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Abstract

The drastic expansion in the number of wireless devices and the scarcity of available

spectrum resources give rise to unprecedented challenges for the future sixth genera-

tion (6G) of wireless communication systems. More precisely, the operators have to

cope with the continuous prosperity of the Internet of things (IoT) along with the

ever-increasing deployment of Machine Type Devices (MTDs). In this regard, due

to its compelling features, the Non-Orthogonal Multiple Access (NOMA) technique

has sparked off significant interest as a sophisticated technology to meet the above-

mentioned challenges. Particularly, NOMA schemes are mainly categorized into two

fundamentals categories, namely the Power-Domain NOMA (PD-NOMA) and the

Code-Domain NOMA (CD-NOMA). In this dissertation, we consider PD-NOMA

based systems and more specifically Hybrid NOMA scenarios, wherein the MTDs

are divided into different groups, each of which is allocated an orthogonal Resource

Block (RB), so that the members of each group share a given RB to non-orthogonally

transmit their signals. Interestingly, the performance of the Hybrid NOMA system

primordially depends on how users are arranged into groups and then assigned dis-

tinct power levels in order to deliver distinguishable signals to the Base Station (BS).

With this in mind, we investigate the user grouping problem intertwined with the

power allocation issue. Thereby, we aim to solve these combined problems through

a joint optimization. To do so, we need to adopt advanced techniques with an eye

toward thoroughly splitting devices into multiple groups and efficiently partitioning

power among them.

First, we consider a relatively dense network and propose a game theoretical frame-

work based on a Bi-level game in order to perform a joint channel and power selection

for MTDs. Indeed, the proposed approach consists in modeling the behaviors of the

devices with the aid of a non-cooperative power control game underlying a cooperative

Hedonic game. More precisely, the latter is adopted to lay out the coalitional for-

mation process while enabling the MTDs to self-arrange into multiple groups. Then,

within each group, the non-cooperative game is invoked to allow the MTDs to decide

autonomously the appropriate transmit power to use to transmit their packets in a
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non-orthogonal manner. In doing so, we derive two low-complexity algorithms that en-

able us to obtain a Nash-Stable partition. Furthermore, we numerically demonstrate

that the proposed Bi-level game is advantageous in terms of the energy consumption

and the packet transmission success rate compared to other existing techniques in the

literature.

Thereafter, we consider a very massive MTC scenario and we adopt the Mean Field

Game (MFG) framework with the aim of modeling the power allocation through a

simplified model. In this vein, we propose a MFG-based approach that considers

the effect of the collective behavior of players. Then, we derive a distributed power

control algorithm that enables the MTDs to appropriately regulate their power lev-

els according to brief information received from the BS. Specifically, the proposed

approach is governed by the two fundamental Hamilton-Jacobi-Bellman (HJB) and

Fokker-PlanckKolmogorov (FPK) equations, which considerably reduce the mathe-

matical complexity of the solution. Numerical results are presented to illustrate the

equilibrium properties of the proposed power control algorithm and to emphasize the

performance gains of the MFG-based approach.

Finally, we focus on designing a novel resource allocation approach based on a Bi-level

learning by extending the proposed MFG using Reinforcement Learning (RL) tech-

niques. Particularly, we derive decision-making algorithms in which the RL approach

is on the top of the MFG framework in order to jointly optimize resource allocation

and power control problems. In this way, the combined approaches allow the devices

to autonomously join the appropriate groups and then adjust their transmit power

while taking into consideration the effect of the mass behavior of the players within

each group. The simulation results illustrate the convergence of the proposed learning

process and underline its robustness against interference impacts.



Résumé

L’expansion radicale du nombre de dispositifs sans fil et la rareté des ressources spec-

trales disponibles posent des défis inédits pour la future sixième génération (6G)

de systèmes de communication sans fil. En effet, les opérateurs doivent faire face

à la prospérité continue du Internet of Things (IoT) ainsi qu’au déploiement tou-

jours plus important de Machine Type Devices (MTDs). À cet égard, en raison

de ses caractéristiques convaincantes, le technique Non-Orthogonal Multiple Access

(NOMA) a suscité un intérêt considérable en tant que technologie sophistiquée per-

mettant de relever les défis susmentionnés. Plus précisément, les techniques NOMA

se répartissent en deux catégories fondamentales, à savoir le Power-Domain NOMA

(PD-NOMA) and le Code-Domain NOMA (CD-NOMA). Dans cette thèse, nous con-

sidérons les systèmes basés sur le PD-NOMA et plus particulièrement les scénarios de

Hybrid NOMA, dans lequel les MTDs sont divisés en différents groupes tout en leur

attribuant des Resource Block (RB) orthogonaux, de sorte que les membres de chaque

groupe partagent un RB donné pour transmettre leurs signaux de manière non or-

thogonale. Il est intéressant de noter que les performances du système Hybrid NOMA

dépendent essentiellement de la manière dont les utilisateurs sont organisés en groupes

et dont les niveaux de puissance leur sont attribués afin de transmettre des signaux

distincts à la Base Station (BS). Dans cette optique, nous étudions le problème du

regroupement des utilisateurs lié à celui de l’allocation de puissance. Nous cherchons

ainsi à résoudre ces problèmes combinés par une optimisation conjointe. Pour ce

faire, nous devons adopter des techniques avancées afin de diviser minutieusement les

MTDs en plusieurs groupes et leur attribuer efficacement des niveaux de puissance.

Tout d’abord, nous considérons un réseau relativement dense et nous proposons un

jeu à deux niveaux en utilisant la théorie des jeux afin de résoudre conjointement

les problèmes de sélection de canaux et d’allocation de puissance entre les MTDs.

Plus précisément, l’approche proposée consiste à modéliser les comportements des

dispositifs à l’aide d’un jeu non coopératif sous-jacent à un jeu Hedonic coopératif.

Premièrement, le jeu Hedonic est adopté pour mettre en place le processus de forma-

tion de coalitions tout en permettant aux MTDs de s’arranger en plusieurs groupes.
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Ensuite, au sein de chaque groupe, le jeu non coopératif est utilisé pour permettre à

chaque MTD de décider de manière autonome du niveau de puissance le plus approprié

à utiliser pour transmettre ses paquets. Ce faisant, nous proposons deux algorithmes

qui nous permettent d’obtenir une partition Nash-Stable des coalitions. En outre,

nous démontrons numériquement que le jeu à deux niveaux proposé est avantageux

en termes de consommation d’énergie et de taux de réussite de la transmission des

paquets par rapport aux autres techniques existantes dans la littérature.

Par la suite, nous nous intéressons à un scénario de MTC très massif. Dans le but

de modéliser l’allocation de puissance à travers un modèle simplifié, nous adoptons

le Mean Field Game (MFG) qui consiste à étudier l’effet du comportement collectif

des joueurs. En outre, nous développons un algorithme distribué pour effectuer le

contrôle de la puissance afin que les MTDs soient en mesure de réguler de manière

appropriée leurs niveaux de puissance en fonction des informations limitées reçues de

la BS. En effet, l’approche proposée permet de réduire considérablement la complexité

mathématique de l’analyse du jeu qui se base principalement sur deux équations

fondamentales de Hamilton-Jacobi-Bellman (HJB) et de Fokker-Planck-Kolmogorov

(FPK). Des résultats numériques sont présentés en considérant une population dense,

afin de démontrer les propriétés d’équilibre de l’algorithme développé et de mettre en

évidence les gains de performance de l’approche proposée basée sur le MFG.

Enfin, nous nous concentrons sur l’application des outils de Reinforcement Learn-

ing (RL) à l’approche MFG proposée de sorte que nous aboutissons à une nouvelle

technique d’allocation des ressources basée sur un apprentissage à deux niveaux.

Précisément, nous dérivons des algorithmes qui permettent aux MTDs de pren-

dre leurs décisions en invoquant premièrement la technique de RL pour résoudre le

problème d’allocation des ressources, puis l’approche MFG pour optimiser le contrôle

de la puissance. De cette manière, les MTD peuvent choisir de manière autonome

les groupes les plus appropriés auxquels il est préférable d’appartenir. Une fois que

chaque utilisateur a rejoint le groupe qu’il a choisi, il peut ajuster son niveau de

puissance en tenant compte de l’effet du comportement de masse au sein de son

groupe. Finalement, les résultats de la simulation montrent la convergence du pro-

cessus d’apprentissage proposé et soulignent sa robustesse face aux impacts des in-

terférences.
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4 Introduction

1.1 Overview and Motivation

The upcoming era of wireless networks is evolving in a completely revolutionary way,

thanks to the Internet of Things (IoT), which represents a paramount technological

trend that transforms everyday objects into information sources and allows them to be

connected to the Internet. Particularly, driven by the pervasiveness and inclusiveness

of IoT services, our world has witnessed a steady escalation of demands for a massive

wireless access and an evolutionary myriad of applications [1]. Meanwhile, Machine

Type communications (MTC), also known as Machine-to-Machine communications

(M2M) represents as an attractive dominant scenario in the Fifth Generation (5G) of

wireless communications that can support the ubiquitous of IoT systems and enable

it to be part of future communication networks [2,3]. Indeed, a recent forecast report

from Cisco [4] predicts that coming future systems will witness a tremendous growth

in the worldwide network of interconnected devices, reaching up 29.3 billion by 2023

compared to 18.4 billion connected devices in 2018, wherein MTC will represent

half of the world’s Internet connections, about 14.7 billion by 2023, compared to

6.1 billion connected devices in 2018. This rapid growth of number of devices will

gradually overwhelm the connectivity capability of 5G networks. Recently, the future

Sixth Generation (6G) networks have become a focal point of interest for both the

academia and industry since it is foreseen to provide a connection density 10 times

higher than that in 5G [5].

Generally, MTC refer to a type of data communication that does not require a specific

human intervention and can autonomously occur among machines such as devices,

sensors, equipment, drones. These connections between machines are fundamentally

different from the traditional Human-Type Communications (HTC) that focus on

achieving high data rates for downlink transmissions of large-sized packets usually. As

pointed out by the Third Generation Partnership Project (3GPP) [6], MTC networks

are primarily dominated by uplink transmissions of short packets at low data rates and

characterized by establishment of connections among a massive number of connected

devices. Meanwhile, MTC often occur through a sporadic communication scenario

which means that devices have sparse activities, so only a small portion of users

can transmit simultaneously at the same time [7]. Thus, MTC lead to a transition

from downlink-dominated traffic in HTC to predominantly uplink traffic and change

from a transmission of large packets with high bit rate requirements to a completely
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different task based on a sporadic transmission of small packets with low data rates.

This clearly results in a shift in the way MTC can be studied, which needs to be

envisaged from other perspectives than those taken to investigate HTC. On the other

hand, even if each device can generate a bursty and sparse traffic, the one generated

by a massive MTC (mMTC) scenario is rather challenging. Hence, to deal with this

proliferation of wireless machines and manage the resulting access loads, innovative

and robust access technologies are required.

Along the aforementioned characteristics, the design of appropriate Multiple Access

(MA) techniques is one of the most significant keys to support mMTC networks.

Basically, MA techniques are categorized into two main classes, namely Orthogonal

Multiple Access (OMA) and Non-Orthogonal Multiple Access (NOMA). In particu-

lar, OMA pertains to an orthogonal allocation in which different resources are as-

signed to distinct users. By contrast, NOMA relates to a non-orthogonal resource

assignment which means that several devices are able to access the same resources

to transmit their signals. On the other hand, OMA encompasses various schemes,

which have evolved with consecutive generations of cellular communication systems.

Starting with Frequency Division Multiple Access (FDMA) in the First Generation

(1G), then Time Division Multiple Access (TDMA) in the Second Generation (2G).

Subsequently, Code Division Multiple Access (CDMA) has been emerged in the Third

Generation (3G), and then Orthogonal Frequency Division Multiple Access (OFDMA)

has been invoked in the Forth Generation(4G) networks. These user multiplexing

schemes have been designed while considering the orthogonality allocation objective,

which means that each resource (frequency channel or time slot or signature code or

resource block) is exclusively allocated to at most one device at a time.

Worryingly, these schemes are not able to scale to comply with the unprecedented

demands for the massive access and the network traffic. Indeed, serving users in

an orthogonal manner is overwhelmed by the scarce radio resources. On the other

hand, driven by the sporadic nature of MTC, scheduling an entire resource for each

connection is both inefficient and unfeasible. In an effort to overcome these shortcom-

ings, academia, industrial communities and even standardization bodies heightened

their interest in conducting research studies toward NOMA techniques [8–10]. Par-

ticularly, 3GPP has included NOMA in its release-13 (Rel-13), labeled as Multi-user

Superposition Transmission (MUST) [11].
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Interestingly, NOMA has been more an eye-catching technique to handle connectivity

issues and improve the spectral efficiency for 5G mMTC systems. Besides, with the

proliferation of the IoT, NOMA is considered as a promising scalable research candi-

date to support the ongoing development of mMTC toward future wireless networks.

Specifically, NOMA techniques fall into two fundamentals categories. The first one

is called the Power-Domain NOMA (PD-NOMA) and refers to the case where the

superimposed signals of different users are distinguished via distinct power alloca-

tion coefficients [12–14]. Alternatively, when users’ signals overlap while they are

assigned different codes, the Code-Domain NOMA (CD-NOMA) is the considered

scheme [15–17].

1.2 Problems Statement and Objectives

Notwithstanding that NOMA is a distinguished multiplexing scheme due to its ap-

pealing features to support multiple transmissions, one cannot turn a blind eye to

its some shortcomings. In fact, allowing manifold users to access shared resources

simultaneously is beneficial but comes at the expense of a co-channel interference

that linearly increases with the number of users performing NOMA jointly. This re-

sults in an increased computational complexity of the interference canceller at the re-

ceiver side, which in turn seriously affects the overall performance of NOMA systems.

Thereby, considering a large number of users communicating with the Base Station

(BS) through a common Resource Block (RB) is highly challenging and even unre-

alistic [18, 19]. Thus, a Hybrid NOMA network represents an alternative approach,

in which users are divided into multiple groups, each of which will be allocated a

given RB. Obviously, establishing hybrid NOMA networks relies heavily on the user

grouping strategy, which seeks to strike a meaningful trade-off between NOMA gains

and interference effects.

In this vein, abundant research contributions have been conducted to investigate

user pairing schemes in which two users are allowed to form NOMA groups and

simultaneously access a particular RB. In doing so, it has been shown that interference

effects are considerably mitigated and thus the interference canceller is implemented at

an affordable complexity cost. Nevertheless, due to the increased demand for massive

connectivity and the scarcity of available radio resources, assigning an orthogonal RB
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to only two users is becoming a bottleneck for the NOMA performance. Thereby, it is

meaningful to focus on how to fully leverage the benefits of NOMA by clustering more

than two users in a given resource, but at an acceptable computational complexity.

Therefore, we study the grouping formation process while considering the trade-off

between the decoding complexity of the canceller and the NOMA group size.

On the other hand, the performance of a PD-NOMA scheme is particularly based

on the way the power is partitioned among the users. More precisely, the BS can

successfully decode and recover the interfering signals from different transmitters by

exploiting the disparity in power levels among them. Consequently, an improper

power assignment yields an important interference impact, which impairs the effec-

tiveness of the interference canceller at the BS. Besides, a particular user with a

limited energy budget may require much more power than it can handle in order to

cope with the resulting interference effects. Therefore, this results in a high energy

consumption and thus lower down the overall system performance. As a result, it is

of the utmost significance to thoroughly focus on studying the power control problem

to suitably deal with the inter-user interference and thus further boost the NOMA

network gain.

Thesis objectives

In this thesis, we consider a PD-NOMA scheme in the context of a Hybrid NOMA

network in which multiple devices share the available resources. We investigate power

allocation policies to deal with critical power capacities and limited battery lifetimes

of the devices and thus satisfy energy-efficiency requirements. Furthermore, we are

mainly interested in finding efficient user selection strategies to form NOMA groups

while mitigating the inter-user interference as much as possible.

In this regard, meticulously arranging users into several NOMA groups is a crucial

ingredient of our thesis. Indeed, we aim to practically avail the advantages of NOMA

in its true sense by considering more than two users in each group, with an eye toward

implementing the interference canceller at an affordable cost. In this direction, we

focus on investigating how to divide users into multiple groups while orthogonal RBs

are assigned to these groups. The members of each group are served by a common

RB so that they can simultaneously transmit their signals to the BS. In doing so, each

user in a given group encounters only interference effects from the users belonging to
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that group and thus the inter-group interference is mitigated. Consequently, at the

receiver, the complexity of the decoder implementation is remarkably reduced.

Interestingly, we more precisely aim to solve the dilemma between the demand for

the massive MTDs access and the scarcity of available resources by addressing the

user grouping issue intertwined with the power control problem. In this way, di-

viding users into groups will be governed by the group formation process, while the

power allocation strategy controls the way that the signals of users in each group

are superimposed. Therewith, these combined problems need to be solved through a

joint optimization in order to efficiently arranging users into several groups and then

smartly designing power allocation policies among them. For this sake, sophisticated

tools are required to cope with this burdensome task. Throughout this thesis, we

invoke Game theory as well as Reinforcement Learning (RL) to jointly optimize the

resource allocation and power control problems.

1.3 Road map

This dissertation encompasses two parts that are composed of 6 chapters. In the

first part, we present some of the necessary theoretical foundations to pave the way

for a better understanding of this thesis. In this vein, chapter 2 reviews the basics

of game theory and its fundamental classes ranging from non-cooperative games to

cooperative games and the advanced Mean Field Game (MFG) theoretic framework.

In particular, we emphasize on the main notions, key components, and appropriate

solution concepts that pertain to each class of game. In Chapter 3, we first provide

an overview of the OMA techniques, and then we delve into the fundamentals of

the NOMA concept by outlining its different categories. Specifically, we take a more

in-depth look at the most important existing related works and the essential strides

that have been performed in this research direction. Finally, we spotlight our major

contributions in view of the detailed research gaps while addressing the resource

management problem in NOMA systems.

In the second part, we detail the approaches proposed throughout this dissertation.

Indeed, in chapter 4, we formulate the joint resource allocation and power control

optimization problem with the aid of a game theoretic framework. More precisely,

the behaviors of the devices are modeled by a Bi-level game consisting of a non-
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cooperative power control game and a cooperative coalitional game. In chapter 5,

we focus on investigating densely deployed networks which, in turn require a more

sophisticated game in order to be appropriately addressed. Thereby, we turn our

attention to the MFG in which each particular user makes its move by conforming

only to the mass behavior of its opponents instead of caring about the individual

action of each of them. Thus, we propose a distributed iterative algorithm based on

the MFG approach that takes into account the interference effects in order to enable

the devices to appropriately determine their power levels . In chapter 6, we extend

the MFG formulated in chapter 5 by invoking a RL tool, namely the multi-armed

Bandit (MAB) approach with the aim of proposing a resource allocation approach

based on a bi-level learning. Particularly, we derive distributed MFG underlying

MAB algorithms with the aim of making devices autonomous in determining their

most appropriate power levels and groups. Finally, chapter 7 concludes this thesis

by recapitulating the fundamental contributions of our work and presenting some

research directions that can be worth conducting in the future.



10



Chapter 2

Fundamentals of game theory

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 General game formulation . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Cooperative game . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Coalitional game: preliminaries . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Canonical games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Coalition-formation games . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Non-cooperative game theory . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Nash equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.2 Example: The Prisoner’s Dilemma . . . . . . . . . . . . . . . . . . 21

2.4.3 Power control problem . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Differential games . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1 Overview of differential games . . . . . . . . . . . . . . . . . . . . 24

2.5.2 Mean Field Game . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.3 Mean field definition . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.4 Mean field game equations . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

11



12 Fundamentals of game theory

2.1 Introduction

Game theory has emerged as an analytical framework that provides an increasingly

appealing mathematical tool for adequately characterizing cooperative and compet-

itive behaviors of multiple players. Essentially, game theory has been adopted to

address various challenges in social sciences, namely in economics. Then, it has been

extended to develop a robust mechanism in variety of disciplines such as biology, polit-

ical science, philosophy and recently in computer science and wireless communication

networks. Basically, the players of the game are rational in nature, which means that

each of them aims to maximize the game’s outcome from its own perspective. Thus,

each individual makes its decision and takes its strategy based on its self-interests.

Attracted by its distinguishing features, numerous research contributions have been

devoted to apply game theory to solve critical optimization problems in wireless com-

munication systems. Particularly, game theory provides interesting solution concepts

to efficiently deal with the selfish nature of wireless users and derive distributed al-

gorithms that enable the users to reach their desired performance objectives.

In this chapter, we introduce the game formulation and illustrate the most relevant

characteristics of game theory in order to pave the way for designing a distributed

control among interacting players.

2.2 General game formulation

The most common representation of a game is defined by a normal or strategic form

that basically consists of three elements: the set of players, the set of actions or

strategies, and the utility function, given as:

• Set of players N = {1 . . . N}.

• Set of actions {Ai}i∈N : ai ∈ Ai is the strategy of player i

• Utility function {Ui}i∈N : called also a payoff function, it reflects the desired

goal of playing the game. The choice of the utility function is a pivotal focus of

game theory.

For a strategic game, a = (ai, a−i) denotes a strategy profile where a−i = [aj ]j∈N ,j ̸=i

consists of the strategies of all players excluding the i-th player. Upon playing a game,
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each player seeks to find the optimal strategy to optimize its utility function.

It should be emphasized that the above-mentioned components represent the basis of

the general game in a strategic form. Besides, each type of game has its own specific

components, key properties, solution concepts and substantial goals. Particularly, the

interaction between players is governed by their game objectives. In other words, with

the aim of achieving the game’s outcome, they can either cooperate or have a conflict

of interest that leads them to compete against each other. Hence, in this thesis, we

distinguish two types of games: cooperative games and non-cooperative games.

Roughly speaking, non-cooperative games characterize competitive scenarios, wherein

the players are involved with conflicting interests over the outcome of the decision-

making process. In contrast, in cooperative games, the players are committed to

form an agreement with each other in order to mutually benefit from the cooperation.

Although these types of games allow each player to make a decision only once time, in

some other situations the notion of time is considered as a key ingredient of the game

in order to deal with the time-varying environment. In this regard, a differential game

can be applied to enable the players to dynamically make their decisions evolving with

time. In the presence of a large population, the differential game can be extended

into a MFG by considering the effect of the collective behavior of devices, which

interestingly alleviates the mathematical complexity of the game analysis. In what

follows, we will dive into each type of game starting with cooperative games.

2.3 Cooperative game

The cooperative game theory provides several analytical tools to suitably investigate

the cooperation and the negotiation among players attempting to maximize the mu-

tual benefit from achieving an agreement. This class of games includes two main

branches: bargaining theory and coalitional games. When players seek to reach a

desired agreement, but are in conflict about what the agreement will be and how to

reach it, we are dealing with a bargaining situation. Meanwhile, a cooperative game

can be considered as a coalitional game when players focus on how to form cooper-

ative groups of players, each of which called a coalition. Particularly, the coalitional

game theory has been widely adopted as an efficient and a robust tool to design a

cooperative decision-making process in communication networks. Indeed, this branch
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of cooperative games incorporates various algorithms and concepts that have been

grouped into two main categories: coalition-formation games and canonical games.

In the following section, we look in deep into the basic components, main features

and key solution concepts of the coalitional games class.

2.3.1 Coalitional game: preliminaries

2.3.1.1 Basic notions

Definition 2.1. A coalitional game is defined as a pair (N , v), where N represents

the set of players and v denotes the value function that qualifies the gain of each

player upon cooperating and being part of a given coalition.

Definition 2.2. A set S = {S1 . . . Sl} is said to be a collection of coalitions when it

consists of a given number of subsets of N that covers a set of players. If the set S

covers the whole set of players N , it is simply a partition of N .

Depending on the definition of the value function, the game takes two different types

and forms given as follows:

Definition 2.3. A coalitional game is identified to be a transferable utility (TU)

game if the gain received by each coalition is a real number that can be apportioned

among the members of that coalition.

Definition 2.4. A coalitional game is identified to be a non-transferable utility

(NTU) game if the worth of each coalition is a payoff vector, where each element

denotes the payoff that each member of this coalition can receive by being part of.

Thus, the payoff of each player depends on both the strategy it has chosen and the

actions taken jointly by the other members of the coalition.

Furthermore, coalitional games can be either in a characteristic form or a partition

form based on how the value function associated with each coalition is quantified.

Indeed, when the outcome of a given coalition is determined only according to its

members, we are dealing with a coalitional game in a characteristic form. If the way

that the other coalitions are structured and the remaining players are arranged has

an impact on the value of a coalition, the game is in the partition form. In what

follows, we explore in detail the key features of the two classes of the coalitional
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games: canonical games and coalition-formation games.

2.3.2 Canonical games

In the canonical games, players have the incentive to cooperate and form a grand

coalition that encompasses all the players in order to receive better benefits than

they would get if they had acted alone or in smaller coalitions. This characteristic

refers to the mathematical property of superadditivity. In addition, the canonical

games focus on the optimal way to ensure the stability of the grand coalition and

guarantee the fairness of the utility distribution among the players.

Canonical coalitional games turn out to be an interesting framework to address several

problems in wireless and communication networks. Indeed, the application of canon-

ical coalitional games covers a wide range of scenarios that aim to ensure cooperative

transmissions and a fair payoff distribution between players. For instance, in [20] the

authors have studied the fairness of the rate allocation among the set of users, whereas

in [21], the authors have investigated the possibilities of arranging the receivers and

the transmitters into the grand coalitions. The work in [22] has proposed an approach

in which the canonical game is involved to model cooperative transmissions between

nodes in order to reach an agreement on the packet forwarding over the networks.

Generally, whenever the goal of players is to maximize their utilities by constructing

the larger coalition and forming an agreement on a fairness criteria of how the game

outcome will be distributed, canonical coalitional games are a powerful tool to handle

such problems.

2.3.3 Coalition-formation games

While canonical games are primarily interested in forming a stable and large coalition,

coalition-formation games study how to establish an optimal coalitional structure

of the set of players. Indeed, such games investigate scenarios where players are

willing to cooperate and form an appropriate structure in the aim of maximizing

their utilities collectively. In this regard, the main focus of coalition-formation games

is how should players be arranged into coalitions in order to achieve a joint benefit.

To this end, unlike the canonical games that implicitly assume that forming coalitions

is always profitable, the formation process in coalition-formation games mainly relies

on a negotiation, information exchange and a set of rules, particularly in the context
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of communications systems.

Interestingly, coalition-formation games are widely exploited as an effective tool to

adequately characterize the formation of coalitions in wireless and communication

networks. For instance, in [23], a coalition formation game has been adopted to the

unmanned aerial vehicle (UAV) networks in order to analyze the task assignment and

derive a distributed cooperative algorithm while the energy consumption is a major

concern. The authors in [24] have investigated the coalition formation to enable the

nodes to organize themselves into multiple coalitions and autonomously collaborate

by exchanging information between them. The model in [25] has focused on the coali-

tion formation process in order to propose a distributed resource allocation algorithm

and handle the mutual interference between devices in device-to-device (D2D) com-

munications. Briefly, whenever an autonomous and a distributed cooperative model

is required, the coalition-formation game is a natural candidate to enable the players

to cooperate and self-organize into an appropriate coalitional structure.

Generally, a coalition formation game explores how the coalitional structure can be

formed to fit the proposed model and how players autonomously decide to join a coali-

tion. Nevertheless, addressing these questions for such a game is not straightforward,

especially when the formation process is achieved in a distributed manner. According

to [26], there are generic rules and prominent solution concepts that can be exploited

to allow the players to arrange themselves into coalitions in order to construct an op-

timal structure. In the following, we go through some coalition-formation algorithms,

namely Hedonic games and merge and split approaches.

2.3.3.1 Preference relation

Upon playing a coalition formation game, the players have to decide autonomously

whether to leave or join coalitions with an effort to reach an optimal coalitional

structure. Thus, the decisions made by the players reflect their preferences on their

set of potential coalitions that they can be part of. In other words, each player should

be able to compare the coalitions and choose which one it prefers to be a member of,

using a preference relation defined as:

Definition 2.5. A preference relation, also called a preference order, ▷ serves to

compare any two collections (or partitions) A = {A1 . . . As} and B = {B1 . . . Bl} of
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the same set of players such that
⋃s

i=1Ai =
⋃l

j=1Bj = H. Thus, A ▷ B means that

players in a subset H prefer to arrange themselves into A instead of B if the total

coalition values achieved in A is strictly higher than that in B, i.e.
∑s

i=1 v(Ai) >∑l
i=1 v(Bi).

Generally, there are two categories of preference relations, namely coalition-value or-

ders and individual value orders. Indeed, coalition-value orders perform the compari-

son between two collections by comparing the outcome of the coalitions belonging to

these collections. One example of a coalition-value order is a utilitarian order, which

states that it is preferred to partition a subset of players H by a collection A than by

B, if the total payoff obtained by the players in A is better than that in B. Mean-

while, an individual value order is used to compare the utilities obtained individually

by the players. In this regard, Pareto order is one of the most relevant examples of

individual-value orders. Indeed, given two payoff allocation vectors a and b of two

collections A and B, respectively, using Pareto order, A is preferred over B if and

only if a ≥ b, with at least one element ai of a is strictly greater than one element

bi of b, such that ai > bi. Interestingly, the utilitarian order constitutes an impor-

tant ingredient of TU games, whereas Pareto order is considered as an appropriate

preference order for both TU and NTU games.

It is worth pointing out that the concept of preference orders can provide useful

insights to any player i ∈ N to compare coalitions that it can be a member of. In

this sense, let us now define a preference relation for any player i ∈ N as follows:

Definition 2.6. Consider a complete, reflexive, and transitive binary relation over

the set of possible coalitions to which a player i ∈ N can belong, denoted by ≽i, i.e.

over the set Ni = {Si ⊆ N : i ∈ Si}. Consequently, given two coalitions S1 ⊆ N and

S2 ⊆ N such that i ∈ S1 and i ∈ S2, S1 ≽i S2 indicates that the user i prefers to be

part of the coalition S1 over being part of the coalition S2, or at least i prefers both

coalitions equally. Furthermore, S1 ≻i S2 indicates that the player i strictly prefers

being a member of S1 over being a member of S2.

2.3.3.2 Hedonic games

A Hedonic coalition formation game is one of the important classes of coalitional

games. This type of game entails important properties and interesting solution con-
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cepts that pave the way for modeling the formation of coalitions. A coalitional game

is considered as a Hedonic game when it satisfies the following two requirements [27]:

• The gain of any player i resulting from playing the game is only impacted by

the identity of the members of the coalition to which the player belongs.

• The coalition formation process takes place according to players’ preferences

among the set of all coalitions that they can possibly be a part of.

Definition 2.7. the Hedonic game is a pair (N , ≻) that meets the two conditions

mentioned above and consists of the set of players N and a profile of preferences ≻
defined for all the players, i.e.(≽1 · · · ≽N ).

Basically, each player chooses to deviate from its current coalition and join another

coalition if the latter allows the player to obtain a higher utility. In this regard, the

player applies a switch rule to be able to make an autonomous decision. The switch

rule can be expressed as:

Definition 2.8. Given a partition Π = {S1 . . . SM} of the set of players N , a player

i ∈ Sk decides to leave its current coalition Sk and join another coalition Sl where

k ̸= l, if and only if Sl ∪ {i} ≽i Sk, resulting in a new partition formation Π
′
=

{Π \ {Sk, Sl}} ∪ {Sk \ {i}, Sl ∪ {i}}.

According to the switch rule, each player acts unilaterally with an effort to maximize

its utility. Thus, it selfishly makes the decision without considering its impact on the

other players. Furthermore, when any player makes a single switch, the partition Π is

clearly transformed into another partition Π
′
. Consequently, the coalitional formation

in the Hedonic game is mainly based on successive switch operations that may lead to

a stable final partition after a finite number of iterations. Thereby, the stability notion

is viewed as one of the most pivotal concepts for the Hedonic game. Indeed, according

to [27] four forms of the stability can be identified: the Nash stability, individual

stability, contractual individual stability and core stability. The latter requires the

immunity to coalition deviation, where in the other ones, a partition is stable if it is

immune to an individual deviation. Specifically, a partition is Nash stable if no player

can improve its utility by moving unilaterally to another existing coalition. A partition

is individually stable if no player can improve its utility by moving to another existing
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coalition S (by creating a new coalition eventually) without making the members of

S worse off. Similarly, a partition is said to be contractually individually stable if

no player can improve its utility by moving from a coalition S to another existing

coalition S
′
(by creating a new coalition eventually) without making the members of

S nor the members of S
′
worse off. Finally, a coalition S ⊆ N is said to be a block

of the partition Π, if any player of the coalition S strictly prefers S to its current

coalition in Π. If there is no blocking coalition, the partition Π is said to be core

stable.

2.3.3.3 Merge and split algorithm

The merge and split algorithm is one of the most important frameworks for the

coalition formation. It is composed essentially of two rules that are useful for forming

and breaking coalitions, known as the merge and split rules, respectively [28]. These

rules serve to model the coalition formation procedure since they govern the partition

transformation at each merge and split iteration, defined as

Definition 2.9. (Merge rule) Given a set of players N arranged into disjoint coali-

tions {S1 . . . SK}, this set may decide to merge into a one single coalitionH =
⋃K

i=1 Si,

if the latter is preferred by the players.

Definition 2.10. (Split rule) A coalition G =
⋃L

i=1 Si may decide to split and form

smaller coalitions {S1 . . . SL}, if the resulting form is preferred by the members of G.

It is noteworthy that the decision to split or merge depends on the selected preference

orders. For instance, if the Pareto order is invoked, coalitions agree to merge if there is

at least one player that can improve its payoff without hurting the payoffs of remaining

players. On the other hand, the split rule is made if no player in the coalition can be

worse off by receiving a lower payoff in the new partition. Consequently, making the

decision either to merge or split is equivalent to establishing an agreement among the

players that allows at least one player to reach a higher payoff, in the newly formed

partition, while maintaining the utilities of the other players.
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2.4 Non-cooperative game theory

A non-cooperative game is the most investigated branch in game theory. It character-

izes the competitive behavior of players having adversarial or conflicting interests over

their decision-making process. Indeed, each player selfishly attempts to maximize its

benefits from the game whatever will be the impact of its move on the other players.

In the context of wireless and communications networks, non-cooperative games have

been applied in several scenarios, such as, the resource allocation, the power control

and the interference management. Here, we focus primarily on situations that pertain

to power control issues.

Typically, the non-cooperative game in the strategic form can be analyzed by firstly

identifying the players, their set of strategies and their utilities. Specifically, a two-

player non-cooperative game can be illustrated in a matrix format, wherein each row

corresponds to a strategy of the first player while each column represents a strategy

of the second player, as shown in Table 2.1. Thus, the number of rows as well as

the number of columns are equal to that of player’ s strategies. In addition, all of

the matrix represents the game outcome, i.e. the utility values of the two players

when they choose these strategies. In what follows, we detail some situations where

non-cooperative games can be exploited.

2.4.1 Nash equilibrium

The Nash equilibrium is a pivotal concept and one of the most important results in

game theory. It has been introduced by J. Nash in [29] and represents a situation

where no player has an incentive to deviate unilaterally. Indeed, even if every player

aims to maximize its own utility selfishly, the game can settle at a point in which the

players agree. Thus, we introduce the concept of the Nash equilibrium as:

Definition 2.11. Let G = (N , (ai)i∈N , (ui)i∈N ) be a non-cooperative game, where

a strategy profile a∗ = (a∗1 . . . a
∗
N ) is a Nash equilibrium of the game G if and only if

Table 2.1: Matrix representation of a non-cooperative game

Strategy 1: b1 Strategy 2: b2
Strategy 1: a1 (U1(a1, b1), U2(a1, b1)) (U1(a1, b2), U2(a1, b2))

Strategy 2: a2 (U1(a2, b1), U2(a2, b1)) (U1(a2, b2), U2(a2, b2))
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we have the following condition:

ui(a
∗
i , a

∗
−i) ≥ ui(ai, a

∗
−i), ∀ai ∈ A, (2.1)

where a∗−i is the vector of strategies of all players excluding the i-th player.

Once the Nash equilibrium is achieved, no player will be interested in unilaterally

changing its current strategy in order to further increase its utility. Besides, the

concept of the Nash equilibrium is related to another central characteristic of the

non-cooperative game referred to as a best response function [30], defined as follows:

Definition 2.12. For a non-cooperative game, we define the best response operator

bi(a−i) of a player i to the strategy profile of its opponents a−i as:

bi(a−i) = {a′
i ∈ Ai|ui(a

′
i, a−i) ≥ ui(ai, a−i), ∀ai ∈ A} (2.2)

Indeed, the best response for a player i is to find the set of strategies that represents

the optimal actions against the strategies taken by all the other players a−i. Every

element of bi(a−i) is a best response of the player i to a−i. In other words, if each

opponent adheres to a−i, player i will have an incentive to choose a strategy of bi(a−i).

Interestingly, when every player plays its best response strategy to the strategies of

its opponents, it has no an incentive to deviate to any other strategy. Hence, the

Nash equilibrium is the strategy profile a∗ = (a∗1 . . . a
∗
N ), each of which represents a

best response to the remaining players’ strategies, i.e. a∗i ∈ bi(a
∗
−i), ∀i ∈ N .

2.4.2 Example: The Prisoner’s Dilemma

The Prisoner’s Dilemma is one of the famous non-cooperative game examples, which

captures a conflicting situation in which the individual outcome goes against the social

welfare. In this game, two criminals are arrested in separate isolation cells after being

suspected of a crime. Thus, they have no means of talking to each other or exchanging

information. The police have a limited evidence and thus need a confession. Thus,

they offer a deal to the two suspects: each one can either confess and cooperate with

the police so testifying against the other or choose to keep silent. Thus, if neither of

them confesses, each will go to the prison for 2 years. If both suspects confess, they
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Table 2.2: Prisoner’s Dilemma

Confess (C) Not confess (NC)

Confess (C) (−4,−4) (0,−5)

Not confess (NC) (−5, 0 ) (−2,−2)

will serve 4 years in the jail. Nevertheless, if one confesses and thus implicates the

other prisoner while the other remains silent, the first prisoner will be released while

the other will incur a full sentence of 5 years.

An example of the matrix representation of the Prisoner’s Dilemma is shown in Ta-

ble 2.2. Each prisoner has to choose between two strategies, either to confess (strategy

C) or not confess (strategy NC). Once a player has decided whether or not to confess,

he receives an utility value that represents the number of years that he will spend in

the prison.

It is worth pointing out that each prisoner gets a better utility by confessing, i.e.

choosing C, regardless of the other player’s strategic choice. Indeed, each player

cannot do better than confessing since by choosing to not confess, he will get a

worse utility by serving a 5-year sentence if the other player has chosen to confess

or if this latter has chosen to not confess, the former will get a sentence of 2 years.

Thus unilateral deviations are not beneficial to either player. Therefore, confessing

is the best-response function for each player, to any strategy taken by the other.

Consequently, (C,C) is the Nash equilibrium for the game which results in an utility

vector (−4,−4). Obviously, the dilemma faced by the suspects here is that a line

of reasoning leads each to confess, whatever the other player does. However, the

outcome obtained in this case, i.e. (−4,−4), is worse for each one than the outcome

that would have been obtained if they both had remained silent i.e. (−2,−2).

2.4.3 Power control problem

The power control mechanism is concerned with looking for the optimal transmit

power coefficient that can be assigned to a given player in order to satisfy its perfor-

mance requirements. For wireless networks, the devices or the BS are deemed to be

the players of the game. Particularly, a non-cooperative game has been considered as

a convenient framework to deal with the power control problems in wireless networks.

This is owing to the interesting similarity between the non-cooperative game and the



Differential games 23

behaviors of network actors seeking to achieve an optimal power partition. Indeed,

when each player makes its move selfishly upon invoking a non-cooperative game, its

decision inevitably affects the payoff of its opponents. Meanwhile, wireless users are

naturally involved in a competitive situation wherein, the transmit power of each of

them represents a principal component of the interference level suffered by the other

users, which in turn impacts their transmissions and their quality of service (QoS).

Consequently, solving the non-cooperative games results in optimizing the power al-

location problem among wireless users. In light of this, non-cooperative games have

been broadly adopted in various wireless networks whenever the power control issue

is a central challenge. For instance, in [31], a non-cooperative game-based approach

has been proposed to optimize the power control problem and then assess the sys-

tem performance in terms of the energy efficiency. The authors in [32] has adopted

a non-cooperative game to model the competitive behaviors between different users

with the aim of allocating the optimal power level to each user in Cognitive Radio

Non-Orthogonal Multiple Access (CR-NOMA) systems. In [33], the authors have

studied the interactions between multiple devices through a non-cooperative game.

They have proposed a power control algorithm that enables each user to choose its

own transmit power to improve its received signal while consuming less energy.

2.5 Differential games

The classes of games investigated in the preceding sections rely essentially on the

assumption that each player makes its strategic choice only once and without any

knowledge of what the other players have taken as actions. Nevertheless, in many

situations, the notion of time has preponderant role in the decision-making process.

Indeed, the players may need to adapt their strategies more than once in order to

cope with the time-varying system state. In doing so, each player’s utility is no longer

determined solely by the action it has chosen, but also according to its current state

at a given time t. On the other hand, the distribution of the states at any time t is

affected by the previous states and the players’ strategies. Consequently, in such a

situation, the players have to react in response to the dynamics of the system state,

while the players’ moves in their turns impact the evolution of the system state. One

way to deal with this situation is to adopt differential games.
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2.5.1 Overview of differential games

Definition 2.13. Let G = (N , {Pi}i∈N , {Si}i∈N , {Qi}i∈N , { Ui}i∈N ) be a differential

game played during a time interval T , defined through the following components:

• Player set N = {1 . . . N}.

• Set of actions {Ai}i∈N : represents the set of strategies or actions available to

a player i. The latter determines at time t ∈ [0, T ], the action ai(t) ∈ {Ai} to

be selected.

• State space {Si}i∈N : denotes the state of the player i evolving over time. The

definition of the state is crucial in such a game, since it describes the dynamics

of the system and impacts the player’s decision making.

• Control policy {Qi}i∈N : characterizes for each player i the mapping from any

state of its state space to an action from its set of actions. Besides, for each

player, the control policy governs the evolution of the state with respect to time

with the aim of maximizing its own utility.

• Utility function {Ui}i∈N : it measures the player satisfaction of participating

in the game. Indeed, designing an appropriate utility allows each player to

determine its strategy and the suitable decision to make in order to meet its

objectives.

Typically, such a game studies the interaction between each player and every other

players in the system. Thus, to reach an equilibrium, a large number of equations

must be solved, which leads to an inherent mathematical complexity, especially for

dense networks. In contrast, for a large-scale system, the effect of a particular player’s

action and decision on its opponents becomes negligible whereas the impact of the

mass behavior on a single player is considerable and can be modelled as a collective

effect, namely the mean-field [34]. For these reasons, the differential game can be ap-

proximated by an equivalent game so-called the MFG to cope with a large population

of players.

2.5.2 Mean Field Game

The MFG has received a significant attention as an advanced tool for dealing with the

presence of a large population, through a simplified model [34–36]. Indeed, the MFG
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allows each player to determine its strategy by only conforming the mass behaviors

(i.e. the mean field) instead of worrying about the specific strategy of every other

player. In this way, the players can make their decisions distributively with limited

information and a reduced control overhead. Henceforth, the conventional N-body

non-cooperative game is turned into notably more tractable 2-body problem whose

analysis is conducted through two fundamental equations, namely Hamilton-Jacobi-

Bellman (HJB) and the Fokker-Planck-Kolmogorov (FPK) equations.

2.5.3 Mean field definition

The definition of the mean field is of prime interest to appropriately model the state

evolution of the players. In fact, the mean field is defined as a probability distribution

of the state over the set of players. Firstly, at any time t ∈ [0, T ], we express the

proportion of players in state s as

M(t, s) =
1

N

N∑
i=1

1{si(t)=s}, (2.3)

where the 1 is the indicator function, it is equal to 1 when {si(t) = s} holds, otherwise

0. Then, according to [37], when the number of players tends to infinity, M(t, s)

converges to a mean field density m(t, s) given by

m(t, s) = lim
N→+∞

1

N

N∑
i=1

1{si(t)=s}. (2.4)

2.5.4 Mean field game equations

The analysis of the presented framework is mainly driven through two coupled HJB

and FPK equations. The former equation characterizes the interactions between the

players and the mean field density, and then enables each player to determine its

strategy, while the latter equation controls the dynamics of the mean field density in

response to the players’ decisions, as shown in Figure 2.1. These combined equations

are known as the backward and forward equations respectively and can be expressed

for any player i ∈ N as follows [35]:
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Figure 2.1: Mean Field Game with HJB and FPK equations

HJB equation:

−∂v(t, s(t))
∂t

= max
p(t)

[U(t, s(t), p(t)) +∇sv(t, s(t)).
∂s(t)

∂t
]. (2.5)

FPK equation:
∂m(t, s)

∂t
+∇s(m(t, s).

∂s

∂t
) = 0. (2.6)

The iterative solution of these coupled equations leads to the Mean Field Equilibrium

(MFE) which can be represented by a convergent and stable set consisting of the

optimal control strategy and the optimal mean field density.

2.6 Conclusion

Throughout this chapter, we have provided some insights about the game theoretical

framework. Furthermore, we have taken a deeper look at the well-defined branches of

game theory ranging from classical games such as non-cooperative games and cooper-

ative games to differential games, namely the MFG. Particularly, we have highlighted

the important notions, key characteristics and fundamental solution concepts that

pertain to each type of game. Meanwhile, we have delved into the situations in which

each class of games can be formulated.

In the next chapter, we introduce one of the breakthrough multiple access technologies

in wireless networks that yields a meaningful improvement in the spectrum efficiency

and the user connectivity due to its great potential benefits of smartly reusing the

available radio resources, which is the Non Orthogonal Multiple Access.
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3.1 Introduction

Over the past decades, cellular communication and standardization have undergone

a historical evolution in terms of multiple access techniques. The latter, commonly

referred to as radio resources sharing or user multiplexing schemes, have always been

identified as fundamental enabler and landmark of the consecutive generations of

wireless communication systems from the 1G to the 5G [38]. Besides, the existing

multiple access schemes can be classified under the umbrella of OMA or NOMA

techniques depending on how the available resources are assigned to users. In the

following, we first take more in-depth look at the different categories of multiple

access schemes by presenting the significant strides that have been carried out in

this direction. Second, we reveal our major contributions that constitute a bridge

between the extremely limited RF resources and the stringent requirements of mMTC

scenarios.

A general overview of the OMA approaches is given in the next section. The funda-

mental principles of the NOMA techniques are presented in section 3.3. We devote

section 3.4 to first discussing related works that have investigated the joint channel

selection and the power allocation problems for NOMA networks, and then presenting

our principal contributions in view of the research gaps. Finally section 3.5 concludes

the chapter.

3.2 Orthogonal Multiple Access

3.2.1 Principle of Orthogonality

As the oldest member of the multiple access family, FDMA has been essentially used

in the 1G of cellular systems, namely the Advanced Mobile Phone System (AMPS).

The FDMA scheme consists of splitting the available bandwidth into distinct non-

overlapping frequency bands. Thus, each band is assigned to a single user in order to

transmit its signal without inducing an interference to another user. Then, the world-

wide migration to the digital technology led to the 2G systems in the early 1990s and

its corresponding standardization known as Global System for Mobile Communica-

tions (GSM). Consequently, FDMA has been replaced by TDMA which has been

considered as the dominant multiple access technique in the 2G GSM communica-
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tion systems [39]. Unlike FDMA, in the TDMA users are served in different non-

overlapping fractions of time or time slots. Thus, each user is allowed to transmit

its information over the entire available bandwidth but only during its allocated time

slot.

Since the digitization of wireless transmissions became widespread, the world have

faced a growing demand for higher throughput requirements. To cope with this issue,

the research community has turned the attention to an upgraded generation of cellular

networks, i.e. the 3G. The evolutionary path from the 2G networks to the 3G has

emerged new digital standards and sophisticated radio resource sharing technologies,

most notably the CDMA [40]. Upon adopting this new multiple access scheme, the

users are allowed to simultaneously access the same frequency band at the same time,

while each user resorts to a user-specific signature known as a spreading code, in order

to deliver its packets.

The continuously increasing number of wireless users poses challenging requirements

for the 3G systems in terms of a high bandwidth efficiency and an attainable system’s

throughput. With the aim of addressing this challenges and ensuring sustainability

of radio sharing technologies, the 3G has been shifted into the 4G of communica-

tions networks. In this vein, the Long-Term Evolution (LTE) has been standardized

by 3GPP [41]. The pivotal concept of the LTE is to partition frequency and time

domains to form a grid of resources, each of which referred to as a time-frequency

RB [42]. Particularly, the time interval is divided into separate elements of time slots

whereas the overall carrier bandwidth is subdivided into multiple sub-carriers. In

order to provide a means for the multiple user access, Orthogonal Frequency Division

Multiplexing (OFDM) has been proposed and specifically combined with the TMDA

technique [43]. To this end, the sub-carriers within a particular time slot can only

serve one specific user. In order to take one step further, multiple access schemes

have further evolved into OFDMA which has been developed as a multi-user variant

of the OFDM technique [44]. In contrast to aforementioned techniques, OFDMA

schedules multiple users’ transmissions via two-dimensional radio resources, i.e. time

and frequency dimensions. In other words, unlike OFDM, the sub-carriers may be

divided between several users, which means that OFDMA allows a dynamic alloca-

tion of sub-carriers among the users by exploiting the time and frequency domains, as

shown in Figure 3.1. In this way, the available resources can be efficiently exploited
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Figure 3.1: Difference between OFDM and OFDMA

by allocating the RBs to each user depending on when it needs to communicate and

the amount of communication required.

Although the above-mentioned multiple access techniques deal differently with the

assignment of shared radio resources to different users, they have been developed

based on a common concern in mind: “orthogonality”. This concept characterizes

the way of separating the signals of different users by allocating distinct frequency

bands, time slots, spreading codes or RBs to them.

3.2.2 OMA Limitations

Since the OMA approaches enable several users to access the network via an or-

thogonal division of system resources, the interference between adjacent resources is

mitigated. Therefore, the signals of different users can be retrieved with a reasonable

complexity by separating their messages with the aid of a simple user detection.

Nevertheless, due to the ”orthogonality” characteristic, radio sharing technologies up-

per bound the number of served users by the number of available resources, bringing

the network to its performance bottleneck. On the other hand, with the prolifera-

tion of the IoT, various unprecedented challenges have emerged for the 5G cellular

communications in terms of demands for the high spectral efficiency and massive con-

nectivity. Therefore, OMA techniques are considered as a serious impediment to the

dramatic increase in the number of users and thus can no longer support the rapid
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escalation of the wireless traffic. Therefore, sophisticated multiple access techniques

should be designed to allow a large number of wireless users to be scheduled within

scarce radio resources. Particularly, NOMA has gathered a wide attention from both

the academia and industry as a revolutionary technology that serves as the fuel for

the evolution of the cellular networks [8].

3.3 Key principles of NOMA

The core concept of NOMA is based on to the idea of designing a sophisticated mul-

tiple access technique with the aim of efficiently leveraging the available resources.

To this end, NOMA accommodates several users within the same resources, while

the power domain or code domain is adopted to deliver distinguishable signals to

the receiver. Due to this non-orthogonality feature, NOMA has been ubiquitously

recognized as an advantageous scheme that can fulfill the stringent requirements of

high spectral efficiency and massive connectivity [45, 46]. Interestingly, NOMA not

only allows multiple users to be served simultaneously, but ensures, through a cer-

tain power partition or code assignment, the fairness among them in terms of QoS

requirements [47].

Basically, in conventional OMA systems, a user has to go first through an access-grant

request to enable the BS to schedule its uplink transmission. In contrast, NOMA does

not require in general a strict grant process and may allow multiple users to transmit

their signals in a grant-free manner. Interestingly, the grant-free NOMA significantly

reduces the cost of signaling and thus the transmission latency, which is particularly

desirable for the mMTC scenarios.

3.3.1 Basic Technologies of NOMA

The non-orthogonal feature of NOMA is mainly driven by two advanced technologies,

namely the Superposition Coding (SC) and the Successive Interference Cancellation

(SIC). The former characterizes the transmission of combined signals at the transmit-

ter side while the latter lays out the interference cancellation process at the receiver

side.
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3.3.1.1 Superposition Coding

Commonly, NOMA breaks the orthogonality by allocating to multiple users the same

RB with the aid of the SC technique. This technique was first developed by Cover

in 1972 [48], in an effort to constitute a superimposed mixture composed of different

information signals from a one source to several receivers. Indeed, the SC is con-

sidered as one of the substantial building blocks of the proposed coding techniques

proposed to approach the capacity of Gaussian Broadcast Channel (BC) [49]. Besides,

it can be viewed as an efficient physical layer method that focuses on linearly over-

lapping messages signals in order to simultaneously transmit them over the shared

resources. More particularly, the transmitter adopts the SC to encode the message

for the weakest user, which has the worst channel condition, at a low rate. Then, it

adds the information for the stronger user, which is associated with the better channel

condition, and so on.

3.3.1.2 Successive Interference Cancellation

Once the transmitter employs the SC technique, it transmits the resulting superim-

posed signals within the same time-frequency resources. At the receiver side, Cover

was first introduced the SIC procedure in order to detect and decode the signal of

the different users [48]. Indeed, the SIC technique is invoked to split the combined

signals and then retrieve the information of each user by taking advantage of the

differences between the signals’ strengths of users to determine their decoding orders.

More precisely, when a signal of a particular user is decoded, it is removed from the

overlapped signals before decoding the signal of the next user.

In this regard, the receiver processes the SIC to decode and recover the desired mes-

sages from the received superimposed signals resulting from the SC operation. There-

fore, the way that the transmitter executes the SC scheme has a significant impact on

the ability of the SIC to successfully decode the users’ signals. Obviously, since each

user faces a level of interference that depends on the direction of its transmission, the

implementation of the SIC in the NOMA uplink transmission is different from that in

the NOMA downlink transmission. In the following, we spotlight the main property

of SIC process under downlink as well as uplink NOMA transmissions.
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3.3.2 NOMA Transmission

3.3.2.1 Downlink NOMA Transmission

In downlink NOMA transmissions, the SC is implemented at the BS in order to send

multiplexed user signals over a given RB. Indeed, upon applying the SC procedure,

the BS generates superimposed signals x, which is transmitted then to the scheduled

users presented in the NOMA network. Thus, the resulting overlapped signals x at

the BS can be expressed as:

x =
N∑

n=1

√
qnzn, (3.1)

where qn denotes the power allocation coefficient and zn represents the message signal

for a user n. Then, the received signal at the n-th user can be written as:

yn = hnx+ r (3.2)

where hn denotes the channel gain coefficient between the BS and the n-th user and r

is the additive noise with zero mean and variance σ2. By invoking the SIC process, the

closest user to the BS, having the best channel quality, successively detects the signal

of the other users and then subtracts their data from the received superimposed signals

yn. Thereby, since now the received signal is decontaminated from the interference

introduced by the other users, the receiver can recover its signal of interest and decode

its own message. Subsequently, the user with the second best channel employs the

same procedure, except that it treats the signal of the user with the best channel as a

noise, and so on. Hence, the user with the weakest channel condition does not invoke

the SIC and instead treats other users’ signals as a noise. Thus, it proceeds directly

to the recovery and decoding of its data.

3.3.2.2 Uplink NOMA Transmission

In an uplink NOMA scenario, several users communicate with the BS via one RB.

Then, the BS resorts to the SIC process in order to separate the overlapped signals

given by:

y =
N∑

n=1

hn
√
pnsn + bn, (3.3)
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where pn and sn denote the power allocation coefficient and transmit symbol of

the user n, respectively. Indeed, the transmitters are ordered based on their sig-

nal strengths. First, the BS starts by decoding the strongest signal, considering the

remaining users as an interference. Then, it subtracts the decoded signal from the

composite received signals and decodes the signal of the next user, and so on. Besides,

the outcome of the decoding process for each user n is determined by its Signal-to-

Interference-plus-Noise Ratio (SINR) which is expressed as

γn =
pn|hn|2

σ2 +
n−1∑
m=1

|hm|2pm
. (3.4)

Then its throughput (data rate) is written as:

Rn = log(1 + γn) = log(1 +
pn|hn|2

σ2 +
n−1∑
m=1

|hm|2pm
). (3.5)

Typically, in order to process the SIC successfully, when considering weaker users as

an interference, every user should have a SINR higher than the SINR threshold. It

is worth pointing out that the SIC has a recursive nature which means that the BS

proceeds to the decoding of the signal coming from a given source if and only if the

signals from the previous users have been successfully decoded and subtracted from

the received superimposed signals. In other words, upon invoking the SIC procedure,

if the signal of a user n is decoded successfully, the BS subtracts it and moves to

the user with the best channel gain among the remaining users; otherwise, the SIC

algorithm stops and the remaining signals are ignored.

3.3.3 The existing NOMA techniques

Distinguished from the conventional OMA techniques, NOMA allows multiple users to

share the available wireless resources, whereas a new dimension is adopted to perform

multiplexing of different data of users. In other words, in order to superimpose the

transmission signals over a common RB, an additional domain is exploited, namely the

power domain or the code domain. Hence, the dominant NOMA schemes are broadly

categorized into the PD-NOMA and the CD-NOMA. The main existing CD-NOMA
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Figure 3.2: NOMA classification

and PD-NOMA techniques are summarised in the Figure 3.2.

3.3.3.1 Code-Domain NOMA

The CD-NOMA represents one of the fundamental implementations of NOMA. In-

spired by the conventional CDMA concept, CD-NOMA enables multiple users to

occupy shared time-frequency resources while using spreading codes to spread the

users’ data. The major difference to CDMA crystallizes in the choice of the spreading

sequences which have to be either sparse or non-orthogonal with low cross-correlation

codes. Besides, the CD-NOMA is primarily based on the codebook design in which

the spreading sequences serve to generate the codewords known by both transmit-

ter and receiver sides. CD-NOMA has been proposed in several techniques such as

Low-Density Spreading CDMA (LDS-CDMA), Low-Density Spreading OFDM (LDS-

OFDM), Sparse Code Multiple Access (SCMA), which will be detailed in the follow-

ing.

LDS-CDMA:

LDS-CDMA introduced in [50], constitutes an advanced version of the CDMA ap-

proach. Basically, CDMA combines the transmitted data of several users through or-
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thogonal spreading sequences, which requires only a simple-user detection with a low

complexity to decode each user’s signal. Nevertheless, such a system can only serve a

small number of users simultaneously, constrained by the number of chips. With the

aim of accommodating much more users, non-orthogonal sparse spreading sequences

are used by LDS-CDMA instead of the conventional dense signatures in CDMA. Due

to the sparse nature of codes, the interference within each chip is further reduced. In

this regard, the suitable design of spreading codes results in significantly mitigating

the interference impact, which in turn yields in system performance improvements.

At the receiver, the Message Passing Algorithm (MPA) is invoked as a sophisticated

multi-user detection to recover the original signals.

LDS-OFDM:

LDS-OFDM [51] can be viewed as a combined scheme of LDS-CDMA and OFDMA,

in which LDS-CDMA is applied in a multi-carrier form. As in the case of LDS-

CDMA, low-density sequences are invoked at the transmitters, while the MPA-based

detection is applied at the receiver side. Firstly, the information symbols are mapped

to the low density spreading sequences. Then, the output of the signature is spread

across a set of subcarriers using an OFDM modulator. Unlike LDS-CDMA, LDS-

OFDM relies on the multi-carrier communications, which enables it to be a highly

compatible approach with wideband channels. In addition, the interplay between the

OFDM for the modulation mapping and LDS for the multiple access, results in a

greater flexibility in the resource allocation [52].

SCMA:

As an enhanced variant of CD-NOMA techniques, SCMA was proposed in 2013 by

H. Nikopour and H. Baligh [53]. Similar to the aforementioned schemes, the SCMA

concept handles the challenge of multiple users accessing the available RBs with the

aid of sparse spreading codes. Specifically, SCMA uses multi-dimensional constel-

lations to generate distinctive codebooks in order to distinguish users. Indeed, the

information bits of a given user are directly mapped to a sparse vector, so-called a

codeword, drawn from its predefined codebook. Then, the resulting mapped code-

words of all users are superimposed over shared resources allowing SCMA to achieve

higher overloading factor than LDS-OFDM. Due to the sparsity feature of codebooks,

the receiver side can adopt a low-complexity detection algorithm, namely the MPA,
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to efficiently detect and retrieve the users’ signals.

3.3.3.2 Power-Domain NOMA

The elegant idea of the PD-NOMA is to allow several users’ signals to be superimposed

within the same time-frequency block by assigning to them different power coefficients

in order to enable the BS to differentiate their messages. Indeed, the BS performs

the SIC while leveraging the power difference among users with the aim of separating

the combined signals and recover the information of each user. In this way, the power

control represents a pivotal research issue for PD-NOMA systems. In fact, since the

users’ signals are distinguished via distinct power levels, an improper power allocation

leads to increased interference levels, which in turn results in inefficient detection of

the interfering signals at the receiver side. Furthermore, in order to ensure a successful

transmission with the lowest energy consumption, the power coefficients must be

properly assigned to the multiplexed users on each RB so that their QoS requirements

and power constraints are taken into account. In this thesis, we investigate the PD-

NOMA system and focus on the careful optimization of the power allocation in order

to control the interference of superimposed signals and maximize the overall system

performance.

3.3.4 Hybrid NOMA

3.3.4.1 NOMA limitations

Despite the aforementioned features, we can not turn a blind eye to the limitations of

NOMA. Indeed, multiple users are admitted to access a certain RB simultaneously,

but at the cost of an emerging co-channel interference, which in turn may spoil the

system performance. Although the use of the SIC procedure can alleviate some of the

interference effects, the complexity of the decoding and the cancelling other users’

signals, especially in downlink transmissions, increases with the number of users.

Consequently, designing a NOMA network in a massive connectivity scenario is a

challenging and even a burdensome task. To cope with this issue while availing the

above-mentioned features of NOMA, a Hybrid NOMA scheme has been proposed as

an alternative approach [18].
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3.3.4.2 Hybrid NOMA principle

In NOMA systems, the power domain is extensively exploited as a new dimension to

multiplex several users’ signals over the available time-frequency resources. Hence-

forth, NOMA can be recognized as an ”add-on” technique to the conventional OMA

schemes which means that NOMA has the potential to harmoniously co-exit with any

OMA technique, thus forming a Hybrid NOMA system.

Typically, in Hybrid NOMA systems, the users shift their attention from jointly

performing NOMA toward meticulously forming multiple groups. Orthogonal RBs

are assigned to these groups so that the members of each group share a particular RB

in order to non-orthogonally transmit their messages. What is so beautiful about this

alternative scheme is the amalgam between OMA and NOMA schemes such that the

orthogonality concerns only the inter-groups whereas the non-orthogonality feature is

invoked within each group. Herewith, users belonging to the same group communicate

simultaneously with the BS through the resource assigned to that group. Therefore,

each user perceives an interference level only from the members of its group, while

the inter-group interference is avoided which considerably reduces the complexity of

the SIC implementation at the receiver.

Ding et al. have investigated in [18], a Hybrid NOMA approach, wherein users are

split up into multiple groups. They have proven that in the proposed Hybrid NOMA

system, the transmit power allocation is optimized and the attainable network per-

formance is boosted. Nevertheless, they have underlined that the performance of the

Hybrid NOMA network fundamentally depends on how the users are divided into

different groups and how the transmit power levels are allocated to the members of

each group. Therewith, the joint optimization of the user grouping and the resource

allocation is a non-trivial task that needs more impactful tools to be solved. All this

drives the researchers to investigate the resource management problem for the Hybrid

NOMA network with an eye toward intelligently designing power allocation strategies

and efficiently arranging the users into multiple groups.

3.4 Resource management in NOMA systems

In this dissertation, we are interested in jointly solving the resource allocation and

power control problems in a Hybrid NOMA scenario. Before diving deeply into the



40 Non Orthogonal Multiple Access background

contributions of this thesis, in the following, we provide interesting insights into two

pivotal research directions in the context of NOMA, namely the power control and

the user grouping.

3.4.1 Power Control for NOMA

Usually, wireless communication networks are characterized by an important level of

interference encountered by each user. More precisely, the power control is a critical

pillar in the design of PD-NOMA systems since assigning an inappropriate power

coefficient may increase the energy consumption of a given transmitter. Meanwhile,

at the receiver side, an improper power allocation results in an inefficient detection

performed by the SIC process, which in turn affects the overall system performance.

In an effort to mitigate the interference effects, the power allocation has been broadly

investigated in NOMA-based communication systems.

Among these research activities, NOMA-based D2D networks have gained a consid-

erable interest as one of the most challenging scenarios that requires efficient power

control policies to tackle the emerging interference problem [54–59]. For instance, the

authors in [54] have designed a centralized power control algorithm with the aim of

maximizing the system performance by optimizing the trade-off between achieving a

maximum sum rate of D2D pairs and ensuring minimum rate requirements of NOMA

users. In [55, 56], NOMA technology has been applied to a D2D group in order to

maximize the energy efficiency by alleviating the interference impact. Moreover, the

authors have formulated a joint assignment of subchannels and power levels with the

objective of maintaining the SINR requirements for the different users. The difference

between these works is that [55] is concerned with maximizing the total system rate,

while [56] focuses on minimizing the total transmit power.

Meanwhile, a plenty of researches have been devoted to model the power control

problem in NOMA aided Heterogeneous Networks (HetNet) [60–62]. Theses contri-

butions seek at improving the spectral efficiency and enhancing the overall system

performance. More precisely, in [60], NOMA scheme is invoked within each small cell

in order to boost the spectrum efficiency while taking into account the fairness issue.

The work of [61] studied how to incorporate the NOMA technique in both macro-

cells and small-cells with the objective of maximizing the system throughput under

the constraints of users’ QoS requirements. The target of the proposed NOMA-based
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HetNet approach in [62] is to optimize the energy efficiency of small-cells as well as

macro cells through an effective joint subchannel selection and power control.

Furthermore, the power control issue has been one of the major concerns in a multi-

carrier NOMA system [13,63–67] in which the total bandwidth is divided into multiple

subcarriers and allocated to users to improve the spectrum utilization. For instance,

the authors in [63] have addressed the joint power and subcarrier allocation problems

to enhance the weighted system throughput using a monotonic optimization. In [64],

NOMA is amalgamated with the well-known slotted ALOHA protocol to form Aloha-

based NOMA (NM-ALOHA) scheme where each user is assumed to select a sub-carrier

and a power level independently and uniformly in a random way. Zhu et al. have

investigated in [13] a downlink power allocation problem in an effort to maximize

the overall system throughput. The work in [66] has been interested in improving

the individual energy efficiency through a resource allocation optimisation in order to

ensure the fairness among users.

Although the above-mentioned contributions have significantly improved the perfor-

mance of NOMA systems, to some extent, none of them have focused on studying

the massive access scenario. However, the massive connectivity represents the pri-

mary requirement of IoT and the central properties of the mMTC. Although, the

MTC have an infrequent transmission nature of small packets with a low data rate,

the traffic generated by the massive number of MTDs is rather challenging. There-

fore, providing the massive connectivity is overwhelmed by the scarcity of resources.

Consequently, supporting a massive number of devices while ensuring the stringent

requirements imposed by the MTC is not a burdensome task. To this end, several

research efforts have been conducted to avail the ability of NOMA in smartly reusing

the available spectrum in order to support a wide range of MTDs [68–73]. These

works have designed multiple access techniques with one common goal in mind: how

to comply with the demand for the massive access of MTDs. Nevertheless, they have

not taken into account the specific characteristics of MTDs. Indeed, MTC traffic is

often characterized by the sporadic transmission which means that the MTD activity

is sparse. Thus, only a small portion of devices are in a data transmission state and

may therefore transmit simultaneously in the same time slot [7]. In fact, the MTDs

transmit their signals on a periodic basis and switch to the idle mode to prolong their

battery lifetime. Such behavior needs an efficient access technique in order to optimize
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the engagement of massive devices in the network, thereby reducing the transmission

latency and saving the signaling overhead. In doing so, MTDs having limited energy

budgets, can satisfy rigorous energy consumption requirements.

Motivated by the aforementioned challenges, we seek to address the dilemma be-

tween the demand for the massive connections of MTDs and the scarcity of available

resources. For this sake, in this dissertation, we investigate the PD-NOMA concept

to pave the way for an efficient power control that firstly manages the access of the

MTDs to the network and then differentiates their signals through distinct power

levels.

3.4.2 User grouping Based Hybrid NOMA Networks

As well as the power control, the user grouping constitutes a fundamental pillar for

the design of NOMA schemes. Ideally, multiple users can share a particular RB to

reach a high spectral efficiency using NOMA. In [74], the authors have proposed a

NOMA scheme that allows any number of devices to be served on an RB signal with

no restriction on this number. However, accommodating such a huge number of users

comes at the expensive of an increased computational complexity of the SIC at the

receiver side. Thereafter, it is neither feasible nor efficient to jointly superimpose all

the users’ signals using one RB. Hence, practical implementations have considered

multiple groups of users where NOMA is carried out for a fewer number of users

within each group.

Ultimately, significant research efforts have been exerted to investigate the NOMA

pairing concept where NOMA is implemented for two users per group [18,75–82]. Typ-

ically, most of user pairing schemes arrange users into two groups consisting of near

and far users. Then, one near user is paired with one far user to be non-orthogonally

multiplexed over the same resources while different power levels are allocated to them.

Indeed, the group division is performed on the basis of either channel conditions or a

distance criterion. For instance, [75,76,78,79] have proposed user pairing techniques

with the goal of forming a pair of users whose channel conditions are significantly dis-

tinctive. The authors in [18] have investigated the impact of the user pairing on the

NOMA downlink system. They have proven that the larger the difference between the

channel coefficients of paired users, the better is the execution of the SIC process and

thus the higher is the achieved rate performance. However, the performance of the
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NOMA network is affected when the channel gain difference in a user pair decreases.

Conversely, other existing pairing studies [80–82] have performed the non-orthogonal

multiplexing while using a criteria relied on the distance gap between the users. In

fact, they have showed that it is preferable to pair users having a certain distance

difference between them in order to boost the system throughput. Nevertheless, with

the increase in the demand of massive connectivity, considering only two users sharing

a given RB is a bottleneck of the NOMA system performance [83].

In contrast, only a few contributions have been conducted to leverage maximum

advantages of NOMA in its true sense by clustering more than two devices within

each RB. In [84, 85], two to three users are admitted to form a NOMA group and

share common resources in order to maximize the sum-rate of the grouped users. The

authors in [86] have proposed a user clustering scheme in which two and four users are

multiplexed using the NOMA concept in order to improve the total throughput of the

users under minimum rate constraints. On the other hand, variable cluster sizes have

been considered in [83, 87–90]. The authors in [83] have developed a dynamic user

clustering approach depending on the distinctness among channel gains of users. This

work has been extended in [87] with the goal of maximizing the sum rate of all the users

while taking into account a rate constrained scenario. However, both contributions

have assumed the same number of users per cluster which is an unrealistic assumptions

for NOMA transmissions. The approach proposed in [88] seeks to approximate the

optimal solution for the user grouping problem by performing an exhaustive search.

However, this approach is not affordable for the practical NOMA scenario due to its

high computational complexity especially when a large number of users are involved.

The common concept of these studies [83, 87, 88] is that they treat the group size as

a given parameter. To overcome this issue, in [89], a maximum feasible cluster size

has been analytically derived and a distributed grouping scheme has been designed

accordingly. A larger number of users per cluster has been investigated in [90] where

the authors have proposed a user clustering scheme using a genetic algorithm-based

heuristic approach. However, the performance gains of this scheme are restrained

by the complexity of the SIC procedure, which linearly increases with respect to the

group size.

In the light of the above, finding an optimal NOMA grouping is greatly challenging

since the attainable performance of the NOMA system is highly related to the group
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size, the selection of devices that it is preferable to form a certain group together

and the targeted objectives of the grouping formation process. It has been shown

that when only two users are considered to form a cluster, interference effects can be

mitigated by applying the SIC process at an affordable complexity cost. However, the

available RBs are assumed to be orthogonally allocated between the NOMA groups.

Due to the scarcity of resources, serving only two users via a single orthogonal RB

is not anymore suitable for the massive IoT scenarios. Therefore, it is crucial to

investigate the user selection strategy of more than two users with an eye toward

satisfying specific objectives such as maximizing the throughput, reducing the energy

consumption, minimizing the latency. Consequently, how to design an effective user

grouping while providing a significant trade-off between the NOMA performance gains

and the decoding complexity of the SIC remains an ongoing research topic.

3.4.3 Joint user grouping and power control

In view of the above-mentioned challenges, this thesis studies the user grouping con-

cept along with the power allocation policy for the Hybrid NOMA system. Unlike

what is typically assumed in the NOMA-based user clustering, we treat the group

size as an unknown design parameter that we seek to investigate while taking into

account the efficiency of the SIC procedure. Particularly, we are interested in address-

ing the optimal user clustering problem intertwined with the power allocation issues

to determine the way that users are superposed and share the associated RB. Usually

such combined problems are solved through a joint optimization. For this sake, firstly

we model the aforementioned optimization problems with the aid of a Bi-level game

composed of a non-cooperative power control game underlying a cooperative Hedonic

game. In fact, the users invoke the Hedonic game to organize themselves into multiple

groups. Then, within each group, they autonomously decide the appropriate transmit

power to use upon applying the non-cooperative game. Secondly, in the presence of a

large population, we turn our attention to the MFG theoretic framework in order to

cope with densely deployed networks. In fact, the proposed MFG enables the users

to interact with the collective behavior of the other players, whatever the specific

strategy of each one. By doing so, the users can appropriately regulate their transmit

power according to the limited feedback received from the BS which considerably sim-

plifies the resolution of the game. Finally, we resort to a RL tool, namely the MAB
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approach to jointly optimize the resource allocation and the power control problem.

In fact, the MAB approach is applied on the top of the MFG framework to derive

distributed decision-making algorithms that enable the users to arrange themselves

into groups. Once each user has joined its selected group, it determines the transmit

power to use in order to deliver its packets.

3.5 Conclusion

In this chapter, we have spotlighted some key ideas of this dissertation. Firstly, we

have reviewed the background of NOMA schemes by outlining their main properties

and presenting their operating principles. Besides, due to its ability to be concordant

with a conventional OMA technique, we have introduced a Hybrid NOMA scheme

as an alternative approach that represents the amalgam between OMA and NOMA

scheme wherein the users are meticulously divided into multiple NOMA groups. Sec-

ondly, we have presented the potential resource management challenges posed to the

NOMA network performance and the research activities that have been conducted in

this direction. Furthermore, we have delved into our principal contributions to fill the

void in the literature while dealing with the resource allocation problem in Hybrid

NOMA systems.

In the following part, we dive deeply into the study of the Hybrid NOMA network

with a primary focus on the joint optimization problems of the user grouping and

the power control. More precisely, in the next chapter, we model the behavior of

MTDs using a Bi-level game composed of a non-cooperative power control game and

a cooperative coalitional game.
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4.1 Introduction

Towards the future 6G of wireless communication systems, mMTCs targeting seam-

less and ubiquitous connections, have captured a great attention in recent years.

Indeed, the MTC have been considered as an enabling technology that is able to

support the proliferation of the IoT and provide the communication infrastructure

for its emerging applications. Besides, one of the substantial objectives of mMTC

is to set up connections among ever-increasing number of MTDs and to cope with

the immense data traffic volume generated by them. However, the requirements for

massive connectivity and a higher spectral efficiency put the current cellular systems

under severe constraints. In fact, the orthogonal channel access, in which at most one

device in each time slot can transmit on each RB, is becoming a bottleneck for MTC

applications. Hence, a paramount shift in wireless technologies is required and it is

even an urgent task to be tackled.

Specifically, the design of appropriate multiple access techniques is one of the most

convenient approaches to address the dilemma between the scarcity of resources and

the massive connectivity. For this sake, wireless communication systems are strongly

trending towards NOMA-based access techniques, wherein multiple users perform si-

multaneous transmissions in common resources, resulting in overlapped signals. Then,

the BS executes the SIC procedure to extract and decode the desired signal for each

user.

An efficient way to leverage the features of NOMA is to arrange the devices into

multiple groups and then assign orthogonal RBs to them. In doing so, a Hybrid

NOMA system is established, wherein distinct power levels have to be allocated to

the devices in each group allowing them to conduct the transmission over the shared

RB. Indeed, non-orthogonally multiplexed signals of a large number of devices result

in a higher SIC computational complexity. Hence, the user grouping is considered

as one of the most practical implementations that can significantly lower down the

complexity of the SIC decoding by accommodating a fewer number of MTDs within

each group. On the other hand, the SIC process is invoked in order to decode the

interfering signals by exploiting the disparity of power coefficients among users. In

this way, the assignment of inappropriate power allocation affects the efficiency of the

SIC and increases the energy consumption of the users, which in turn deteriorates the
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overall system performance. Therefore, it is of the utmost importance to carefully

study the power control problem in order to mitigate the interference between users

sharing the same resources and thus further enhance the gain of Hybrid NOMA

systems. Henceforth, the power control as well as the user grouping constitute two

interacting components that have to be jointly optimized to set up a NOMA scheme.

Despite the significant research efforts that have been exerted in studying the resource

allocation and the user grouping for NOMA-based networks, there are still interesting

questions that need to be answered: How to arrange users into groups without treating

the group size as a given parameter? How to leverage the benefits of incorporating

more than two users without spoiling the system performance? And how to make each

device autonomous to determine its most suitable transmit power level that comply

with its energy consumption requirements?

Meanwhile, game theory is ubiquitously adopted in NOMA networks as a robust

mathematical framework to provide flexible solutions to critical optimization problems

such as the power management, the user grouping and the wireless channel allocation.

Particularly, game theory encompasses a set of impactful analytical tools that can deal

with the selfish nature of wireless users and appropriately derive a distributed decision-

making process that enables the users to autonomously react against their opponents

[91–100]. In [91], a Hybrid NOMA system has been investigated in a downlink scenario

where the users are arranged into multiple coalitions by the aid of a cooperative game

in the partition formation. Time slots are assigned to each group, wherein the users

communicate through a NOMA-based scheme. Sung et al have proposed in [93] a

distributed power control algorithm using the game theoretic framework for a two-

cell NOMA system in order to minimize the power consumption under data rate

constraints. In [95], the authors have applied game theory to uplink NOMA-based

ad-hoc wireless networks in order to derive a distributed approach that maximizes

the energy-efficiency of the users while meeting their QoS requirements. Furthermore,

Hybrid NOMA assisted cognitive radio networks (CRNs) have been studied in [97,98].

The authors have adopted a cooperative coalitional game to maximize the energy-

efficiency of CRNs by designing a user clustering scheme that allows the users to

choose between NOMA and OMA to transmit their packets. Besides, the author

of [100] has extended the work in [64] by formulating a game-theoretic approach for

the NM-ALOHA scheme where the NOMA technique is employed for the random
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access and the uplink transmissions are not coordinated by the BS. Thus, the author

has proposed a NM-ALOHA game whose purpose is to enable users to more effectively

choose the transmission parameters, namely the probability of transmissions. On the

other hand, under a NOMA-based MTC context, the work in [99] has focused on

applying a non-cooperative game theory to derive optimal power allocation strategies

in order to improve the communication reliability.

Unlink the above-mentioned works, the present chapter use game theory in order to

model a Hybrid NOMA scenario, wherein the users are divided into multiple groups

and NOMA is implemented for the devices in each group. More precisely, orthogo-

nal RBs are assigned to the groups, whereas the members of each group share the

assigned resource to non-orthogonally transmit their packets. Thereby, we formulate

the resource allocation problem as a Bi-level game theoretical framework with the

aim of meticulously forming groups of devices and suitably designing power control

strategies within each group. The main contributions of this chapter are depicted as

follows:

• Unlike what is usually studied in NOMA based techniques, we derive two low-

complexity algorithms to jointly address the resource allocation and the power

control problem in an uplink PD-NOMA scheme. The proposed approach en-

ables multiple MTDs to organize themselves into coalitions and autonomously

decide the transmit power to use.

• We use a Bi-level game composed of a non-cooperative game underlying a co-

operative Hedonic game. Firstly, the MTDs apply the Hedonic game to create

a partition of coalitions. Then, within each coalition, the MTDs use the non-

cooperative power control game to determine by themselves the appropriate

transmit power in a decentralized manner.

• We consider that MTDs’ transmissions may be probabilistic in order to en-

able the BS to allocate all the MTDs when the number of users in the system

increases.

• Simulation results show that the proposed Bi-level game allows the devices to

achieve a high successful packet transmission rate while consuming less energy.

The rest of this chapter is organized as follows. In the next section, we introduce the
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Figure 4.1: System model.

network model and focus on the PD-NOMA to perform the signal multiplexing. Sec-

tion 4.3 introduces the Bi-level game and proposes two low complexity algorithms to

solve the joint channel selection and power allocation problems for NOMA networks.

To illustrate the performance of the proposed techniques, simulation results are given

in section 4.4. The chapter is concluded in section 4.5.

4.2 System model and assumptions

4.2.1 Network model

Consider an uplink NOMA network, as depicted in Figure 4.1, where a single BS is lo-

cated at the centre whereas a set of N MTDs are independently scattered throughout

the coverage area. The positions of the devices are modeled using the homogeneous

Poisson point processes (PPP) ΦN with density ωN [101]. It is noteworthy that the

PPP model can conveniently abstract the network in which the MTDs are randomly

distributed and each device generates its own traffic according to its position without

any need to a particular human intervention. Throughout this thesis, we consider

a Hybrid NOMA scenario composed of multiple groups, so-called coalitions wherein

the available bandwidth is split up into K sub-carriers. The latter are orthogonally

assigned to the groups whereas each group of MTDs use one sub-carrier to non-
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orthogonally communicate with the BS. More precisely, when a device i is a part of

a given coalition, to which the k-th sub-carrier is allocated, the channel coefficient

between this device and the BS is represented by hk,i =
gk,i
lk,i

, where gk,i and lk,i denote

the Rayleigh fading and the path loss, respectively. We adopt the Free-Space path

loss model [102] to define the path loss. Thus lk,i =
(
λk

√
Gl

4πri

)
, where Gl is the prod-

uct of the transmit and receive antenna field radiation patterns in the Line-Of-Sight

(LOS) direction, λk is the signal weave-length over the k-th sub-carrier and ri is the

distance between MTD i and the BS.

In this way, the devices belong to each coalition transmit their messages through the

associated sub-carrier k. Hence, the received overlapped signals at the BS from the

k-th group is expressed as:

yk =

Nk∑
i=1

hk,i
√
pk,isk,i + bk, (4.1)

where sk,i and pk,i represent the transmit symbol and the power coefficient of the

device i through the k-th sub-carrier respectively. The transmit power of the user

i is constrained by the maximum transmit power Pmax. In addition, bk denotes

the additive noise of variance σ2 over the sub-carrier k. Once the BS receives the

superimposed signals, it applies the SIC procedure to detect and recover each user’ s

signal.

4.2.2 SIC process

Since in our work we exploit the PD-NOMA scheme, multiple devices are allowed to

simultaneously access the same sub-carrier and are thus multiplexed using distinct

power allocation coefficients in order to enable the BS to distinguish their signals.

Thus, at the BS side, the SIC is invoked to split the combined signals and alleviate

the co-channel interference.

Interestingly, in the Hybrid NOMA scenarios there is no interference between MTDs

belonging to different NOMA coalitions, instead each device perceives only an inter-

ference level from the members of the same coalition. According to the SIC principle,

the BS decodes the strongest MTD’s signal received on a given RB considering all

the other MTDs of the cluster as an interference, subtracts the signal of the strongest
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device from the received superimposed signals and decodes the signal of the next

MTD, and so on. Hence, in order to process the SIC successfully, when considering

weaker MTDs as an interference, every device should have a SINR higher than the

desired SINR threshold defined as γth.

4.2.3 Assumptions

Consider a coalition C of devices sharing one sub-carrier. Since the devices have to

use different power levels to non-orthogonally transmit their packets, an appropriate

power allocation should be performed. On the other hand, MTDs having limited

power capacities generally require high reliable connections with low data rate re-

quirements. Note that, achieving a high SINR leads the device to transmit at a high

power level, which is not beneficial for its battery life. Therefore, each device seeks

to successfully transmit its packets while reducing its power consumption as much as

possible. Consequently, the central objective of this chapter is to develop an efficient

power control strategy with the aim of ensuring the transmission reliability by keep-

ing the SINR of each MTD beyond an acceptable level while meeting its stringent

requirement of the energy consumption. With this in mind, we provide a novel power

allocation approach that focuses on assigning distinct power allocation coefficients to

different users based on their minimum QoS requirements in terms of SINR.

In what follows, we investigate the SINR requirement and develop a power allocation

technique. In fact, we are interested in finding an optimal power policy that enables

a given user to achieve the SINR threshold γth. Interestingly, we take advantage of

the closed relationship between the signal-to-noise ratio (SNR) and transmit power

expressions to design our power control approach, in which the devices aim to be

distinguished in terms of received SNR values rather than power levels. The latter

will be then determined once the users have different SNR values. Let us now set

the SNR levels at the BS to guarantee a successful decoding and thus maximize the

capacity of the network. For the sake of notation simplicity, we omit the sub-carrier

index.

Proposition 4.1. Consider that the L MTDs of coalition C are sorted using their

channel gains in a decreasing order. Let Γ = {γ1, γ2, · · · , γL} be a target SNR vector
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defined as follows:

γ1 = γth

γ2 = γth × (1 + γ1) (4.2)

γ3 = γth × (1 + γ1 + γ2)

...

If every MTD targets a distinct SNR value, the BS is able to process SIC successfully.

Proof. Note that each device seeks to satisfy the SINR requirement while consuming

less energy, which means that its SINR has to be equal to γth. Firstly, we assume that

the BS has decoded successfully the messages of the L−1 strongest MTDs. Since the

weakest user (MTD 1) has a target SNR of γth, i.e. γ1 = γth, by construction, the BS

can decode its message. Consider now MTD 2 and assume that the BS has decoded

all the message of stronger MTDs. Since the target SNR of MTD 1 is γth, we have

p1|h1|2 = σ2γth. Then, the SINR2 of MTD 2 is

SINR2 =
p2|h2|2

(σ2 + p1|h1|2)
=

p2|h2|2

(σ2(1 + γth))
. (4.3)

Since the SNR of MTD 2 is γ2 = γth(1 + γth), we have

SINR2 =
γth(1 + γth)

(1 + γth)
= γth. (4.4)

We end up with the SINR of MTDs 1 and 2 that are both equal to γth and thus the

BS can decode them. By induction, it can be easily proven that using the proposed

construction, the BS can perform the SIC successfully.

Theorem 4.1. Consider L MTDs transmitting on the same RB using a power al-

location scheme according to the Proposition 4.1 and denote by Γ the target SNR

vector. Then, if we allocate a new MTD with a target SNR not higher than max {Γ}
the SIC will fail.

Proof. Assume that the m-th device joins the coalition and targets an SNR γm, and

∃γi ∈ Γ such that γi−1 ≤ γm ≤ γi. Using the Proposition 4.1, the SINR of the i-th
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user is given as:
pi|hi|2

(σ2 +
i−1∑
j=1

|hj |2pj)
= γth, (4.5)

but, since the m-th MTD joins the coalition, we obtain

σ2 +
i−1∑
j=1

pj |hj |2 < σ2 + pm|hm|2 +
i−1∑
j=1

pj |hj |2, (4.6)

and then the SINR of MTD i becomes strictly lower than γth. Thus, the decoding

of the signal of the MTD i and all the weaker MTDs will fail. Assume now that

there exists a device i that can reduce its target SNR γ′i, then we have two cases. If

γ′i ≤ γi−1, then the SIC will fail according to the first part of the proof. In fact, this

case is similar to a new user who joins a coalition composed of MTDs {1, · · · , i− 1}
with a target SNR lower than max {γ1, · · · , γi−1}. Let us focus now on the case where

γi−1 < γ′i < γi. We have

pi|hi|2

σ2 +
i−1∑
j=1

pj |hj |2
= γth ⇒ σ2 +

i−1∑
j=1

pj |hj |2 =
pi|hi|2

γth
⇒ p

′
i|hi|2

σ2 +
i−1∑
j=1

pj |hj |2
= γth

p
′
i

pi
< γth.

(4.7)

Hence, the SINR of MTD i is lower than γth and the SIC fails.

Since the transmit power of the users are constrained by Pmax, SNR values are also

upper bonded by γαmax where αmax is the number of eligible devices within a coalition

C that can transmit simultaneously, defined as follows:

Corollary 4.1. Consider a coalition C of MTDs transmitting on a sub-carrier, we

have the following capacity upper bound, for all i ∈ {1, 2, . . . , |C|}:

αmax = min{ max{ αi
max}, |C|}, (4.8)

where αi
max verifies

γαi
max

≤ Pmax|hi|2

σ2
≤ γαi

max+1. (4.9)

Here, γαi
max

is the highest SNR value that the i-th device can target while γαmax is
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the highest SNR value that any device can target in the coalition C.

Consequently, αmax is the maximum number of MTDs that can transmit simultane-

ously in the coalition C.

Proof. Since γαmax is the highest SNR that a device in the coalition can target, the

vector Γ defined in Proposition 4.1 becomes Γ = {γ1, · · · , γαmax}. Meanwhile, we

assume that the devices have to target distinct SNR values from Γ, so we have almost

αmax devices that can target different SNR and thus can be allocated. Since no MTD

can reduce its target SNR as proved in Theorem 4.1, we cannot allocate more than

αmax devices in coalition C.

In fact, when a user i chooses to target its highest SNR value γαi
max

, it has to transmit

with its highest power level Pmax
i = (γαi

max
σ2)/|hi|2 ≤ Pmax in order to achieve a

successful transmission. But, the user can target an SNR value ∈ {γ1, · · · , γαi
max

}, so
that it can transmit with a lower power level. Thus, the device i has αi

max distinct

SNR values that it can target, each of which requires a different transmit power

coefficient to be achieved. Meanwhile, according to Proposition 4.1, the BS can

successfully separate and decode the superimposed signals when the devices target

distinct SNR values. Besides, based on Corollary 4.1, there are αmax different SNR

values, which means that only αmax devices can transmit simultaneously to the BS

using the sub-carrier associated with the coalition C. Therefore, the members of this

coalition cannot all transmit simultaneously at the same time. Consequently, by being

a part of the coalition C, there are two constraints: the first constraint faced by each

user i, i.e. αi
max, which depends mainly on its channel coefficient and determines its

maximum transmit power to be used Pmax
i whereas the second constraint is imposed

to the devices sharing the same coalition, i.e. αmax, which represents the coalition

reuse factor.

In this regard, upon changing the coalition, αi
max and αmax take another values so

each user may have more or less chance to transmit. As a result, it may have an

incentive to deviate and join another coalition. Thereby, each user has to be able to

decide which coalition is preferred to be part of and then determine the transmit power

to be used in order to ensure a successful transmission. For this purpose, we propose

a Bi-level game theoretical framework composed of a coalition formation game and
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Figure 4.2: Bi-level game illustration

a non-cooperative game to model the behavior of the N devices competing over the

K sub-carriers with an eye toward attractively achieving the trade-off between the

successful packet transmission rate and the power consumption.

4.3 Bi-level game theoretical framework

In this section, we formulate the resource allocation problem as a Bi-level game by

firstly invoking the Hedonic game as a coalition formation game to lay out the parti-

tion formation process and then adopting a non-cooperative game to model the power

control within each coalition. Particularly, the devices arrange themselves into mul-

tiple coalitions using the Hedonic game framework, then the transmit power levels

are determined using a non-cooperative game. A graphic illustration of the proposed

Bi-level game is depicted in Figure 4.2.

4.3.1 Non-cooperative NOMA-based power control game

We start by modeling the power allocation problem using a non-cooperative game.

The aim of this game is to ensure the disparity in transmit power coefficients among

users sharing the same group so that they can simultaneously communicate with the

BS. The latter can then avail the power difference between the users to decode their

signals.
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Figure 4.3: Layered system illustration

Definition 4.1. Let G = (N , {Ai}i∈N , { Ui}i∈N ) be a non-cooperative power control

game for the proposed Hybrid NOMA scheme, where

• Player set N = {1 . . . N}: denotes the player set of MTDs.

• Set of actions {Ai}i∈N = Pi × Pti: represents the set of strategies available

to a user i ∈ N . Indeed, a strategy is a couple {pi, pti} where pi ∈ [0, Pmax
i ]

is the transmission power of the device i, and pti ∈ [0, 1] is its transmission

probability. In fact, the user i transmits its packets in the current time slot

with a transmission probability pti. The set of the transmit power of all devices

is denoted by P and the set of their transmission probabilities denoted by Pt.

• Utility function {Ui}i∈N : As we have shown in Chapter 2, the design of the

utility function is of prime importance in game theory, as it reflects the desired

goal of the game. In this work, the objectives of the devices is to satisfy the

SINR requirement while consuming less energy. Thus, we need to define an

utility function that can conveniently capture this trade-off. In what follows,

we will go into the details of the proposed utility function.

4.3.1.1 The transmit power matrix

We have shown in Corollary 4.1 that in order to enable the BS to perform the SIC

successfully, only αmax users can transmit simultaneously by targeting distinct SNR

values. Thereby, it may not be possible for all the users in the coalition to target

different SNR values. Keeping this in mind, we propose a layered system in which

we define multiple layers for each target SNR value which means that it is possible
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for more than one user to target the same SNR but they have to be in different

layers. In this direction, we define the target SNR allocation Λ as a matrix whose

rows correspond to the target SNR vector and columns represent the layers, as shown

in Figure 4.3. In this case, the MTDs, e.g. MTD 1 and MTD 2, which belong to the

same layer, must target different SNR values but they can target the same SNR if

they are in different layers, e.g. MTD 1 and MTD 3. Hence, at each layer only one

MTD can join the group of devices targeting the same SNR, e.g. MTD 1.

Thereafter, we need to manage the access of the users that target the same SNR

value while belonging to different layers. To this end, we introduce the transmission

probability for each MTD i targeting a SNR value γl as follows

pt(i) =
1

∥Λ(l, :)∥0
,

where ∥Λ(l, :)∥0 stands for the number of users targeting γl. By doing so, if there is

only one user that targets a certain SNR value, its transmission probability pt(i) = 1,

e.g. MTD 2 in Figure 4.3, otherwise the users targeting the same SNR value, have

the same transmission probability, e.g. the transmission probability of MTD 1 and

MTD 3 is 0.5.

4.3.1.2 Utility function

In order to pose the power control problem under non-cooperative game settings, we

first have to suitably define a utility function. In fact, each user aims to meet the

SINR requirement, i.e. reaching the SINR threshold γth, while consuming less energy.

This phenomenon can be concisely quantified by the following utility function

Ui(pi) =

K∑
k=1

f(γk,i)

K∑
k=1

pk,i

, (4.10)

where γk,i is the SINR of the device i on the sub-carrier k and f(·) represents the

efficiency function. The latter reflects the probability that a packet is successfully

transmitted and it is assumed to be an increasing, continuous, and S-shaped function.

Besides, we require that f(0) = 0 and f(γth) = f(∞) = 1 to ensure that when p = 0
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or γ = 0 the efficiency is null. On the other hand, if the SINR is higher than γth,

the packet is successfully transmitted and then f(γk,i) = 1. It is noteworthy that any

function that meets the above-mentioned conditions can be adopted. Throughout this

thesis, we consider the efficiency function f(x) = (1−e−x)N , well-known in the power

control games where N = 100 is the block length. This utility function, that has bits

per joule as units, perfectly captures the trade-off between the SINR requirement and

the battery life and is particularly suitable for applications where the energy efficiency

is crucial. A more detailed discussion about the utility function and the efficiency

function can be found in [103].

In our proposed scheme, we consider a Hybrid NOMA system where each sub-carrier

is associated to a NOMA group and every device is allocated to only one coalition.

On the other hand, we have introduced above the transmission probability via the

layered system in order to manage the activity of users and handle their access to

the same sub-carrier. Consequently, we can reformulate the utility function defined

in (4.10) as:

Ui(pi,p−i, pti,pt−i) = pti
f(γi)

pi
, (4.11)

where p−i and pt−i are the transmit power and probability of MTDs other than

the device i respectively. Note that there is no utility for the devices if the BS fails

in decoding their signals when performing the SIC. Although every device selfishly

seeks to find the optimal strategy that gives it the highest utility, the game can reach

a stable strategy profile {p∗, pt∗} in which no device can maximize its utility by

individually deviating from its current strategy. This stable profile known as a Nash

Equilibrium and represents the solution concept for a non-cooperative game. Based

on the Definition (2.1), {p∗, pt∗} is a Nash equilibrium for the proposed game if

Ui(p
∗
i ,p

∗
−i, pt

∗
i ,pt

∗
−i) ≥ Ui(pi,p

∗
−i, pti,pt

∗
−i), ∀{pi, pti}, i ∈ {1, 2, . . . , |C|}. (4.12)

In the following, we detail the algorithm for the proposed non-cooperative power

control game and derive the corresponding Nash equilibrium.

4.3.1.3 Power control algorithm

In this section, we derive a power control algorithm to determine the transmit power

vector p as well as the transmission probability vector pt of the users in each coalition.
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Figure 4.4: Layered system example

Algorithm 1: Power Control Algorithm

Input: the set of devices in the coalition C who are transmitting on the RB k,
and their channels H(k,C) = (hk,1, . . . , hk,|C|).

Output: a power vector p and a transmission probability vector pt
Initialization: ΓC = {γ1, γ2, · · · , γαmax}.
Sort (hk,1, . . . , hk,|C|) in an increasing order obtaining a vector of the sorted
elements and a vector of the arrangement of these elements Π.

p = 01×|C|, pt = 01×|C| and Λ = 0αmax×|C| is target SNR allocation.

for pos = 1 : |C| do
i = Π(pos), l = 1
while (p(i) = 0) do

m = min{ n | n ≤ αi
max and ∥Λ(n, :)∥0 < l }

if (m ̸= ∅) then
Λ(m, l) = i
γm = ΓC(m)

p(i) = γm×σ2

|hk,i|2

else
l = l + 1

for n = 1 : αmax do
for l = 1 : |C| do

if (Λ(n, l)! = 0) then
i = Λ(n, l)
pt(i) = 1

∥Λ(n,:)∥0

where αmax and αi
max are defined in Corollary 4.1 and ∥.∥0 is the L0 norm,

which is the number of non-zero elements.
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Indeed, the proposed approach enables each user to find the appropriate target SNR

which ensures that its packets will be successfully transmitted with the lowest energy

consumption. The proposed algorithm is outlined in Algorithm 1 and an example of

the target SNR allocation matrix is given in Figure 4.4.

The power control Algorithm 1 starts by sorting the MTDs according to their channel

gains so that the device which has the weakest gain is the first one that targets the

lowest SNR in the first layer. Then, each device i seeks to target the lowest SNR

that is not already taken in the current layer l. If it does not find a SNR value m

that gives γm ≤ γαi
max

and is not allocated to another device, the user i selects the

next level and checks if it is possible to transmit on this layer by targeting a lower

SNR value which is not higher than γαi
max

. Once the user determines its target SNR,

it calculates its transmit power level and its transmission probability. By doing so,

each device requires only a small amount of energy to successfully transmit its signals.

Hence, we ensure that the proposed power control approach is energy efficient.

Proposition 4.2. The power allocation scheme, resulting from Algorithm 1, is a

Nash equilibrium for the proposed power control NOMA-based game.

Proof. We assume that every MTD in the coalition C targets the lowest SNR γm in

the current layer l (m = min{n|n ≤ αi
max and ∥Λ(n, :)∥0 ≤ l}, i ∈ C). If a device i

aims to increase its utility by changing its target SNR γm, it may chooses a higher

SNR target γp > γm which in turn results in a higher transmit power and thus a

lower utility value. On the other hand, since the user has chosen the lowest target

SNR value γm that has not been taken by a weaker user, if it decides to choose a

lower SNR target γq < γm, it has to join the {l + 1}-th layer and then share the

transmission time with the devices in this layer. Thus it gets a lower transmission

probability which results in decreasing its utility.

4.3.2 Hedonic game coalition formation game

In this section, we focus on how to construct an appropriate coalitional structure of

the set of players with the aid of the Hedonic game [27]. Such a game is one of the

most prominent coalition-formation games that can provide an autonomous and a

distributed cooperative model allowing the players to self-organize into an optimal

partition.
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4.3.2.1 Game settings

Definition 4.2. A Hedonic game < N ,⪰i> is formulated by a finite set of devicesN ,

and a set of preference profiles {⪰1,⪰2, · · · ,⪰N }. For each player i ∈ N , ⪰i specifies

its preference relation and is defined as a reflexive, complete and transitive binary

relation on the set of coalitions that this player can possibly be a part of, i.e. Ni =

{C ⊆ N : i ∈ C}.

We say that a coalition C is preferred to the MTD i than a coalition C′ if Ui(C∪{i}) ≥
Ui(C′ ∪ {i}). Note that the utility value of each device is related to its target SNR

that depends on the strategies that the other users in the coalition take jointly. In

doing so, it evaluates its utility over its coalition and not on the whole structure.

Thus, according to Definition (2.4), the considered coalition formation game is called

the Hedonic game with a Non-Transferable Utility (NTU).

Definition 4.3. A partition, denoted Ψ = {C1 . . .Ck}, is a set of disjoint subsets of

N involving all devices of N .

Definition 4.4. A partition Ψ = {C1 . . .Ck} is Nash stable if no MTD can improve

its utility by moving unilaterally to another existing coalition.

Particularly, the Nash stability is the strongest stability’s notion in the Hedonic game.

Interestingly, similar to the Nash Equilibrium concept in the non-cooperative games,

the Nash stability consists in ensuring that no player has an incentive to deviate from

its current coalition.

4.3.2.2 Generating Nash stable coalition structures

Let Ψ be a partition of a set of K coalitions where each coalition is allocated an

orthogonal RB. Each member of the partition Ψ represents a coalition. Each device

belongs to only one coalition in a given time slot. Thus, we have the following steps:

• Firstly, each user i sorts its channel gains over the K RBs in a decreasing order.

Then, it joins the cluster corresponding to its best channel.

• Second, the device determines its power allocation coefficient and its transmis-

sion probability by executing the power allocation algorithm (Algorithm 1).

Then, it calculates its own utility value Ui.
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Algorithm 2: Nash stable clustering (NSC)

Input: the set of devices in the cell M and their channels H, the K RBs.
Output: a partition Ψ.
Initialization: Ψ = 0K×|M|, U = 01×|M|.
Every MTD sorts (H(:, i)) = (h1,i, . . . , hK,i) using the first coordinate in a
decreasing order obtaining the sorted elements of (H(:, i)) and the arrangement
of these elements in Πi.

for i = 1 : |M| do
find first j such that Ψ(Πi(1), :) = 0
Ψ(Πi(1), j) = i

for k = 1 : K do
[p,pt] = PC( Ψ(k, :) , H(k,Ψ(k, :)) )
for i = 1 ∈ Ψ(k, :) do

U(i) = pt(i)f(γth)p(i)

isFinal=False
while !isFinal do

isFinal=True
for i = 1 : |M| do

for k = 1 : K do
if i /∈ Ψ(k, :) then

Ψtmp(k, :) = Ψ(k, :) ∪ {i}
[p,pt] = PC( Ψtmp(k, :), H(k,Ψtmp(k, :))

if pt(i)f(γth)p(i) > U(i) then

U(i) = pt(i)f(γth)p(i)

Ψ = Ψ\{i}
find first j such that Ψ(k, :) = 0
Ψ(k, j) = i
isFinal=False
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• Since each user aims to maximize its utility, it invokes the Algorithm 1 for each

RB k in order to determine if it is better to deviate from its current coalition.

If this deviation gives it a better utility, the MTD joins the new coalition.

• Finally, if the devices are no longer interested to leave their coalitions, the

algorithm terminates.

Indeed, upon playing the Hedonic game, the players are able to autonomously decide

whether to leave or join coalitions with an effort to maximize their utility values.

Thereby, the proposed approach lays out the partition formation process and enables

the players to reach an optimal coalitional structure. A summary of the developed

algorithm based on the Hedonic game is given in Algorithm 2. Let us focus now on

the stability of the proposed game.

Theorem 4.2. The partition resulting from Algorithm 2 is Nash Stable.

Proof. Since the algorithm terminates when there is no incentive for any user to leave

its current coalition, we deduce from Definition (4.4) of the stability that the proposed

partition is Nash Stable.

4.4 Simulation Results

In this section, we present a comprehensive Matlab-based simulation of the proposed

Bi-level game, described in the previous sections. We compare the proposed Bi-level

theoretical framework with the NM-ALOHA scheme proposed in [64] and the game-

theoretic approach NM-ALOHA game, introduced in [100]. We consider a scenario

composed of N = 500 MTDs independently deployed according to the homogeneous

PPP process of density ωN = 0.01.

4.4.1 Packet success rate

In this section, we focus on the probability that a packet is successfully transmit-

ted using the proposed Bi-level game theoretical technique versus the NM-ALOHA

and the NM-Aloha game. In Figure 4.5, we show the packet transmission rate with

success as a function of the number of sub-carriers K and the number of MTDs N .

As we can clearly observe, the packet success rate decreases drastically when the
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number of devices increases for both NM-ALOHA and NM-ALOHA game, while the

proposed technique still achieves acceptable performances. For example, when K = 9

sub-carriers and N = 320 MTDs, our proposed game boosts the packet success rate

to 0.9185 compared to 0.0450 when NM-ALOHA is applied and 0.2402 when NM-

ALOHA game is played. This owing to the fact that as the number of the users in the

system N increases, the network becomes denser which in turn results in higher in-

terference effects that both NM-ALOHA and NM-ALOHA game can not handle even

with the use of SIC. By contrast, our proposed approach is able to efficiently face

the resulting interference impacts and thus allowing much more devices to achieve

a successful packet transmission, reaching up 335, 088% of improvement compared

to NM-ALOHA game when N = 500 and K = 9. This good performance can be

explained by the fact that the proposed power allocation approach has appropriately

taken into account the SINR requirement of the users which leads to successful trans-

missions of an important number of them.

Figure 4.5: Packet transmission rate with success for different N and K.

4.4.2 Average throughput

This section is devoted to the performance comparison in terms of the average through-

put between our proposed Bi-level game, the NM-ALOHA and NM-Aloha game. Fig-

ure 4.6 illustrates the average throughput as a function of the number of sub-carriers



Simulation Results 69

K and the number of MTDs N . As it was expected, the average throughput of NM-

ALOHA and NM-ALOHA game is higher than the proposed technique when there is

a low number of MTDs in the system. In fact, Figure 4.7 shows that for K = 10 sub-

carriers, when N < 170 MTDs, NM-ALOHA and NM-ALOHA game achieve a higher

throughput, otherwise our game significantly outperforms them. More precisely, our

proposed Bi-level game yields a significant performance improvement in the through-

put of 268, 502% against the NM-Aloha game when N = 500. This is mainly due to

the fact that when the system is sparse, NM-ALOHA and NM-ALOHA game allocate

to MTDs more than the required capacity. In addition, when N < 350 MTDs, the

average throughput of our game increases as N increases while it decreases for the

case of NM-ALOHA and NM-ALOHA game.

Figure 4.6: Average throughput of MTDs for different N and K.

4.4.3 Average utility

The proposed energy efficiency-based utility function has units of bits/joule and then

measures the total number of reliable bits transmitted per joule of the energy con-

sumed. We investigate now the effect of the number of sub-carriers K on the energy

efficiency of the system. Indeed, Figure 4.8 shows the average utility as a function

of the number of sub-carriers K for N = 500 MTDs. It can be observed from this

figure that as K increases, the average utility increases too. As expected, our pro-
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Figure 4.7: Average throughput versus N with K = 10.

posed approach results in a significant improvement in the average utility, and thus

in the energy efficiency, compared to the NM-ALOHA and the NM-ALOHA game.

Interestingly, this result is somehow intuitive since the proposed Bi-level game tech-

nique allows each device to deliver its packets with the lowest power that enables it

to perform a successful transmission, while the other schemes may allocate to the

user a higher transmit power level which in turn yields in a reduced utility compared

to our formulated game. Particularly, the achieved result is highly revealed when

there are N = 500 devices sharing K = 10 sub-carriers. In this case, our proposed

approach greatly enhances the average utility reaching up 427, 265% compared to the

NM-ALOHA game. This is owing to the fact that when the devices are divided into a

larger number of coalitions, the system becomes sparser, resulting in a higher trans-

mission probability and a lower transmit power for each user. Hence, the proposed

Bi-level game enables the devices to satisfy the SINR requirement with the lowest

power levels and thus achieve higher utility values.

4.4.4 Energy consumption

Now, we highlight the energy consumption of the proposed Bi-level game compared

to the other existing techniques, the NM-ALOHA and the NM-ALOHA game, under

different scenarios composed of different numbers of devices N and sub-carriers K. To

this end, we adopt the model of [104] to evaluate the energy consumption. According
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Figure 4.8: Average utility versus K with N = 500.

to this model, a device i consumes the following energy to transmit a L-bit message:L× Eelec + L× ϵfsr
2
i if ri < d0

L× Eelec + L× ϵampr
4
i if ri ≥ d0

(4.13)

Depending on whether the distance ri between MTD i and the BS is higher than

threshold distance r0 or not, either the free space ϵfs (r2i power loss) or the multi

path fading ϵamp (r4i power loss) channel model is used. For making this dissertation

self-contained, we review here the above parameters from [104] in Table 4.1. Figure

4.9 illustrates the energy consumption for the different techniques. As we can clearly

see, the devices consume far less energy when using the proposed technique than the

other schemes. In fact, the energy consumption gain achieved upon adopting the

Bi-level game for N = 500 users competing on K = 9 RBs is about 94, 198% and

96, 693% compared to the NM-ALOHA game and NM-ALOHA respectively. This

owing to the fact that our Bi-level game seeks to allocate to the users the appropriate

transmit power, i.e. the lowest power levels that enable them to successfully transmit

their messages. For this purpose, the proposed game allows each user to deviate

from its coalition if this deviation yields in a better utility allowing it to conveniently

address the SINR requirement with a lower energy consumption. Consequently, it

can be concluded from this figure that the proposed power control approach is energy

efficient.



72 Game Theoretical Framework for Joint Channel Selection and Power Control

Figure 4.9: Energy consumption for different N and K.

Table 4.1: Energy Consumption Parameters

Symbol Description Value

d0 Threshold distance (m) 87

Eelec Electronic energy (nJ/bit) 50

ϵfs Power amplification for the free
space (pJ/bit/m2)

10

ϵamp Multi-path fading power amplifica-
tion (pJ/bit/m2)

0.0013

4.5 Conclusion

In this chapter, we have proposed a Bi-level game framework to derive two algorithms

for MTDs in Hybrid NOMA networks. First, the MTDs self-arrange into coalitions

using the Hedonic game framework. Then, the members of each coalition invoke

the non-cooperative power control game to determine the power levels to be used for

sending their packets over one RB and in a non-orthogonal manner. Simulation results

demonstrate that our proposed scheme enables MTDs to meet the SINR requirement

and thus achieve good packet success rates with the lowest power levels compared

to the other existing techniques NM-ALOHA and NM-ALOHA game. Hence, our
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proposed Bi-level game has efficiently solved the joint problems of the user grouping

and the power allocation while striking an attractive trade-off between the successful

packet transmission rate and the energy consumption.

In the next chapter, a denser network is envisaged which in turn requires an advanced

game framework in order to be suitably addressed. In such a model, we consider that

each user is called upon to conform the collective behavior of its opponents instead

of participating in one-to-one interactions. Keeping this in mind, we adopt the mean

field theory as an effective optimization tool to deal with large-scale networks.
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5.1 Introduction

Driven by the scarcity of resources and the ubiquity of IoT systems, the 6G networks

have to handle the heterogeneous and the ever-increasing number of devices [105].

MTC represents an attractive paradigm to enable the IoT to be part of future cellular

networks. Worryingly, although the generated traffic by each device is relatively small

and sparse, the BS may face a huge traffic when the number of MTDs increases.

Hence, providing massive connectivity and ensuring a higher spectral efficiency for

large-scale MTDs networks is very challenging.

Attracted by its appealing features, numerous research efforts have been exerted to

investigate NOMA in different scenarios [13, 54, 68, 106–112]. Nevertheless, almost

all of them have either considered a limited number of users in the system and per

group or investigated semi-grant free scenarios in which the BS allocates resources to

devices at the cost of scalability. The main reason for this limitation is that having

more users in each group results in a higher interference level and challenges the way

the BS assigns the resources to these users. Hence, our goal in this chapter is to

design an NOMA-based approach for a large number of devices without increasing

the complexity at the BS side.

In the previous chapter, we have formulated a Bi-level game theoretical framework

composed of a non-cooperative game underlying a cooperative coalitional game, namely

the Hedonic game and we have derived two algorithms which lead to a Nash-Stable

partition. However, the classical game generally focuses on characterizing the inter-

action between each device and every other devices in the system. Besides, as it has

been pointed out in [113], the Nash equilibrium analysis usually requires solving a

large number of equations, which results in an inherent mathematical complexity. By

doing so, applying such a game can barely be useful when a dense network is envis-

aged. To overcome this issue, we turn our attention in this chapter to the Mean Field

Theory.

Particularly, in the MFG, each device is called upon to focus on how to deal effectively

with the collective behavior of its opponents, rather than being concerned with the

specific individual strategy of each. Here, the collective effect faced by the devices

represents the mean field and stands for the distribution of the system state over

the user set [35, 36, 113, 114]. Typically, the analysis of a MFG is mainly conducted
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through two coupled equations, namely the HJB and the FPK equations. The former

equation characterizes the interactions between the players and the mean field, and

then allows each player to make its own decision, whereas the latter equation rules

the evolution of the mean field based on the players’ decisions.

MFG has sparked a considerable interest in suitably designing a distributed power

control for densely deployed wireless networks [115–120]. Meanwhile, some contri-

butions have mainly focused on the interplay between the NOMA approach and the

mean field theory [121–124]. In [121], MFG has been exploited in order to meet the

trade-off between the QoS requirements and the energy consumption for the CD-

NOMA scheme in a mMTC scenario. [122] and [123] have proposed a MFG approach

to model the collective behavior of multi-user scenarios in mobile edge computing

systems. In these works, the users are divided into NOMA clusters based on the

difference in their channel gains, then the resource allocation problem is formulated

as a MFG. The authors have resorted to a deep RL algorithm to solve the game and

obtain the Mean Field Equilibrium (MFE). Whilst in [124], the authors have adopted

the MFG to derive a distributed power control policy for NOMA-assisted unmanned

aerial vehicle networks.

In this chapter, we aim to propose a mean field game-theoretic framework in the

context of a dense Hybrid NOMA system with an eye toward efficiently modeling

power allocation between devices in different NOMA clusters. The main contributions

can be summarized as follows:

• We consider a Hybrid NOMA scenario in which the coalitions of MTDs will be

established and allocated orthogonal RBs so that the members of each coalition

use one RB to transmit their packets in a non-orthogonal manner.

• We consider that the BS is not concerned with the power control and broadcasts

only a limited feedback to users. Thereby, we are able to mitigate the perfor-

mance drop observed with almost all existing grant-free approaches, especially

in dense scenarios.

• We first formulate the power control problem of MTDs underlying uplink NOMA

networks as a differential game. Then, we extend the proposed game into the

MFG which interestingly alleviates the mathematical complexity of the scheme.
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• We conduct the analysis of the formulated MFG through the HJB and FPK

equations and derive a distributed iterative algorithm in an effort to approach

the MFE.

• Unlike what is usually examined in classical games, the proposed MFG allows

the devices to adjust their transmit power in response to brief information re-

ceived from the BS, instead of worrying about the actions of their opponents.

• We analyze the equilibrium and prove the convergence of the proposed power

control algorithm.

• We provide numerical simulations that assess the potential performance gains

offered by the proposed approach with several scenarios of number of devices

and number of sub-carriers.

The rest of this chapter is organized as follows. The next section is devoted to the

description of the system model and the assumptions that we consider throughout

this chapter. Section 5.3 formulates a differential game to address the corresponding

power control problem. Modeling the differential game as a MFG is depicted in

Section 5.4. Then, in Section 5.5, we propose a finite difference method to solve the

HJB and FPK equations, and derive a distributed algorithm to iteratively reach the

MFE. To illustrate the performance of the proposed technique, simulation results are

given in Section 5.6. Finally, the chapter is concluded in Section 5.7.

5.2 System Model

5.2.1 Network model

Consider the same uplink NOMA network introduced in Chapter 4, composed of N

devices attempting to communicate with a BS across K available RBs. We consider

that the available bandwidth is divided into K orthogonal sub-carriers. Specifically,

we investigate in this chapter a dense scenario in which N >> K.

Let us focus on a coalition C of devices that transmit their packets non-orthogonally

using one sub-carrier. We assume that each MTD joins the coalition corresponding to

its best channel. Note that under a Hybrid NOMA scenario, each device experiences

interference effects from its coalition members. Thus, the inter-group interference is
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not considered when the BS invokes the SIC to split the superimposed signals received

from each group and then retrieve the desired information of each user within that

coalition. For the sake of notation simplicity, we omit the sub-carrier index in the

following.

In Chapter 4, we have investigated the upper bound of the allocation capacity. In

particular, we have proven that if each device uses a distinct SNR target, there are

almost αmax devices in a given coalition that can access the associated RB to simul-

taneously transmit their packets. Meanwhile, with the aim of managing the activity

of the devices, we propose in the following an access probability denoted by pt.

Proposition 5.1. Assuming that the BS successfully decodes a MTD’s signal with

a probability Ps, this probability can be maximized when pt =
αmax
N .

Proof. Since Ps is the probability of successful decoding of device’s signal, it can be

written as

Ps = pt(1−
pt

αmax
)N−1.

Let us now derive this probability with respect to pt. Then, we obtain

(1− pt
αmax

− N − 1

αmax
pt)(1−

pt
αmax

)N−2 = 0.

Thus, we end up with pt =
αmax
N . Consequently, if pt =

αmax
N , Ps is maximized.

In the remainder of this chapter, we refer to α instead of αmax for the sake of notation

simplicity. At each time slot, the user activity is controlled by the access probability

pt = α
N . Thereby, we have in average α active devices. Now, we consider a dense

deployment scenario in which a large number of users are involved. Thus, it becomes

increasingly challenging to ensure the successful transmission of different devices,

especially at a high network load. Therefore, in an effort to handle the massive

connectivity of the devices, we formulate the resource allocation problem as a MFG

framework. To this end, we need first to pose our proposed scenario in the context

of the differential game theory. We assume that the number of users in each cluster

is known by the users and is given as a feedback from the BS. Actually, we consider

that this information can be learned from the interference feedback or sent back by

the BS. As, we are studying very dense scenarios, this value can be estimated by the
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BS and fed back to the users less frequently than the value of the interference level,

which will be introduced in section 5.4.

5.3 Differential game model for power control

In order to pave the way for the MFG framework, we start in this section by adopting

the differential game theoretical framework to model the power allocation problem.

Definition 5.1. The differential power control game for the proposed approach is

defined by G = (N , {Pi}i∈N , {Si}i∈N , {Qi}i∈N , { Ui}i∈N ), where N = {1 . . . N} is

the set of players which are the MTDs in our case. The set of transmit power levels

of a device i is represented by Pi which can be used to transmit its information. In

addition, Si is the state space of the user i while Qi is the power control policy to be

determined by the device i in order to maximize its own utility denoted by Ui.

5.3.1 State space

We aim in this chapter to establish a Hybrid NOMA system by arranging the users

into coalitions and making each of them able to react in response to the collective

behavior of the other players sharing the same group. Thus, we are interested in

taking into consideration the proportion of users in each coalition. To this end, we

define the state of each player i as the combination of its channel coefficient hi and

the sub-carrier ki associated with its coalition. Therefore, the state of device i at each

time t is given as si(t) = {hi(t), ki}.

Proposition 5.2. In order to simulate the fading process in an efficient way, we adopt

the Jakes’ channel model for Rayleigh fading channels, given in [125], as follows:

g(t) =

(
gR(t)

gI(t)

)
=


2√
B

B∑
n=1

an cos (βnt+ ϕ)

2√
B

B∑
n=1

bn cos (βnt+ ϕ)

 , (5.1)

where an = cos (ψn), bn = sin (ψn) and βn = βd cosωn. Besides, ωn = (2πn− π + θ)/(4B),

where B is the number of sinusoids and ψn, θ and ϕ are independent random variables

with a uniform distribution over [−π, π) for all n.
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Let us now focus on the state evolution governed by the state equation given as

follows:

Definition 5.2. (State equation): For every device, the evolution law of its state is

defined by the following differential equation:

ds(t) = dh(t) =
dg(t)

l
=

− 2
l
√
B

B∑
n=1

anβn sin (βnt+ ϕ)dt

− 2
l
√
B

B∑
n=1

bnβn sin (βnt+ ϕ)dt


=

(
−qw1,n(t)dt

−qw2,n(t)dt

)
,

(5.2)

where q = 2
l
√
B
, w1,n(t) =

B∑
n=1

anβn sin (βnt+ ϕ) and w2,n(t) =
B∑

n=1
bnβn sin (βnt+ ϕ).

5.3.2 Utility function

In game theory, the design of the utility function is crucial, as it catches how satisfied

a user is when playing the game. Indeed, a packet is successfully decoded when the

device achieves an SINR higher than γth. On the other hand, in the context of MTDs

having a limited number of packets to transmit periodically, if a given device reaches

a high SINR, it obviously consumes a lot of energy uselessly. In this regard, in our

work, the objectives of the players are to meet SINR requirement and to reduce the

power consumption as much as possible. With this in mind, we adopt the following

utility function to adequately address the above trade-off:

Ui(pi,p−i) =
f(γi)

pi
, (5.3)

where p−i is the transmit power of all the MTDs except i. The efficiency function,

which is represented by f(·), reflects the packet success rate. It is an increasing and

continuous function that has a sigmoidal shape. For more details on the efficiency

function please refer to Chapter 4.
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5.3.3 Optimal control problem

Since each device aims to maximize its own utility defined by (5.3), it tries to find

the optimal power control policy Q∗
i (t) to be used at time t ∈ [0, T ]. Thus, for each

device i ∈ N , we formulate the general optimal control problem as follows

Q∗
i (t) = argmax

pi(t)
E

[∫ T

0
Ui(t, si(t)) dt

]
, (5.4)

then, the maximum utility is determined by the following value function

vi(t, si(t)) = max
pi(t)

E

[∫ T

t
Ui(τ, si(τ)) dτ

]
, t ∈ [0, T ]. (5.5)

Based on the Bellman’s optimality principle and the optimal control theory [113], the

above value function is the solution to a partial differential equation, namely a HJB

equation. Hence, solving the HJB equation yields obtaining the optimal power control

policy Q∗
i (t) that gives the maximum utility for each device i. We have expressed the

HJB equation as (2.5) in chapter 2 and here we derive the Hamiltonian as follows

H(si(t), pi(t),∇svi(t, si(t))) =

max
pi(t)

[Ui(t, si(t), pi(t)) +∇svi(t, si(t))
∂si(t)

∂t
].

(5.6)

5.3.4 Nash equilibrium

Let us introduce the Nash equilibrium in the context of differential game as follows

Definition 5.3. A power control profile Q∗(t) = [Q∗
1(t), . . . , Q

∗
N (t)], where Q∗

i (t) =

p∗i (t), i ∈ N , is the Nash equilibrium of the differential game G if and only if Q∗
i (t) is

the optimal feedback for the control problem

Q∗
i (t) = argmax

pi(t)
E

[∫ T

0
Ui(pi(t),p

∗
−i(t)) dt

]
, (5.7)

subject to:

si(t) = {hi(t), ki} and dsi(t) : defined in Definition (5.2). (5.8)
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At the Nash equilibrium, no device still has an incentive to unilaterally change its

current power control policy with the aim of further improving its utility. According

to [126], the Nash equilibrium exists for the differential game if the HJB equation

(2.5) related to each device can be solved.

Proposition 5.3. The Nash equilibrium exists for the proposed differential game G.

Proof. According to [127], the HJB equation has a solution if the Hamiltonian is

smooth. Given the utility function defined in (5.3), we can write the first derivative

of the Hamiltonian function (5.6) with respect to pi(t) as:

∂H

∂pi(t)
=

∂γi(t)
∂pi(t)

pi(t)f
′(γi(t))− f(γi(t))

pi(t)2

= c
f ′(γi(t))

pi(t)
− f(γi(t))

pi(t)2

= Z(pi(t)),

(5.9)

where c = ∂γi(t)
∂pi(t)

. We have f(x) = (1−e−x)L, so it is infinitely differentiable as well as

f ′(x) = L(1−e−x)(L−1). On the other hand, as aforementioned, when pi the transmit

power of the device i is equal to 0, the efficiency is null so that Ui = 0 and there is

no transmission, hence the device can determine its utility function as long as pi > 0.

Consequently, Z(pi(t)) is infinitely differentiable. Therefore, for any n > 1, ∂Hn

∂pi(t)n

exists and the Hamiltonian function has derivatives of all orders, i.e. its smoothness

is ensured. As a result, it can be concluded that the Nash equilibrium exists for the

proposed game.

Although it is possible to prove that the Nash equilibrium exists, finding the equi-

librium requires solving N HJB equations simultaneously, which is complicated and

even untractable for a dense network. On the other hand, when a large number of

users are involved, the effect of a single user’s action on the other players becomes

negligible but the impact of the mass on each player is important and can be mod-

elled as the collective effect or the mean field. Consequently, in the presence of a

large population, the differential game can be approximated by an equivalent game

so-called MFG.
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5.4 Mean Field Game analysis for power control

Typically, in the presence of a large number of devices, the mean field framework

establishes when the fulfillment of the following assumptions is guaranteed [114]:

• Rationality of the devices: each of which is assumed to act rationally and inde-

pendently while optimizing its own utility.

• Interaction between a player and the mean field: this assumption is based on

the manner the interaction among devices is investigated. In the context of the

MFG, each player is called upon to interact with the mean field rather than

participate in one-to-one interactions.

• Continuum of the number of players: in the presence of a large number of

MTDs, we can model such a large population as a continuum of players.

• Indistinguishability (or Interchangeability of the states) [128]: this assumption

relies on players’ anonymity which means that the game’s outcome is not im-

pacted by any permutation of states between the players and the state evolution

of the players does not depend on any particular user. Hereafter, we can omit

the subscript i which referred to the devices.

5.4.1 Mean field interference

Basically, in the context of MFG, each device interacts with the collective behavior

of its opponents in order to make its own decision. In our case, this mass behavior

is captured by the Mean Field Interference (MFI). Thus, similar to [116], we can

define the MFI as the weighted sum of the players whose are competing over the

sub-carriers. In addition, since the activity of the users is controlled by the access

probability pt =
α
N , the interference perceived by any device can be given as follows:

Ii(t) =
α

N

∑
j ̸=i

|hj(t)|2pj(t). (5.10)
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Considering the mean field definition in (2.4), we can reformulate the aggregated

interference to any device as follows:

Ii(t) =
α

N

N∑
j=1

|hj(t)|2pj(t)−
α

N
|hi(t)|2pi(t)

= α

∫
|h(t)|2p(t)M(t, s)dh− α

N
|hi(t)|2pi(t).

(5.11)

Since pi(t) has reasonably low values compared to N , we may assume that

lim
N→+∞

α

N
|hi|2pi(t) = 0. (5.12)

Therefore, the mean interference term can be expressed as:

Imean(t) = lim
N→+∞

Ii(t) = α

∫
|h(t)|2p(t)m(t, h)dh. (5.13)

Indeed, by attempting to access the channel, each player uploads implicitly its lo-

cal information, including its state and its transmit power, to the BS. This latter

calculates the mean field (2.4) as well as the MFI (5.13) based on the received infor-

mation from the participating devices. Then, the BS broadcasts the obtained value

of the MFI, on a given channel, to the devices of the corresponding coalition. Once

each device receives feedback information, it estimates its interference level from its

standpoint as follows:

Ĩi(t) =
(
1− ri

R

)
Imean(t), (5.14)

where ri is the distance from the device i to the BS and R is the radius of the cell.

Since, in the game under consideration, we are dealing with the average effects of the

players, each MTD perceives an interference level from all its opponents belonging

to the same coalition. Meanwhile, thanks to the PD-NOMA concept, the BS can

perform the SIC procedure to cancel part of the interference before decoding the

signal of each user. Intuitively, based on the distance from the BS, each user can

estimate the interference level at the BS when the latter decodes its signal. Indeed,

since the signal from the closest device, which has the best channel gain, is decoded

first, it is subject to interference from all the devices sharing the same coalition. In

addition, at a distance ri = R/2, as the device is classified in the middle of the vector

of devices, half of the interfering users can be removed. Whereas, for the farthest one
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at a distance ri = R which has the lowest channel gain, since the signals of all the

stronger devices are already decoded before decoding its own signal, it perceives a

very low interference level.

Finally, each device can determine its SINR value and its utility in response to the

estimated interference as:

γmean(t, s) =
p(t)|h(t)|2

σ2 + Ĩi(t)
, (5.15)

Umean(t, s) =
f(γmean(t, s))

p(t)
. (5.16)

5.4.2 Mean field game equations

Commonly, solving a MFG relies on the two combined equations HJB and FPK given

in Chapter 2 as (2.5) and (2.6). The former equation rules the decision making process

of each individual user in response to the mass behavior of its opponents, while the

latter equation controls the mean field’s evolution according to the players’ decisions.

Proposition 5.4. Using the state equation given by (5.2), we write the HJB and

FPK equations as (5.18) and (5.17) respectively:

∂m(t, h)

∂t
− qw1,n(t)∇hR

m(t, h)− qw2,n(t)∇hI
m(t, h) = 0. (5.17)

∂v(t, h)

∂t
= max

p(t)
[Umean(t, s, p(t))− qw1,n(t)∇hR

v(t, h)− qw2,n(t)∇hI
v(t, h)]. (5.18)

Proof. By invoking the expression of the Nabla operator, the divergence of a vectorial

quantity u is given by: ∇u = ∂ux
∂x +

∂uy

∂y + ∂uz
∂z = ∇ux +∇uy +∇uz. In our work, the

evolution of the system is governed by the evolution of the state s(t) = {h(t), k} =

{hR(t), hI(t), k}. Therefore, the components of a vector are along hR, hI and k axes

and thus we have ∇su =
∂uhR
∂hR

+
∂uhI
∂hI

+ ∂uk
∂k . On the other hand, in our case, we have

u = (m(t, s)∂s∂t ). Hence

∇s(m(t, s)
∂s

∂t
) =

∂(m(t, hR)
∂hR
∂t )

∂hR
+
∂(m(t, hI)

∂hI
∂t )

∂hI

= ∇hR
(m(t, hR)

∂hR
∂t

) +∇hI
(m(t, hI)

∂hI
∂t

).
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Using the state equation defined as

ds(t) = dh(t) =
dg(t)

l
=

(
−qw1,n(t)dt

−qw2,n(t)dt

)
=

(
∂hR(t)

∂t dt
∂hI(t)
∂t dt

)
.

in FPK equation, given as (2.6), we end up with the following FPK equation:

∂m(t, h)

∂t
− qw1,n(t)∇hR

m(t, hR)− qw2,n(t)∇hI
m(t, hI) = 0.

In the same way, we have derived the HJB equation.

Definition 5.4. The formulated MFG is expressed as a combination of two funda-

mental equations, namely the HJB and the FPK given as (5.18) and (5.17) respec-

tively.

Based on the mean field theory, the HJB equation (5.18) rules the computation of

the value function v(t, h) and the optimal power control policy Q∗(t) to be adopted

in response to any given mean field. On the other hand, the FPK equation (5.17)

controls the evolution of the density of devices m(t, h) in order to match the power

control policy returned by the HJB equation. The iterative resolution of these coupled

equations leads to the MFE.

Definition 5.5. The ping-pong interaction between the value function v(t, h) and the

mean field m(t, h) converges to a stable combination of v∗(t, h) and m∗(t, h), which

corresponds to MFE.

The solutions of the HJB (5.18) and FPK (5.17) equations, at time t and state s,

are the value function v(t, h) and the mean field m(t, h) respectively. Once, the value

function is obtained, the power control policy Q(t) can be deduced. Furthermore,

the evolution of the system density m(t, h) depends on what the HJB equation can

return as a value function v(t, h) whereas, m(t, h) in its turn impacts the computation

of v(t, h). Thereby, this interaction leads to the convergence point, namely the MFE

which can be achieved by invoking the finite difference method.
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5.5 Algorithm design of Mean Field Game

In this section, we focus on the finite difference to solve the set of mean field equations

for the proposed game. According to the finite difference method [129], we discretize

the time interval [0, T ], and the channel state spaces [0, hmax
R ], [0, hmax

I ] into X×Y ×Z
spaces. Since, the mean field’s evolution takes place in three-dimensional space of time

and state components, we define the iteration steps of time and state spaces as

δt =
T

X
, δhR

=
hmax
R

Y
, δhI

=
hmax
I

Z
,

respectively. Therefore, we have a set of the time points given as: t = {0, 1 ∗ δt, 2 ∗
δt, . . . , X ∗δt} and sets of state components defined as hR = {0, 1∗δh, 2∗δh, . . . , Y ∗δh}
and hI = {0, 1∗δh, 2∗δh, . . . , Y ∗δh}. On the other hand, the value function V (t, h) as

well as the mean fieldm(t, h) can be rewritten as V (x, y, z) andm(x, y, z) respectively,

where 0 ≤ x ≤ X, 0 ≤ y ≤ Y and 0 ≤ z ≤ Z.

5.5.1 Solution to the FPK equation

In order to solve the forward equation, the Lax-Friedrichs method [130] is used. Thus,

the FPK equation derived in (5.17) can be extended and depicted as

M(x+ 1, y, z) =
1

2
Ψ +

qδt
2δhR

Φ+
qδt
2δhI

Ω, (5.19)

where

Ψ =M(x, y − 1, z) +M(x, y + 1, z) +M(x, y, z − 1) +M(x, y, z + 1), (5.20)

Φ =M(x, y + 1, z)W1,n(x, y + 1, z)−M(x, y − 1, z)W1,n(x, y − 1, z), (5.21)

Ω =M(x, y, z + 1)W1,n(x, y, z + 1)W2,n(x, y, z + 1)

−M(x, y, z − 1)W1,n(x, y, z − 1)W2,n(x, y, z − 1),
(5.22)

M(x, y, z), W1,n(x, y, z) and W2,n(x, y, z) denote the modified values of m(t, h), w1,n

and w2,n at time x with the channel states y and z in the discretized grid, respectively.
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5.5.2 Solution to the HJB equation

Upon adopting the discretization method, the complicated derivative expressions
∂v(t,h)

∂t , ∇hR
v(t, h) and ∇hI

v(t, h) can be reformulated as

∂v(t, h)

∂t
=
v(x, y, z)− v(x− 1, y, z)

δt
, (5.23)

∇hR
v(t, h) =

v(x, y, z)− v(x, y − 1, z)

δhR

, (5.24)

∇hI
v(t, h) =

v(x, y, z)− v(x, y, z − 1)

δhI

. (5.25)

Each device has to solve the HJB equation to determine its transmit power in any

state and at any time. Thus, for any arbitrary point (x, y, z) in the discretized grid,

by substituting (5.23), (5.24) and (5.25) into HJB equation (5.18), the value function

can be updated as follows:

max
p(x,y,z)

[Umean(p(x, y, z),m(x, y, z))− qw1,n
v(x, y, z)− v(x, y − 1, z)

δhR

− qw2,n
v(x, y, z)− v(x, y, z − 1)

δhI

] +
v(x, y, z)− v(x− 1, y, z)

δt
= 0.

(5.26)

In addition, at point (x, y, z) in the discretized grid, the optimal power control is

derived as:

p(x, y, z) = argmax
p(x,y,z)

[Umean(p(x, y, z),m(x, y, z))

−qw1,n
v(x, y, z)− v(x, y − 1, z)

δhR

− qw2,n
v(x, y, z)− v(x, y, z − 1)

δhI

].

(5.27)

Then, we obtain the optimal power strategy to be used in response to the collective

behavior modelled by Imean,

p(x, y, z) = γ∗
Ĩ(x) + σ2

|h(x, y, z)|2
, (5.28)

where γ∗ is the solution to

γf ′(γ)− f(γ) = 0. (5.29)



Algorithm design of Mean Field Game 91

5.5.3 Proposed algorithm of mean field game

Figure 5.1: Interaction process between HJB and PFK equations.

Algorithm 3: Distributed power control policy for MFG solution

Initialisation: M(0, :, :) :=joint mean field distribution, initial power levels;
Imean(0) := 0, Imean value for t = 0.
Output: optimal transmit power and mean field
for N = 1 : nbIter do

for x = 1 : 1 : X do
for y = 1 : 1 : Y do

for z = 1 : 1 : Z do
At each device:
Estimate interference level Ĩ(x) as (5.14)
Calculate power level ptemp(x, y, z) according to (5.28) with the
probability pt

if (ptemp(x, y, z) ≤ Pmax) then
Update power level p(x, y, z) = ptemp(x, y, z)
Calculate utility value Umean(x, y, z) as (5.16)

else
p(x, y, z) = 0
Umean(x, y, z) = 0

At the BS:
Update mean field M(x+ 1, y, z) using the update of (5.19)
Update MFI Imean(x+ 1) according to (5.13)

In this section, following the above derivations, we propose a distributed algorithm to

achieve iteratively the MFE for the formulated MFG through a power policy adap-

tation. We assume, in the proposed algorithm, that each device can only belong to

one coalition at a time and that it chooses to join the group corresponding to its best
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channel. Initially for t = 0, there is no interference, each device starts by calculating

its transmit power. Then, after transmitting, the BS becomes aware of the trans-

mit power of each device, its chosen channel gain and the corresponding sub-carrier.

Once, the BS collects the information from different MTDs, it calculates the mean

field value and the MFI for t+1. Then, the BS broadcasts the calculated value of the

aggregated interference as feedback information to the set of devices. Each of them,

estimates its interference level Ĩ from its perspective based on its location and then

determines its power level as well as its utility in response to the estimated interfer-

ence. This interaction between the BS and every device is shown in Figure 5.1. A

summary of the developed algorithm is provided in Algorithm 3 and its effectiveness

is proven numerically by simulations in the next section.

5.6 Simulation Results

In this section, we present comprehensive Matlab-based simulations of the proposed

MFG-based power control, described in the previous sections. We consider a Hybrid

NOMA scenario composed ofN devices which are independently distributed according

to the homogeneous PPP process of density ωN . As explained above, the devices are

divided into K coalitions, where the members of each coalition use one sub-carrier to

transmit their packets. The main simulation parameters are summarized in Table 5.1.

Table 5.1: System Parameters

Parameter Value

System effective bandwidth BW 5.4MHz

Density of homogeneous PPP, ωN 0.1

Cell range, R 200m

Bandwidth of a sub-carrier 180KHz

Number of available sub-carriers K 20

Maximal frequency reuse, α 5

Time interval, T 0.3 s (i.e. 30 LTE frames)

SINR value satisfying (5.29), γ∗ 6.4 (or 8.1 dB)

In the first part of this section, we evaluate the performance of the proposed MFG

and illustrate the equilibrium properties of the proposed power control approach.
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Subsequently, we provide a comparison with other existing techniques in the second

part.

5.6.1 Performance metrics

In order to highlight the properties of our approach, we rely on the following metrics:

• Packet success rate: is calculated as the ratio between the number of users that

have successfully transmitted and the number of active users (that have decided

to transmit in the current time slot).

• Average transmission rate: is determined as the ratio between the number of

users that have successfully transmitted and the total number of users in the

system.

• Average utility: is the ratio of the sum of the utility values of devices whose

packets have been successfully decoded by the BS to the total number of users

in the system.

• Average energy: similarly to the average utility, the average energy consump-

tion is calculated based on the energy consumed by the devices which have

successfully delivered their packets.

5.6.2 Behavior of the game at the equilibrium

Throughout this section, the depicted results correspond to different numbers of

MTDs, i.e. N = 2000, N = 4000, N = 6000, N = 8000 and N = 10000, shar-

ing K = 20 sub-carriers in a Hybrid NOMA network.

In Figure 5.2, we illustrate the evolution of the packet success rate over the time. As

we can clearly see, this rate converges at t = 10 ms to about 0.68 (68% of success

rate). It is substantially interesting to observe that regardless of the number of devices

playing the game, the system achieves the same packet success rate and becomes

steady at the same point. This is mainly due to the fact that the devices adapt

their transmission strategies to feedback received from the BS. Roughly speaking, we

have the same average number of devices that simultaneously would transmit their

packets. Consequently, each user has the same chance to successfully deliver its packet

regardless of the total number of its opponents in the system.
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Figure 5.2: Packet success rate versus T when K = 20.

It is worth noting that the evaluation of our game’s performance in terms of the packet

success rate and the illustration of its variation with respect to time, as shown in Fig-

ure 5.2, perfectly reflects the variation of the MFI over the time. In fact, initially,

there is no interference, so a large number of users choose to transmit, which never-

theless has an impact on the transmission success of each of them since the BS may

fail in the decoding procedure while applying the SIC to separate the superimposed

signals. Hence, the packet success rate is about 0.43. Then, the BS determines the

MFI based on the received information from the participating devices and broadcasts

it to the set of users. Now, the latter are facing a considerable interference level,

wherefore some devices may not be able to regulate their transmit power to achieve

γ∗ while dealing with the received MFI. Thus, few users would choose to transmit

their messages during this time slot. Subsequently, the BS is able to decode most of

them successfully which results in an interesting value of packet success rate, about

0.88. After a certain time, i.e. t = 10 ms, this ”ping-pong” interaction between the

MFI and the users’ responses leads the packet success rate to reach its convergence

point.

Figure 5.3 shows the average transmission rate over the time slots. It can be observed

that this rate stagnates at t = 10 ms, however the convergence values for the four

cases are different, the one reached by N = 2000 devices is greater than those achieved

by the other cases. This result is somehow intuitive since when we have N = 2000

devices, the system is the most sparse compared to the other cases. Therefore, the
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devices perceive much less interference than that encountered by 10000 for example.
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Figure 5.3: Average transmission rate versus T when K = 20.
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Figure 5.4: Average utility versus T when K = 20.

Figures 5.4 and 5.5 depict respectively the average utility and the average energy

consumption over the time T for the devices that have successfully delivered their

packets. It can be concluded from these figures that users manage to reach a stable

point at t = 10 ms in terms of the utility and the energy consumption. Interestingly,

the behavior of figures 5.4 and 5.5 follow that of Figure 5.3 and they converge at

the same time slot, which illustrate the equilibrium achieved by our proposed MFG.

In other words, our approach settles down at the point where the players that have
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Figure 5.5: Average energy consumption versus T when K = 20.

succeeded in transmitting, become satisfied with both their energy consumption and

utility. It is noteworthy that for the case when N = 2000, the devices may reach

the highest utility value while consuming more energy than the other cases. This is

owing to the fact that these performances are measured with respect to the ratio of

the number of devices that successfully transmitted to the total number of devices

presented in the system, illustrated in Figure 5.3.
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Figure 5.6: Average utility versus N when K = 20.

Figure 5.6 and 5.7 depict respectively the average utility and average energy consump-

tion as a function of the number of devices N . It can be observed in these figures that

the average utility value as well as energy consumption decrease as N increases. This

is mainly due to the interference effects which become more significant as the system
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Figure 5.7: Average energy consumption versus N when K = 20.

becomes denser. Consequently, the transmission success of the devices becomes more

challenging.

5.6.3 Comparison

This section is devoted to the comparison of the proposed approach in this chapter

with the Bi-level theoretical framework investigated in Chapter 4 and with the game-

theoretic approach NM-ALOHA game given in [100]. Throughout this section, we

consider different scenarios composed of 200 ≤ N ≤ 1600 MTDs competing over

10 ≤ K ≤ 20 sub-carriers.

5.6.3.1 Packet success rate

Figure 5.8 displays the packet success transmission rate with respect to the number

of sub-carriers K and the number of devices N . It can be observed from this figure

that as the number of devices increases, the packet success rate decreases drastically

for both the NM-ALOHA game and the Bi-level game NOMA due to the interference

effects, while the proposed MFG enables no matter how many devices in the system

to achieve the same rate. As explained above, this is due to the fact that the de-

vices adapt their transmission strategies to feedback received from the BS. It can be

concluded from this figure that the benefit of adopting our approach is particularly

highlighted when the network is made up of a large number of devices, that is to say

N = 1600, since in this case the packet success rate reaches up 0.688 when K = 20
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while it is about 0.1508 for the Bi-level game NOMA and 0.0124 for the NM-ALOHA

game. This means that the packet success rate is improved by 356, 233% over our pre-

vious work on the Bi-level game. Thus, this figure significantly reveals the robustness

of our proposed game against the interference impact since it still achieves acceptable

performances. Consequently, our approach is well appropriate to deal with densely

deployed networks.
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Figure 5.8: Packet transmission rate with success for different N and K.

5.6.3.2 Total throughput

We illustrate in Figure 5.9 the total throughput of our proposed scheme versus the

Bi-level game NOMA and the NM-ALOHA game as a function of the number of

sub-carriers K and the number of MTDs N . As we can clearly see, when the system

is relatively sparse, the highest throughput is achieved with Bi-level game NOMA.

However, as the number of devices increases and the network becomes denser, the

total throughput decreases for both Bi-level game NOMA and NM-ALOHA game

whereas, our proposed technique still provides an acceptable throughput. In fact, in

Figure 5.10, we show that the total throughput is not influenced by the increasing

number of users N , on the contrary it achieves a steady value for the different sce-

narios, resulting in an important improvement of 78, 335% compared to the Bi-level

game when N = 1600. Unsurprisingly, this result is somehow expected due to two

reasons. Firstly, the throughput is calculated with respect to the devices which have
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successfully transmitted. Secondly, we demonstrated, in Figure 5.8, that when the

devices are competing over the same number of sub-carriers, e.g, K = 20, they have

almost the same chance to successfully deliver their messages. Hence, our proposed

framework outperforms other techniques in terms of robustness to interference effects,

allowing the MTDs, regardless of their number, to achieve an acceptable throughput.
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Figure 5.9: Total throughput of devices for different N and K.
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Figure 5.10: Total throughput versus N when K = 20.
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5.6.3.3 Average utility

In our game, the proposed utility function, which has units of bits/joule, serves to

measure the total number of reliable bits transmitted per joule of energy consumed so

that it can be used to assess the energy efficiency in the NOMA network. Therefore,

we focus now on the effect of the number of sub-carriers K on the energy efficiency

of a scenario composed of N = 1600 users. As can be seen clearly in Figure 5.11,

the average utility is increasing as K increases. In fact, the more the network is

divided into coalitions, the fewer the devices are in each coalition, the less interference

they face. As expected, our proposed approach yields an interesting performance

enhancement in the average utility and even surpasses the Bi-level game NOMA

and the NM-ALOHA game as the number of sub-carriers increases, reaching up 4.72

against 3.15 for the Bi-level game NOMA and 0.10 for the NM-ALOHA game when

K = 20. More precisely, the proposed MFG can greatly boost the average utility

by 49, 841% over the Bi-level game NOMA. Hence, we clearly notice the benefit of

our MFG in terms of the average utility. This is owing to the fact that the proposed

power strategy takes into account the MFI, so that each device can respond effectively

to the collective behavior by regulating its transmit power and then determining its

utility value.
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Figure 5.11: Average utility versus K when N = 1600.
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5.6.3.4 Energy consumption

Now, we investigate the energy consumption of the proposed MFG under several

scenarios of N users and K sub-carriers. For this purpose, we adopt the same model

provided in Chapter 4 in order to assess the energy consumption. Figure 5.12 depicts

the average energy consumption for the different techniques. As we have mentioned

above, we have considered the energy consumption of the devices whose packets have

been successfully decoded by the BS. Indeed, as we have shown in Figure 5.8, the

proposed scheme enables the users to have a good packet success rate, especially

for a dense network, compared to the Bi-level game NOMA and the NM-ALOHA

game, which means that our game yields the highest average number of users that

successfully transmitted for almost all scenarios. Meanwhile, the proposed game,

as illustrated in Figure 5.12, enables the devices to reduce their energy consumption

compared to the other schemes. Indeed, Figure 5.13 mainly spotlights the comparison

between the proposed MFG and the NM-ALOHA game and clearly shows that with

the aid of the MFG the energy consumption is minimized by 73, 945%.
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Figure 5.12: Average energy consumption for different N and K.

5.7 Conclusion

In this chapter, we have investigated the effect of the aggregated interference perceived

by each device on the power control in ultra-dense networks. We have considered that

BS does not perform the resource allocation and only broadcasts a feedback in order
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to alleviate the performance drop associated with almost all grant-free techniques

in dense scenarios. We have first proposed a differential game to address the power

allocation problem, then we have turned our attention to an equivalent tractable MFG

which drastically reduced the mathematical complexity of the proposed scheme since

it can be characterized by the two combined equations HJB and FPK. More precisely,

the substantial idea of the presented framework is to model the mass behavior of the

active devices as the mean field and allow each of them to react in response to the

MFI received from the BS as feedback information, thus considerably simplifying the

resolution of the game. An iterative algorithm is derived to approach the MFE by

paving the way for a distributed control in which the devices adjust autonomously

their transmit power levels according to the MFI. Simulation results are presented to

illustrate the equilibrium behaviors of the game under consideration and demonstrate

the robustness of the formulated MFG compared to other existing approaches in the

literature, especially in the presence of a dense population.

In the next chapter, we extend the proposed MFG approach with the aid of a RL

tool to make the devices able to choose the appropriate coalition while dealing with

the effect of the collective behavior captured by the MFI.
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6.1 Introduction

Usually, wireless communication networks are characterized by an important level

of interference encountered by each user. In an effort to alleviate the interference

effects, numerous research contributions have been devoted to modeling the power

control problem under game theory setting [31, 91, 97, 99, 100, 131]. Furthermore,

game theory is applied to suitably derive distributed algorithms that aim to optimize

the resource allocation for densely deployed IoT networks [113]. For instance, the

MFG has increasingly gained attention in wireless communication networks, namely

when a large number of users are involved. Interestingly, the MFG simplifies the

resolution of the power control by drastically reducing the mathematical complexity

of the problem to a two-body complexity rooted in two tractable combined HJB and

FPK equations. Afterward, the MFE is obtained by iteratively solving these coupled

equations. Conventionally, the finite difference method is invoked to approach the

MFE [129]. Nevertheless, when the game is characterized by large state and action

spaces, applying the finite difference method requires a higher computational burden.

As an alternative method, RL techniques have been exploited as a sophisticated

tool to solve the MFG [122, 123, 132, 133]. Particularly, the MAB framework [134],

which represents an important class of RL algorithms, has been specifically adopted to

optimize the resource allocation problems in the context of wireless networks. Indeed,

the amalgam of MFG and RL algorithms has garnered a substantial attention as it

provides useful insights into how to effectively deal with the resource management

problems. The authors, in [132], have designed an RL-based MFG algorithm with the

intention of maximizing the sum-rate among users in the context of unmanned aerial

vehicle-enabled mmWave systems. Shi et al. have considered in [133] a cooperative

multi-access edge computing framework and have resorted to the deep RL tool to

learn the optimal policy in order to achieve the Nash equilibrium of the MFG. [123]

and [122] have first applied the MFG framework to model the collective behavior

of multi-user NOMA scenarios in mobile edge computing systems. Then, deep RL

algorithms have been proposed to solve the game and optimize the resource allocation

issues between different users in NOMA clusters. Concomitantly, within the MAB

framework, there are some contributions have examined the NOMA approach, such

as [135–137]. In fact, the authors of [135] have been interested in organizing the

transmissions of users as well as their power allocation strategies by invoking the
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MAB framework. In [136], a distributed MAB algorithm has been proposed in order

to handle the channel access and power control issues, whereas in [137] a MAB learning

approach has been conceived to address the scheduling problem for fast-grant MTDs.

In this chapter, we propose a RL approach based on the mean field theory in order to

jointly solve the resource allocation and power control problems in a Hybrid NOMA

scenario. We more specifically investigate the MAB algorithm to model the compet-

itive behaviors of the players over the set of arms, i.e. set of available RBs, with an

eye toward maximizing their rewards.

At the time of writing, although the literature provides some contributions that have

combined the MFG and the RL techniques and others that have applied the MAB

algorithm in NOMA-based networks, there is no published literature that has inves-

tigated the combination of the MFG framework and the MAB approach underlying

NOMA networks. To the best of our knowledge, our proposed approach is the first

work that focuses on jointly solving the channel selection and power control prob-

lems using MFG-based MAB approaches for Hybrid NOMA scenarios. The main

contributions of this work can be given as follows:

• We examine a Hybrid NOMA-based network composed of several coalitions of

devices. The members belonging to each group share a single sub-carrier to

transmit their signals.

• We extend the MFG approach proposed in the previous chapter by invoking a

RL-based scheme. Thus, unlike what we have investigated in Chapter 5, we aim

to solve the formulated MFG using MAB frameworks instead of the traditional

finite difference method.

• We propose a resource allocation technique based on a bi-level learning with

the aim of jointly optimizing the user clustering and power control problems.

In fact, we derive distributed MFG underlying MAB algorithms in which the

MAB technique is invoked to enable the MTDs to self-organize into coalitions.

Then, the MFG is applied such that MTDs can adjust their transmit power

levels based on the received MFI.

• The two developed MFG-based MAB algorithms are designed with the aid of

the ϵ-decreasing greedy and the Upper Confidence Bounds (UCB) methods in
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order to address the action selection problem for the MAB approach and thus

allow the devices to decide which coalition it is better to belong to.

• Regret analysis is presented to evaluate the performance of the proposed MFG-

based MAB techniques. We show that the regret incurred during the learning

process evolves logarithmically.

• We provide numerical simulations that underline the features of the combined

MFG and MAB frameworks under several scenarios made up of different num-

bers of devices and sub-carriers.

In the light of the above, we construct the rest of this chapter as follows. We discuss

the problem formulation of this chapter in the next section. Section 6.3 is devoted

to derive two distributed MFG-aided MAB algorithms in order to address the joint

problems of the sub-carrier selection and power allocation. To assess the performance

of the proposed approaches, numerical results are provided in Section 6.4. Finally,

Section 6.5 concludes the present chapter.

6.2 Problem Formulation

Similar to Chapter 5, we consider a dense NOMA scenario in which a large number of

users are involved. The uplink power control is formulated as a MFG where the HJB

and FPK equations model the mass behavior of the devices as a MFI that each user

has to interact with in order to make its decision. Particularly, This MFI is given as:

Imean(t) = α

∫
|h(t)|2p(t)m(t, h)dh. (6.1)

Then, the BS broadcast the obtained value of the MFI as a unique feedback to

the devices participating in the game. Once each of them receives this feedback, it

estimates its interference level from its perspective as:

Ĩi(t) =
(
1− ri

R

)
Imean(t). (6.2)

Upon invoking the finite difference method, we have obtained the expression of the

optimal power control as:

p(t) = γ∗
Ĩ(t) + σ2

|h(t)|2
(6.3)
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The aforementioned approach relies on the fact that each user, at each time t, joins

the cluster that corresponds to its best channel. Now, if a device aims to deviate

from its current coalition, it needs to choose which coalition is preferable to be part

of. Such a decision requires usually more information about the other coalitions.

In other words, in this chapter we seek to make the devices autonomous in their

choice of groups while modeling their behavior in each group as the mean field, so

that each device can regulate its transmit power in response to the MFI. In this

case, we are dealing with the joint optimization problems of the user grouping and

the power control. Thereby, applying the finite difference method to solve these

combined problems is not practically affordable, especially for high-dimensional state

and action spaces. With this in mind, we spotlight RL-based approaches, particularly

MAB framework in the following.

6.3 Multi-armed bandit framework

In this section, we formulate the joint user grouping and power allocation problems

in a MFG framework underlying a multi-user MAB approach. Firstly, the devices

invoke the MAB tool to arrange themselves into multiple NOMA coalitions. Then,

within each coalition, the MTDs apply the MFG approach to autonomously adjust

their transmit power based on limited feedback received from the BS.

We propose two MFG-based MAB algorithms using the ϵ-decreasing greedy and UCB

techniques in order to enable each user to make a move upon selecting an arm with

the aim of maximizing its own utility. In this direction, we define the set of devices

as the set of learners and the available RBs as the arms to be chosen by each learner.

Let Ai = {a1 . . . aK} denotes the set of possible arms for each device i. Indeed, at

time slot t, the player i first pulls an arm ai, then it joins the coalition corresponding

to this chosen RB. Secondly, it determines the appropriate transmit power pi(t, ai) to

be used by being part of the chosen coalition while addressing the MFI received from

the BS. After transmission, the BS informs each user whether its packet was received

and decoded successfully or not by sending back a reward value ri(t, ai), allowing it

in turn to determine its utility value Ui(t, ai). In fact, we assume that upon selecting

its arm ai and calculating the corresponding power coefficient pi(t, ai), the player

transmits its message to the BS. The latter applies the SIC procedure to separate the
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superimposed signals. Thus, if the packet of the player i is successfully decoded, it

receives ri(t, ai) = 1 and its utility is calculated as in the equation (5.16). Otherwise,

it receives ri(t, ai) = 0 which implies that the user has no utility by choosing the arm

ai at time t.

Algorithm 4: ϵ-decreasing greedy

Input: ϵ0, Q(j, :), T
for t = 1 : T do

ϵt = min(1, ϵ0t ) Generate a random number x ∈ [0, 1] if x < ϵt then
select aj randomly

else
aj = argmax

a∈A
Qt(j, a)

6.3.1 ϵ-decreasing greedy

The ϵ-greedy method is widely used as one of the most prominent solution concepts for

the arm selection problem in the MAB framework [134]. It allows users to explicitly

manage an exploration-exploitation trade-off with an exploration rate ϵ. Indeed, at

each time slot, each device decides either to explore or exploit. In other words, it

arbitrarily picks an arm with a probability ϵ or it selects with a probability of 1− ϵ,

the optimal arm which gives it the highest average reward Qt(i, :) considering the

past observations. Nevertheless, if the exploration parameter ϵ is constant for the

entire-process, we end up with a sub-optimal allocation and a linear regret, which

in turn affect the overall system performance. In order to overcome this issue, the

exploration coefficient ϵ has to be adjusted over the time. Thus, in our work, we apply

the ϵ-decreasing proposed by [138] whose key idea is outlined in the Algorithm 4. In

fact, we define the adaptation of time-dependent exploration parameter as follows:

ϵt = min(1,
ϵ0
t
), (6.4)

where ϵ0 > 0 is the initial exploration parameter. In this way, at the beginning of the

learning process, more exploration is performed, allowing each user to discover the

arm space as much as possible. Then, ϵt is dynamically regulated as a function of the

learning time. Thus, the user can now properly select its best arm according to its

acquired experience.
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Algorithm 5: Parameters update

for t = 2 : T do
for j = 1 : N do

st(j, aj) = st−1(j, aj) + rj(t, aj);
nt(j, aj) = nt−1(j, aj) + 1;

Qt(j, aj) =
st−1(j,aj)
nt−1(j,aj)

Algorithm 6: ϵ-decreasing MFG-based MAB method for joint channel selection
and power control: ϵ-decreasing MFG

for t = 1 : T do
for j = 1 : N do

Select an arm aj using Algorithm (4) of ϵ-decreasing greedy
Estimate the interference level Ĩ(t, aj) as (6.2)
Calculate the power level pj(t, aj) according to (6.3).
Update parameters using Algorithm (5).

At the BS:
Update the mean field and then the MFI Imean(t+ 1) according to (6.1).

6.3.2 Upper Confidence Bounds algorithm

UCB algorithm was first proposed by [138], and broadly adopted to deal with the

action selection problem in MAB setting. Unlike ϵ-decreasing greedy method, UCB

implicitly distinguishes between exploration and exploitation phases by selecting the

arm associated with the highest average reward given the past observations. This

arm is known as the UCB index and given by the following equation for each user

i ∈ N :

ai(t) = argmax
a∈A

[
Qt(i, a) +

√
2 log(t)

nt(i, a)

]
(6.5)

where nt(i, ai) is the number of times the arm ai has been played during the previous

time slots. In fact, the UCB index at time slot t gathers two components, an upper

confidence bias ψt(ai) =
√

2 log(t)
nt(i,ai)

and the average reward Qt(i, :) of playing the arm ai

up to time t. Particularly, ψt(ai) which depends on nt(i, ai), is used to encourage the

exploration and serves as an interval around the average reward. Thus, the more the

arm is played, the more this interval is shrunken, which in turn reduces the probability

of discarding this arm in the future observations. Consequently, UCB concept tends
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to effectively meet the trade-off between exploration and exploitation.

Algorithm 7: UCB MFG-based MAB method for joint channel selection and
power control: UCB-based MFG

for t = 1 : T do
for j = 1 : N do

aj(t) = argmax
a∈A

[
Qt(j, a) +

√
2 log(t)
nt(j,a)

]
Estimate the interference level Ĩ(t, aj) as in (6.2)
Calculate the power level pj(t, aj) according to (6.3).
Update parameters using Algorithm (5).

At the BS:
Update the mean field and then the MFI Imean(t+ 1) according to (6.1).

6.3.3 Distributed learning algorithms with Multi-Armed Bandit

In this section, we derive two distributed MFG-based MAB algorithms to solve the

joint problems of the user grouping and power control in a Hybrid NOMA network.

The first algorithm, illustrated in Algorithm (6) , adopts the ϵ-decreasing greedy

method whereas the second algorithm, depicted in Algorithm (7) , resorts to the

UCB method with the aim of efficiently performing the decision-making process. For

the two proposed methods, we assume that a device can only belong to one coalition

at a time. At each time slot t, each learner j pulls an arms aj that represents the

sub-carrier to use in order to deliver its packets. Thus, it joins the coalition associated

with this arm.

When the user attempts to access the channel, it implicitly uploads to the BS informa-

tion about its state and the selected arm. Subsequently, the BS broadcasts feedback

information about the MFI Imean(t) expressed in (6.1). Then, from its perspective,

each device can estimate its interference level Ĩ(t, aj) as in (6.2), according to its dis-

tance from the BS and calculates its power level pj(t, aj) in response to the estimated

interference. After the transmission, once the BS processes the SIC procedure, each

user receives the reward rj(t, aj) that allows it to update its parameters as indicated

in the Algorithm 5. At the end of time slot t, the BS updates the mean field m as

well as the MFI Imean for time slot t+1. This interaction between each user and the

BS is illustrated in Figure 6.1.
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Figure 6.1: Interaction process between any device and the BS.

6.3.4 Regret analysis

The performance measure of the MAB approach is commonly based on the calculation

of the total expected regret incurred during the learning process. Generally, it is

defined as the difference between the actually obtained reward and the one that

would have been obtained if the optimal arm had been selected. The expected regret

over a period of T ′ time slots can be expressed as

Ri = T ′r∗i −
T ′∑
t=1

E[ri(ai(t))]. (6.6)

Since in the approach under consideration we have α users that can simultaneously

transmit at a given time, the total expected regret is given by:

RMAB = T ′
α∑

i=1

r∗i −
∑
i

T ′∑
t=1

E[ri(ai(t))]. (6.7)

where ri(ai(t)) is the reward of the i-th device acquired at time t and r∗i is its optimal

reward.
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6.3.4.1 Regret of ϵ-decreasing MFG algorithm

Now, we analyze the regret incurred when the ϵ-decreasing MFG Algorithm (6) is

invoked. In doing so, we start by showing that learning the best arm can be performed

in finite time as Lemma 1:

lemma 1. The proposed ϵ-decreasing MFG algorithm identifies an ϵ-best arm with

at least probability 1− δ when an arm sampling is carried out l times, where:

l =
1

2ϵ2
log(

2K

δ
). (6.8)

with δ ∈ [0, 1] denotes the probability of failure.

Proof. Denote by ϵ′-best arm a′ an arm whose reward r′ is different from the best

reward r∗ by less than ϵ, that is: |r∗− r′| ≤ ϵ′. Indeed, the user needs to sample each

arm l times in order to obtain ϵ′-best arm with a probability 1− δ
K . Thus, we have

P (|r∗ − r′| > ϵ′) ≤ δ

K
. (6.9)

On the other hand, according to the Hoeffding inequality, we obtain:

P (|r∗ − r′| > ϵ′) ≤ 2e−2lϵ2
′
. (6.10)

Consequently, we end up with:

l =
1

2ϵ2′
log(

2K

δ
). (6.11)

Henceforth, when a device samples an arm l times, ϵ-best reward is obtained with a

probability 1− δ
K .

lemma 2. All the devices can learn their best arms with a high probability, at least

1− δ, by adopting the proposed ϵ-decreasing MFG algorithm T ∗ rounds, where

T ∗ =
l

α(1− 1
N )(N−1)

. (6.12)

Proof. We have shown, in Chapter 5, that the probability of successfully decoding
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user’s packet can be defined as Ps =
α
N (1− 1

N )(N−1). Therefore, the collision proba-

bility Pc of the set of N players over K sub-carriers can be given as:

Pc = 1−
N∑

n=1

K∑
k=1

α

N
(1− 1

N
)(N−1)

= 1−N.K.
α

N
(1− 1

N
)(N−1)

= 1− αK(1− 1

N
)(N−1).

(6.13)

Hence, the number of successful samples for a given arm over a period of time t is

expressed as follows:

Ns = (1− Pc)
t

K
= αt(1− 1

N
)(N−1), (6.14)

For a period of T ∗ time slots, we have Ns = l which in turn results in:

T ∗ =
l

α(1− 1
N )(N−1)

. (6.15)

lemma 3. The expected regret incurred over a horizon T by N devices employing the

proposed the ϵ-decreasing MFG algorithm over K arms is upper bounded as follows:

Rϵ−decreasingMFG = O(log T ). (6.16)

Proof. The regret accumulated during a period of time t can be analyzed as the sum

of the regret incurred during the two phases, i.e. the exploitation phase R1(t) and

the exploration phase R2(t). Once a given user pulls a random variable that allows

it to explore and choose its best arm learned during a period of t time slots, it will

not regret, i.e. R2(t) = 0. On the other hand, the exploration probability for our

proposed approach at time t is given as ϵt = min(1, ϵ0t ). Subsequently, for each device,

the expected regret accumulated during the exploration phase over a period of time

t can be given as

R2,i(t) ≤
t∑

t′=1

ϵt′ = ϵ0 +
t∑

t′=ϵ0+1

ϵt′ . (6.17)
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The discrete sum can be approximated using an integral:

R2,i(t) ≤ ϵ0 + ϵ0

∫ t−1

ϵ0

1

x
dx = ϵ0 + ϵ0 log(

t− 1

ϵ0
). (6.18)

Then, the total expected regret incurred by all MTDs is bounded by:

R2(t) ≤ Nϵ0 +Nϵ0 log(
t− 1

ϵ0
) ≤ Nϵ0 +Nϵ0 log(t) = O(log t). (6.19)

6.3.4.2 Regret of UCB-based MFG algorithm

Based on [138], the expected regret accumulated by invoking the UCB-based Algo-

rithm (7) over a time period of T ′ is upper bounded by:

RUCB−basedMFG ≤ 8N log(T ′)
K∑
j=2

1

∆j
+ 4N

K∑
j=2

∆j (6.20)

where ∆j = r∗− rj(aj) is the deviation function that measures the instantaneous loss

of playing an arm aj by a player j.

In the next section, we present some numerical results to analyze the equilibrium be-

haviors of the proposed MAB approaches and demonstrate their effectiveness against

the interference impact.

6.4 Simulation Results

In this section, we use extensive Matlab-based simulations to validate the proposed

algorithms. Particularly, we consider a Hybrid NOMA system made up of N devices

occupying K sub-carriers. At each time t, each user belongs to only one coalition and

communicates with the BS via the sub-carrier assigned to that coalition. Simulation

parameters introduced in Table 5.1 of Chapter 5.

Firstly, we assess the performance of the proposed ϵ-decreasing MFG Algorithm (6)

by illustrating its convergence properties. Then, we provide comparisons between the

two proposed approaches, i.e. the ϵ-decreasing MFG Algorithm (6) and the UCB-

based MFG Algorithm (7), and other existing techniques in the literature.
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6.4.1 Performance metrics

In order to spotlight the features of our MFG-based MAB techniques, we adopt the

following metrics:

• Number of active devices per coalition: is the average number of devices that

can transmit simultaneously in each group at each time slot.

• Packet success rate: is the ratio between the number of MTDs whose packets

have been successfully decoded and the number of active MTDs that decided

to transmit.

• Average transmission rate: is calculated as the ratio of the number of users

whose packets have been successfully decoded to the total number of MTDs in

the system.

• Average utility: we assume that the utility function is calculated only when the

user satisfies the SINR requirement which means when its SINR is higher than

the SINR threshold γth. In another word, the user has a utility value if the

BS succeed in decoding its signals upon executing the SIC, otherwise it has no

utility. Thereby, the average utility is the ratio between the utility of the users

whose signals have been successfully retrieved by the BS and the total number

of MTDs.

• Average energy: Similar to the calculation of the average utility, the average

energy is calculated by considering the energy consumed when a device achieves

a successful transmission.

6.4.2 Behavior of the ϵ-decreasing MFG approach at the equilibrium

Throughout this section, we evaluate our proposed ϵ-decreasing MFG technique for

multiple Hybrid NOMA scenarios in which we have N users: N = 2000, N = 4000,

N = 6000, N = 8000 and N = 10000, transmitting over K = 20 sub-carriers within

a time period T = 0.3 s (i.e. 30 LTE frames). The ϵ-decreasing MFG algorithm is

executed with the exploration parameter ϵ0 = 20.

We start by showing the packet success rate over time slots in Figure 6.2. It is

significantly interesting to observe that the rate settles at t = 10 ms to about 0.78

(78% of success rate). Furthermore, we can clearly see that this rate stagnates at
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Figure 6.2: Packet success rate with respect to T with K = 20.

the same value for the different cases. Thus, each MTD has the same chance of

successfully sending its message regardless of the network size. Interestingly, these

results reflect a significant interference management achieved through the appropriate

expression of the proposed access probability pt = α
N which ensures that the same

average number of devices are active in a given time slot. Consequently, our proposed

scheme can reduce the performance drop witnessed by almost all existing grant-free

schemes, especially in dense scenarios.
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Figure 6.3: Average transmission rate with respect to T with K = 20.

In Figure 6.3, we depict the average transmission rate with respect to the time slots. In

contrast to Figure 6.2, this rate stagnates at different values for the different network

sizes, since it depends on the total number of users in the system. Thus, the highest
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value is reached when the network is the most sparse, i.e., N = 2000. Then, the

average transmission rate decreases as the network becomes denser. This is mainly

due to the fact that the interference effects become more challenging in the denser

network.
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Figure 6.4: Average utility with respect to T with K = 20.
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Figure 6.5: Average energy with respect to T with K = 20.

Now, we measure the average utility as well as the average energy in Figure 6.4 and

6.5 respectively. It is interesting to note that these figures have the similar equilibrium

behavior to what we have shown in Figure 6.3, which emphasizes the convergence of

the ϵ-decreasing MFG approach. Hence, the proposed technique settles down at the

point where the players which achieve successful transmissions, meet their desired goal

of maximizing their utilities with less energy consumption. Interestingly, the highest
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utility value is achieved when N = 2000, but this results also in a higher energy

consumption than what can be observed in the other cases. These behaviors are

achieved since the average utility and the average energy consumption are respectively

obtained by calculating the utility values and the consumed energy of the MTDs that

have successfully transmitted, and then averaging over the total number of users in

the system. It is worth noting that we have used the same model of Chapter 4 to

evaluate the energy consumption of the proposed approach.

6.4.3 Comparison
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Figure 6.6: Number of active users per cluster with respect to T with K = 20.

Now, we provide a comparison between the ϵ-decreasing MFG algorithm, the second

proposed learning approach, i.e. UCB-based MFG algorithm, and the basic deter-

ministic algorithm of MFG approach developed in Chapter 5. The simulation results

obtained for this comparison, are devoted to the case of N = 2000 devices sharing

K = 20 sub-carriers over a training period duration of T = 500 time slots.

In Figure 6.6, we illustrate the average number of active devices that can transmit si-

multaneously per group with respect to the time slots. Upon comparing the proposed

ϵ-decreasing MFG and UCB-based MFG algorithms, we observe that the former yields

a higher value than the latter. However, this number reaches its highest value when

the MFG is adopted. This is mainly due to the fact that the MFG is a deterministic

approach, which means that each device has no other option than to join the cluster

corresponding to its best channel. In contrast, our proposed approaches allow each

device to choose its coalition according to the ϵ-decreasing greedy or UCB algorithms.
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Indeed, after making its choice, each user first estimates its interference level Ĩ ac-

cording to the equation (6.2) based on the MFI received from the BS for the chosen

coalition. Then, the user calculates its power level as in the equation (6.3), in response

to the estimated interference. Since the MFG technique requires each user to join the

coalition that corresponds to its highest channel gain, its transmit power is likely to

be less than the maximum transmit power, meaning that the user is able to cope with

the estimated interference level Ĩ by having an acceptable power level. On the other

hand, by invoking the MFG-based MAB algorithms, the user may join a coalition

that corresponds to a lower channel gain. In fact, facing an important interference

level while having a lower channel gain may require much more power than the device

can handle, i.e. a power level higher than the maximum transmit power. Therefore, it

withdraws to play this arm. Consequently, the proposed algorithms result in a lower

number of active devices per coalition than the MFG approach.
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Figure 6.7: Packet success rate with respect to T with K = 20.

Figure 6.7 and 6.8 display respectively the packet success rate and the average trans-

mission rate for the different techniques. Interestingly, as shown in Figure 6.7, UCB-

based MFG achieves the highest value of the packet success rate, about 78% of success

compared to the other techniques. Nevertheless, the MFG outperforms the MFG-

based MAB algorithms in terms of the average transmission rate, as depicted in

Figure 6.8. Indeed, when a user transmits its packet, it has more chance to achieve

a successful transmission by adopting the UCB-based MFG algorithm than invoking

the other approaches. But, the MFG allows more users to successfully transmit their

packets than the proposed approaches.
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Figure 6.8: Average transmission rate with respect to T with K = 20.

These results are somehow intuitive, since the packet success rate is calculated as

the ratio of the number of devices that successfully transmitted to the number of

users that transmitted. By contrast, the average transmission rate is measured as the

ratio between the number of devices that have succeeded in transmitting and the total

number of devices in the system. Indeed, as shown in Figure 6.6, the number of active

users per cluster reaches its highest value when MFG is invoked, which means that

we have more devices playing MFG than the other techniques, allowing it to achieve

the highest value in terms of average transmission rate as in Figure 6.8. On the other

hand, the ϵ-decreasing MFG results in a higher number of active users per cluster

than the UCB-based MFG algorithm, as represented in Figure 6.6, but the latter

guarantees a higher value in terms of the packet success rate than the ϵ-decreasing

MFG algorithm, as shown in Figure 6.7.

Now, we are interested in comparing the different approaches in terms of the av-

erage utility and the average energy consumption depicted in Figures 6.9 and 6.10

respectively. It can be concluded from these figures that although the MFG approach

outperforms the two proposed MFG-based MAB algorithms in terms of the average

utility, it requires much more energy consumption to reach this higher utility. Unsur-

prisingly, upon comparing the two MFG-based MAB algorithms, we clearly observe

that the UCB-based MFG achieves a higher average utility and a lower average energy

consumption than the ϵ-decreasing MFG algorithm.

The latest simulation results reveal the performance comparison of the proposed UCB-

based MFG approach with the MFG technique as well as the Bi-level theoretical
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Figure 6.9: Average utility with respect to T with K = 20.
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Figure 6.10: Average energy consumption with respect to T with K = 20.

framework developed in Chapter 4 and the NM-ALOHA game investigated in [100].

In Figure 6.11, we display the packet success rate as a function of the number of RBs

K and the number of MTDs N . Clearly, this rate decreases as the network becomes

denser for both the Bi-level game and the NM-ALOHA game, while it remains stable

for the UCB-based MFG algorithm and the MFG framework. As explained above, by

using the proposed access probability pt, we are able to achieve an effective interference

management that in turn results in mitigating the performance drop faced by almost

all the proposed grant-free techniques, especially in very dense network. Besides, this

performance comparison in terms of the packet success rate is highly spotlighted in

Figure 6.12 which represents the case where the N devices share K = 20 RBs. As
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we can clearly observe, the packet success rate is considerably enhanced with the

proposed UCB-based MFG algorithm, reaching up 6, 73% of improvement compared

to the MFG technique. Consequently, it is interesting to highlight that facing the

interference effects, the UCB-based MFG technique provides much more robustness

than the MFG approach, which accentuates the benefit of adopting the proposed

MAB-based approach.
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Figure 6.11: Packet success rate for different N and K.
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Figure 6.12: Packet success rate versus N when K = 20.

Finally, Figure 6.13 is devoted to illustrating the variation of the average utility for

the scenario of N = 2000 devices as the number of sub-carriers K increases. As

we can clearly see, the proposed UCB-based MFG algorithm improves the average

utility by 24, 434% and 265, 4% against the Bi-level game and the NM-ALOHA game,
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respectively. Nevertheless, the MFG approach outperforms all other techniques. The

reason behind this is mainly related to the choice of the coalition. Indeed, it has

been investigated in [31] that the utility function for a given user is maximized when

it transmits on its best channel. Since MFG approach requires each user to join

the coalition corresponding to its best channel and then transmit over the associated

sub-carrier, it is unsurprisingly that the MFG approach achieves a higher average

utility than the UCB-based MFG algorithm, wherein each device can choose another

sub-carrier rather than its best sub-carrier.
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Figure 6.13: Average utility versus K when N = 2000.

6.5 Conclusion

In this chapter, a Hybrid NOMA network has been investigated in a dense deploy-

ment context in which a large population of MTDs is split up into independent coali-

tions. We derived a bi-level learning to jointly address the user grouping and the

power control problem. Firstly, we modeled dense scenarios using a MFG framework

while taking into consideration the effect of the collective behavior of devices. Then,

we exploited the RL-based MAB approach with the aim of paving the way for an

autonomous decision-making process of the players participating in the formulated

MFG. Thereafter, we derived two MFG underlying MAB algorithms that allow the

MTDs to arrange themselves into coalitions and regulate their power levels based on a

brief feedback received from the BS. Our simulation results emphasize the equilibrium

behaviors of proposed MFG-based MAB approaches and demonstrate their effective-
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ness against the interference effects, resulting from the densely deployed networks.
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Chapter 7

Conclusion and perspectives
✧

7.1 Conclusion

Facing the exponential demand for massive connectivity and the scarcity of available

resources, next-generation wireless networks have to meet very challenging perfor-

mance targets in terms of providing massive access and ensuring a higher spectral

efficiency. In this vein, designing a sophisticated multiple access technique has been

considered as one of the key solutions to deal with the drastic increase in the number

of MTDs. Specifically, NOMA has intrigued researchers as an emerging technology

to meet the above-mentioned challenges. Nevertheless, serving a large number of

users simultaneously on the same resources comes at the cost of a high inter-user

interference that may deteriorate the performance gains of NOMA networks. There-

upon, it is highly challenging to ask all users to jointly communicate with the BS in a

non-orthogonal manner through common resources. Alternatively, a Hybrid NOMA

approach has been proposed by availing the ability of NOMA to be concordant with

a conventional OMA scheme. Indeed, hybrid NOMA networks require that users be

arranged into orthogonal groups and that the members of each group share the same

RB in order to boost the overall system performance.

In this regard, this dissertation strives to find novel NOMA scenarios while addressing

the resource management problems. To this end, we have focused on how to meticu-

lously form multiple user groups and smartly develop power allocation strategies with

the goal of achieving a meaningful trade-off between the benefits offered by adopting

the NOMA technique and the emerging interference effects resulting from simultane-

ous user transmissions. Since the user grouping is intertwined with the power control
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optimization, impactful tools are needed to solve the combined problems. For this

sake, we have firstly invoked the game theoretic framework, then we have exploited RL

algorithms to further enhance the network performance by managing more efficiently

the resource allocation among devices in different NOMA clusters.

We have started by addressing the above-mentioned optimization problems using a

Bi-level game consisting of a cooperative Hedonic game on top of a non-cooperative

power control. Indeed, Hedonic game has been invoked to lay out the coalitional

formation process by allowing devices to self-organize into several coalitions. Once

the coalitions are formed, the users belonging to the same coalition use the non-

cooperative game to ensure the disparity in power levels among them so that they

can simultaneously deliver their packets over the associated RB. We have numerically

proven that the proposed Bi-level game significantly increases the NOMA capacity

and strikes an attractive trade-off between the successful transmission rate and the

energy consumption compared to other existing techniques in the literature.

Thereafter, we have shifted our interest to the MFG framework to deal with dense

scenarios, wherein the impact of a particular player’ move on the overall system is

negligible but the effect of the collective behavior of a large population on each user

is significant. Furthermore, we have proposed a distributed power control algorithm

that takes into account the interference effects to enable each user to effectively make

its own decision. In this way, the devices can appropriately determine their power

levels according to the limited feedback received from the BS, which greatly simplifies

the game resolution. Indeed, the analysis of the game has been governed by the com-

bination of the HJB and FPK equations and then the finite difference method has

been invoked to solve the MFG game. Thus we have shown that the ping-pong inter-

action between the HJB and FPK equations leads to the MFE. Our simulation results

have highlighted the equilibrium behaviors of the formulated game and demonstrated

the effectiveness of the proposed approach compared to other works, especially when

a dense network is envisaged.

Finally, we have extended the proposed MFG by adopting the RL tool, namely the

MAB approach with the aim of making the devices able to suitably determine by

themselves their coalitions. As a result, we have derived a bi-level learning in which

the MAB technique is on the top of the MFG framework, with an eye toward jointly
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solving the user grouping and power control problems. Particularly, we have developed

decision-making techniques using both the ϵ-decreasing greedy and UCB algorithms

to deal with the strategy selection problem for the MAB approach. In fact, the de-

vices can self-organize into multiple groups with the aid of MAB algorithms. Once

each player joins its cluster, it autonomously regulates its transmit power according

to the received MFI from the BS using the MFG. Simulation results have been given

to evaluate the potential performance gains of the proposed learning process by illus-

trating its convergence and then comparing it to the other approaches proposed in

this thesis.

7.2 Perspectives

7.2.1 Interplay between NOMA and Multiple Antennas Techniques

Throughout this thesis, our proposed approaches involved a single antenna. However,

the Multi-Input Multi-Output (MIMO) schemes are of a substantial importance to

bring an additional dimension to the NOMA technique via the spatial domain, which

can further improve the system performance. Indeed, combining MIMO systems with

NOMA approaches can significantly enhance the spectrum utilization by exploiting

the spatial diversity gain of MIMO and the features of NOMA in allowing multiple

transmissions [139].

More precisely, to model a MIMO-aided NOMA system, we can assume that the BS

is equipped with a number M of antennas to serve N single-antenna users, where

N > M , through several beams. Actually, the proposed Hybrid NOMA scenario

in this thesis mainly relies on idea of arranging the users into several coalitions and

then each which uses one sub-carrier to deliver the signals of its members. In this

sense, the application of MIMO can greatly comply with the Hybrid NOMA approach

by forming M NOMA groups and then assigning beams to these groups so that the

users falling in each group share a single beam in the PD-NOMA basis [9]. Thus,

the interplay between MIMO and NOMA techniques is an interesting approach that

deserves a deep dive to appropriately form a cluster-based structure.

Worryingly, additional challenges are emerged once NOMA is amalgamated with

MIMO [140]. Indeed, assigning a large number of users to different groups and beams

in the MIMO-assisted NOMA approach is a tedious task. Thereby, the user grouping
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along with the beamforming or the precoding must be carefully designed. Mean-

while, since the power control is one of the critical pillars in the design of NOMA

systems, the MIMO-NOMA scheme also requires a special attention to the power

allocation problem among users sharing a NOMA group in order to ensure successful

transmissions.

7.2.2 Security Provisioning for NOMA

Security issues in wireless transmission systems is a great challenge due to the broad-

cast characteristic of the wireless medium that makes communications between users

vulnerable to eavesdropper attacks. Specifically, when NOMA is invoked, the appli-

cation of the SIC process presents a high security risk since one user is able to decode

the signals of the other users. On the other hand, the communications between the

BS and the users can be intercepted and overheard by wiretapper and unauthorized

users. Hence, it is of the utmost significance to thoroughly study the security pro-

visioning issues for NOMA-based networks in order to take advantage of the NOMA

features of simultaneously serving multiple users without spoiling the transmission

security.

Traditionally, cryptographic protocols have been used and designed in the upper layers

at the expensive of increased overhead and computational complexity. Alternatively,

the Physical Layer Security (PLS) has been proposed as a leading research proto-

col to enhance the confidentiality of wireless communications. Besides, the amalgam

between the PLS and the NOMA technique has been considered as a promising ap-

proach that sparked a considerable interest of researchers in an effort to combat the

eavesdropping [141,142]. The idea of PLS is to provide confidential transmissions by

exploiting the characteristics of users’ channel gains in the physical layer in order to

distinguish the legitimate from eavesdropping receivers. One popular solution used by

PLS is to generate an artificial noise at the transmitter to degrade the eavesdropper

channel and then ensure a high channel capacity for the desired receiver. Thus, it is

of great significance to study the security issues of the approaches proposed in this

thesis and examine the application of the PLS technique to the considered Hybrid

NOMA networks.
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7.2.3 Imperfect Channel Estimation

Throughout this thesis, we have assumed that the BS can acquire the perfect channel

state information (CSI) for all users. In fact, the availability of the CSI at the BS

is principally required to perform the order of users, the power control and then

execute the SIC process in order to correctly detect and decode signals of different

users. Nevertheless, this assumption is very strong and cannot be readily achieved in

real-time NOMA networks, as the continuous availability of the perfect CSI requires

a pilot based training process, resulting in increased overhead and complexity and

then leading to a delayed feedback. Hence, practical NOMA systems should operate

under channel uncertainties and imperfect CSI scenarios. But this in turn leads to an

ambiguous order of users and an inaccurate power allocation that affect the accuracy

of the decoding procedure using the SIC. Hence, studying the impact of the imperfect

CSI on NOMA networks results in a shift in the way the resource allocation issues

related to NOMA are addressed, including the user selection, the user grouping and

the power control. Consequently, it is of paramount importance to develop robust

resource allocation strategies while keeping in mind the imperfect CSI acquisition

in order to suitably deal with the challenges of adopting the NOMA concept under

practical scenarios.
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