS

would �rstly estimate a sub-matrix H ′ ∈ CM×Krep using the MC method with its

noisy version. As an example, paper [97] had provided a mathematical MC-based

formulation of the problem (6.1) in Eq. 7 and developed a solution in Eq. 11. Here,

for our case, we have to solve the equation (6.2) instead of (6.1) and �nd H ′:

Y ′ = H ′Φrep +N ′. (6.2)

Secondly, the BS updates H ′ ∈ CM×K by adding the (K − Krep) empty columns,

which correspond to the users that did not sent their training pilot sequences, and

placing them in their proper locations of H. Finally, it carries on with stage 2 and

stage 3 to estimate these remaining columns to get the entire M ×K channel matrix

H.

6.2.4 The EAMC data gathering scheme with a dynamic routing

Using the already established routes with a static routing protocol, in data forward-

ing, may limits the performance improvement that an energy-aware data gathering
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scheme can achieve. An interesting practical consideration is to update the paths

systematically according to the remaining energy levels of the relaying nodes in order

to further prolong the network lifespan. Indeed, it is noteworthy that cross layer opti-

mization may achieve a considerable performance improvement. Hence, our idea here

is to to keep using the representative node selection cost function (5.3) even in the

multi-hop mesh topologies in order to preserve a better data recovery accuracy. How-

ever, instead of forwarding data to the sink through static paths, for example, each

sensor node would choose as its next hop the sensor node, within its range obviously,

that has the highest residual energy and at the same time can achieve the largest

geographical advancement toward the sink. To select the appropriate forwarder, the

balance between the residual energy of the node of interest and its distance toward

the sink can be modeled by a certain cost function. Doing that may further improve

the network lifetime, Nbrounds, while maintaining the same low NMAEtot.



113



Appendices

114



Appendix A

Publications of the thesis

1. M. Kortas, O. Habachi, A. Bouallegue, V. Meghdadi, T. Ezzedine, and J. P.

Cances:� The Energy-Aware Matrix Completion based Data Gathering Scheme

for Wireless Sensor Networks,� in IEEE Access Journal, 2020

2. M. Kortas, O. Habachi, A. Bouallegue, V. Meghdadi, T. Ezzedine, and J. P.

Cances: � Energy e�cient data gathering schema for wireless sensor network:

A matrix completion based approach,� in IEEE Software, Telecommunications

and Computer Networks (SoftCOM), 2019

3. M. Kortas, V. Meghdadi, A. Bouallegue, T. Ezzedine, O. Habachi, and J. P. Can-

ces: �Routing aware space-time compressive sensing for wireless sensor networks,

� in IEEE Personal, Indoor, and Mobile Radio Communications (PIMRC), 2017

4. M. Kortas, A. Bouallegue, T. Ezzedine, V. Meghdadi, O. Habachi, and J. P. Can-

ces: �Compressive sensing and matrix completion in wireless sensor networks,

� in IEEE International Conference on Internet of Things, Embedded Systems

and Communications (IINTEC), 2017

115



Appendix B

Extra Simulations

B.1 Spatial Correlation feature

To evaluate the spatial dependency between the deployed sensor nodes, we use a kind

of an N ×N binary symmetric matrix Yc, called a 1-hop topology matrix, where both

columns and rows denote the sensor nodes. We assign 1 to Yc(i, j) and Yc(j, i) if we

�nds that sensor node i and sensor node j are 1-hop neighbors. But, according to

the signals nature that we consider, we assume that even though two sensor nodes

are geographically close to each other, if they don't belong to the same portion �eld

Dh, they are not considered as neighbors. Since spatial correlation is mostly apparent

between nearby sensor nodes, we compute the normalized di�erence between the data

reading X(i, t) of node i in time slot t with the sum of data readings of its one-hop

neighbors [24]. That is:

∆Sgap(i, t) =
X(i, t)− (Yc(i)X

(t)/
∑
Yc(i))

meanh(diff)
, (B.1)

where X(t) is the tth column of X, Yc(i) is the i
th row of Yc and meanh(diff) repre-

sents the average of the calculated di�erences between the maximum and minimum

data samples X(i, t) discretized from the H �elds' portions, i.e. the average of the

largest di�erences between data samples of the H �elds' portions. Figure B.1 plots

the cumulative distribution function (CDF) of the ∆Sgap values. We can note that

the probability of ∆Sgap(i, t) ≤ 0.05 is equal to 80%, which means that the synthetic

data holds a spatial correlation property.

116



Spatial Correlation feature 117

Fig. B.1. The CDF of ∆Sgap of a multi-Gaussian synthetic signal generated using
the values of Table. 4.1.
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B.2 Temporal Correlation feature

To evaluate the temporal stability of the data X, we measure the normalized gap

between each two consecutive gathered data samples, X(i, t − 1) and X(i, t), in a

speci�c space location i. That is:

∆Tgap(i, t) =
| X(i, t)−X(i, t− 1) |

max
16i6N,26t6T

| X(i, t)−X(i, t− 1) |
. (B.2)

Figure B.2 plots the CDF of the ∆Tgap values. We can note that the probability

Fig. B.2. The CDF of ∆Tgap of a multi-Gaussian synthetic signal generated using
the values of Table. 4.1.

of ∆Tgap(i, t) ≤ 0.25 is equal to 80%, which means that the synthetic data holds a

temporal correlation property.
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B.3 Cross Con�guration

In �gure B.3, we have performed a cross con�guration for an empirical choice of

the used tuning parameters of (4.15). As we can note from the simulation, adjusting

these parameters nicely enhances the data reconstruction performance of the proposed

approach. The combination (fac1 = 10−13, fac2 = 1 and K = 5) seems to a�ord

su�ciently good results compared to other tested values. Note that tuning these

parameters serves just to further improve and re�ne the data reconstruction quality.

Indeed even with the the extreme values (fac1 = 1, fac2 = 1 and K = 2), our

proposed approach still achieves a very low data recovery error.

Fig. B.3. The NMAEtot for the proposed technique with the variation of the
parameters K, fac1 and fac2.

Figure B.4 shows that our proposed approach ,executed without the regularization of

(K, fac1 and fac2), still distinctly outperforms the Benchmark scheme, implemented

in Figure 4.6.

In Figures B.5 and B.6, we have varied the size of the data matrix X (i.e. N and T ).

As we can note from these plots, the reconstruction performance, with and without

parameters scaling, is independent to the performed numbers N and T .
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Fig. B.4. The NMAEtot for the Benchmark technique and for the proposed one
without parameters adjustment.

Fig. B.5. The NMAEtot for the proposed approach with and without parameters
adjustment with respect to the number of sensor nodes N .
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Fig. B.6. The NMAEtot for the proposed approach with and without parameters
adjustment with respect to the number of time slots T .
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