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Preface

Since the first demonstration of laser emission realized by Maiman in

1960, a large variety of applications have been developed1. At present

days, one of the most challenging and booming field is biophotonics, where

laser emission is used for the chemical and the metrology of biological el-

ements constituting the living tissues2. For example, flow cytometry is a

technique able to displace microscopic elements, like cells in a fluid, in

order to probe them by multiparametric analysis3,4. This technique al-

lows simultaneous measurements of the physical and/or chemical char-

acteristics of particles by using bioelectric impedencemetry, fluorescence,

diffraction, electro-absorption5,6... To realize this type of analysis, multi-

wavelength optical sources are key devices with large potentialities in si-

multaneous probing of marked cells.

The Laser is a device able to generate coherent light in space or in time

domain1. This particular system, based on light amplification, can de-

liver intense optical field but the available wavelengths are limited to some

discrete values imposed by the physics that is behind the principle of stim-

ulated emission. Among the various solid-state lasers that are currently

commercialized, those which are the most commonly used emit in the in-

frared region. Advantageously, these lasers are relatively low cost and easy

to fabricate. In general, they produce a "quasi-monochromatic" emission,

whose spectrum is distributed among several longitudinal and/or trans-

1J. Hecht; "Beam: The Race to Make the Laser," Optics and Photonics News, Vol. 16,
pp.24-29 (2005).

2S.K. Mohanty, M. Sharma, P.K. Gupta, "Biophotonics: Nanosecond Near-Infrared Laser
Assisted Microinjection Into Targeted Cells," Optics and Photonics News, Vol. 14, pp.17-17
(2003).

3M.R. Melamed, T. Lindmo and M.L. Mendelson, "Flow cytometry and sorting Second
Edition," Wiley-Liss, New York, 1-9 (1990).

4H.M. Shapiro, "Practical Flow Cytometry Second Edition," A.R. Liss, New York (1988).
5H.E. Kubitschek, "Electronic measurement of particle size," Research (London), Vol.

13, 128-135 (1960).
6L.A. Kamentsky, M.R. Melamed and H. Derman, "Spectrophotometer: New instrument

for ultra rapid cell analysis," Science, 150, 630-631 (1965).
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verse modes having slightly different wavelengths. The output spectral

width is generally reduced to few nanometers or a few tens of nanome-

tres7. Only dye lasers exhibit larger spectrum, allowing moderate wave-

length tuning in the visible domain. Additionally, bulk lasers, as typically

femtosecond oscillators, can possibly deliver very short pulses whose spec-

tral width can extend over ∼800 nm8. Nevertheless, no laser is capable to

produce at the same time a broadband and bright spectrum of light cov-

ering, for instance, the whole silica transparency window, which ranges

between 400 nm and 2.2 µm. The only possible solution to produce such a

ultralarge spectrum is to exploit cascaded frequency conversion by means

of nonlinear light/matter interaction.

In spectroscopy, as well as in many futuristic applications in biopho-

tonics, the managing of time delays between the different wavelengths in-

teracting via the non-linearity may open a route towards new applications.

For this reason, I have studied in my work the way to equalize and control

group velocities of different regions of an optical spectrum.

I have considered the case of second order susceptibility in nonlinear

crystals, due to their large nonlinear response. In this case, the nonlinear

control arises from the knowledge of exact and explicit expressions for the

self-sustained optical waveform called solitons.

Under the same perspective, I have then analysed the case of third-

order nonlinear susceptibility. In this case, I have focused my attention on

propagation of laser light in nonlinear fibres. Fibre-based components are

remarkably attractive in this context, because they allow to design com-

pact, easy-to-use, robust and powerful broadband light sources. In par-

ticular, the combination of silica-based microstructured optical fibres with

microchip lasers has already led to the achievement of dazzling results,

with the experimental demonstration of very compact polychromatic radi-

7W. Koechner, D.K. Rice, "Birefringence of YAG: Nd Laser Rods as a Function of Growth
Direction," JOSA, Vol. 61, pp.758-766 (1971).

8G. Cerullo, S. De Silvestri, V. Magni, L. Pallaro, "Resonators for Kerr-lens mode-locked
femtosecond Ti:sapphire lasers," Opt. Lett., Vol. 19, pp.807-809 (1994).



xiii

ations (supercontinuum sources)9. These supercontinuum sources thus

represent a revolutionary alternative to those which are currently com-

mercially available, as typically incoherent white light sources including

xenon arc lamps, halogen lamps, SLED’s, or to the multiplexing of differ-

ent lasers, each one delivering a single ray in the visible range. Indeed, the

advantages of supercontinuum sources are dramatically large, since they

are clearly more powerful than incoherent sources and much cheaper than

any set of lasers.

That type of polychromatic optical sources (continuum) is based on

nonlinear conversion of a powerful light source. The nonlinear behaviour

is then controlled by the strong spatial confinement of light and by en-

gineering the chromatic dispersion of the fiber by the well-known tech-

nique called microstructuration. By this way, ultralong fibreguides of few

micrometers of core diameter and with zero dispersion wavelength easily

tunable from green to infrared wavelengths can be designed and produced

at the industrial level10. The propagation of a high power laser radiation

into those fibreguides gives rise to nonlinear interaction mainly due to Kerr

effect with large spectral broadening.

In the normal dispersion regime, the nonlinear Kerr response mani-

fests as a complex interplay between self-phase modulation, Raman effect

and four-wave mixing. In the anomalous dispersion regime instead, the

main observed nonlinear phenomena are modulation instability, soliton

propagation and soliton self-frequency shift.

Solitons, which results from the balance between dispersion and non-

linearity are very interesting phenomenon because of their particle-like

behaviour. Any complex mixing between all these particles, by means

of temporal attraction, repulsion, and fusion, may significantly change

9J.M. Dudley, L. Provino, N. Grossard, H. Maillotte, R.S. Windeler, B.J. Eggleton, S.
Coen, "Supercontinuum generation in airâĂŞsilica microstructured fibers with nanosec-
ond and femtosecond pulse pumping," JOSA B, Vol. 19, pp.765-771 (2002).

10T.A. Birks, J.C. Knight, and P.St.J. Russell, "Endlessly single-mode photonic crystal
fiber," Opt. Lett., Vol. 22, 961âĂŞ963(1997).
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the velocity of the interacting waves11. In these conditions, the frequency

conversion efficiency is drastically modified with a direct impact on the

overall spectral broadening.

Additionally, the fibre chromatic dispersion, leading to different group

and phase velocities for distinct wavelengths, has another strong impact

on the spectral broadening. Dispersion may lead to a progressive distri-

bution of the radiation in different time windows, causing serious issues

in nonlinear conversion efficiency. Fibre dispersion has then to be consid-

ered to improve the energetic properties of supercontinuum sources.

In this context, I have first studied new types of nonlinear solitonic

and simultonic propagations by means of sum-frequency generation. This

unusual dynamics of propagation allows group velocity compensation

between all the interacting waves. In a second step, I have investigated

the nonlinear solitonic propagations in optical microstructured fibers

leading to spectral broadening toward the infrared region of the spectrum.

Part of this work has been carried out in the framework of an European

project called "NextGenPCF". My PhD thesis has been done under a

joint supervision program (Cotutelle-de-Thése) between the Universities of

Brescia and Limoges. My work has been also partially supported by the

Université Franco-Italienne under the program "Vinci".

In the first chapter of this thesis, I will introduce a theoretical

approach on soliton propagation in media with quadratic non-linearity. I

will briefly introduce these special solutions from a mathematical point of

view and I will describe some basics on three wave interaction.

In the second chapter, I will present an experimental demonstration

of the existence of two particular solitonic solutions obtained in nonlinear

crystal cut for second harmonic generation. I will show the experimental

11M.N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J.P. Gordon, and D.S. Chemla,
"Femtosecond distributed soliton spectrum in fibers," JOSA B, Vol. 6, 1149-1158 (1989).
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demonstration of the existence of Zakharov-Manakov solitons, which

result from the mixing of three waves travelling with their own linear

group velocity, and interacting just for a short overlap time. Then I will

show some experimental evidences on the existence of simultons, which

result from the mutual trapping of waves at three different frequencies

thus travelling while locked together with a common group velocity.

The third chapter concerns with a direct application of the Zakharov-

Manakov solitons. I will present an experimental evidence of mode-locking

operation of a flash-lamp pumped Nd:YAG laser. I show that this type of

solitonic propagation displayed in a laser resonator may be used as a fast

saturable absorber allowing picosecond pulse generation.

The fourth chapter introduces the physical principles governing

infrared supercontinuum generation in terms of the nonlinear processes

involved in the spectral broadening of an initial monochromatic input

optical pulse. This spectral broadening is obtained by means of particular

microstructured waveguides, called photonic crystal fibre (PCF). It allows

supercontinuum generation from UV to infrared domains.

In the fifth chapter the impact of pump pulse duration on super-

continuum generation is theoretically and numerically investigated. This

study is realized in the anomalous dispersion regime, where solitonic

propagation is dominant and by using picosecond or subnanosecond

pump pulses whose peak power is fixed. From numerical simulations

I have identified the mechanisms responsible for the formation of the

infrared part of the continuum spectrum.

The last chapter concerns a simplified analytical model to describe the

mechanisms that govern the building of the supercontinuum spectrum

towards the infrared. A qualitative comparison between experimental, nu-
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merical and analytical results will be presented. This model may help in

the optimization of spectral broadening by controlling the soliton-soliton

interaction during their propagation in an optical fibre.



CHAPTER 1

Basics on quadratic solitons
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In this chapter I present some basic theoretical concepts necessary

for understanding the experimental results which will be illustrated in

the next chapter. This chapter is organized as follows: first, we derive

the coupled equations for the three-wave resonant interaction. Next we

present some unusual soliton-like solution for these equations, and finally

we try to explain some techniques that could be used for sum-frequency

generation.

1.1 Three-wave resonant interaction

The three-waves resonant interaction (TWRI) is a process which appears in

various branch of physics, such as fluid dynamics and optics. It describes

the nonlinear mixing of three quasi-monochromatic waves in weakly non-

linear and dispersive media. In optics, the resonant interaction may occur

in any medium where nonlinear effects may be assumed as weak pertur-

bations of a linear propagation model.

The model describing the TWRI is derived from Maxwell equations in a

dielectric medium with quadratic nonlinear susceptibility χ(2). If P(r, t) is

the dielectric polarization vector field induced by an electromagnetic wave,
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the charge and current densities in the medium are defined as:

ρ = −∇r ·P , J = Pt. (1.1)

Under the assumption of a homogeneous anisotropic medium, and limiting

the frequency dependence only to the first order susceptibility, Maxwell’s

equations can be reduced to a single vector equation for the electric field

E(r, t) (the notation Ett and Ptt denotes the second derivative respect to

the temporal coordinate t)

Ett − c2[4rE−∇r(∇r ·E)] = − 1

ε0
Ptt. (1.2)

Under the assumption that non-linearity dispersion is neglected, the di-

electric polarization field components Pj are related to the electric field

by:

Pj(r, t) = ε0

∫ t

−∞
χ

(1)
jn (t− t1)En(r, t1)dt1 + ε0χ

(2)
jnmEn(r, t)Em(r, t). (1.3)

By means of the slowly varying amplitude approximation [1] we can sep-

arate the electric field by using three quasi-monochormatic waves (car-

rier waves) which are modulated by the slowly varying amplitudes A(α),

α = 1, 2, 3. We also assume that only the wave amplitudes are affected by

nonlinear dynamics and that the polarization state vectors B(α)
j , α = 1, 2, 3

are spatial and time independent. The electric field envelope takes the

form:

Ej(r, t) =η[A(1)(ξ, τ)B
(1)
j eı(k1·r−ω1t) +A(2)(ξ, τ)B

(2)
j eı(k2·r−ω2t)

+A(3)(ξ, τ)B
(3)
j eı(k3·r−ω3t)] + c.c.+O(η2),

(1.4)

where η is a small perturbative parameter that rescales the spatial coordi-

nate ξ = ηr and the time variable τ = ηt. The wave-number vectors k1, k2,

k3, the frequencies ω1, ω2, ω3 and the polarization state vectors B(1)
j , B(2)

j ,



1.1. Three-wave resonant interaction 3

B
(3)
j satisfy the following dispersion relation:

(ω2 − c2k · k)Bj + c2k ·Bkj + ω2χ̂
(1)
jn (ω)Bn = 0, (1.5)

where the function χ̂
(1)
jn (ω) is the Fourier transform of the linear suscepti-

bility χ(1)
jn (t):

χ̂
(1)
jn (ω) =

∫ +∞

−∞
e−ıωtχ

(1)
jn (t)dt. (1.6)

Now, we substitute eq. 1.4 into eq. 1.2 and collecting all terms up to order

O(η2) in the expression 1.4, we obtain:

∂A1

∂τ
+ v1 · ∇ξA1 = ıγ1A

∗
2A3e

−ı∆kz

∂A2

∂τ
+ v2 · ∇ξA2 = ıγ2A

∗
1A3e

−ı∆kz

∂A3

∂τ
+ v3 · ∇ξA3 = ıγ3A1A2e

ı∆kz

(1.7)

These coupled equations are derived assuming a resonant interaction be-

tween the three waves such as ω1 + ω2 = ω3. The vectors v1, v2, v3 are the

group velocities of the three carrier waves, while the nonlinear coefficients

γ1, γ2, γ3 are function of the wave numbers, and of the linear and quadratic

susceptibility coefficients χ(1)
jn and χ

(2)
jnm. The term ∆k represents the phase

mismatch per length unit and is defined as:

∆k = k1 + k2 − k3. (1.8)

The maximum conversion efficiency is obtained through the exact phase

matching between the three waves:

k1 + k2 = k3 (1.9)

The system of equations 1.7 represents a full three dimensional three-

waves resonant interaction that has been largely investigated by Kaup [2].

To study the time-dependent solution of eq. 1.7, we assume that the three
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amplitudes A1, A2, A3 are function of two independent variables ξ and

τ for space and time respectively. Now, we transform amplitudes and

coordinates so as to display the coefficients δ1, δ2, δ3 which are proportional

to the inverse of the group velocities, and we set the coupling constants

equal to unit, γα = 1. In such a way we derive a dimensionless form of eq.

1.7 that is useful for the analysis of particular solutions presented in the

next sections:
∂A1

∂ξ
+ δ1

∂A1

∂τ
= ıA∗2A3

∂A2

∂ξ
+ δ2

∂A2

∂τ
= ıA∗1A3

∂A3

∂ξ
+ δ3

∂A3

∂τ
= ıA1A2

(1.10)

We take into consideration the three-wave with δ1 < δ3 < δ2 [3] in a coordi-

nate system such that δ1 = 0.

This system of equations is not only of great interest because of its broad

applicability, but it exhibits unusual mathematical properties. Indeed it

has been demonstrated [4] that this system of equations is an integrable

Hamiltonian system which can be solved by the spectral methods of soli-

ton theory both in the class of bright solitons (when light intensity reaches

a maximum value at the centre of the soliton and it decays to zero in the

asymptotic regions) and dark solitons (light intensity has a minimum at

the center of the soliton and a nonvanishing constant asymptotic regions).

Another important point is that eq. 1.10 posses an infinite number of

conservation laws and explicit known solutions [5–7].

1.2 Quadratic solitons

In physics, the term "soliton" is currently used as synonymous of a solitary

wave that propagates without deformation in a nonlinear and dispersive

media. This particular propagation comes from the perfect balance be-

tween nonlinear and linear effects. In optics, we can identify two main

categories of solitons:
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• quadratic solitons, where the nonlinear effects come from the second-

order susceptibility χ(2);

• Kerr solitons, where the nonlinear effects come from the third-order

susceptibility χ(3).

These solitons may exist in time and space domains. Temporal solitons

may result from the balance between dispersion and nonlinearity, whereas

spatial solitons may arise from the compensation of diffraction with non-

linearity. Solitons may also involve several spectral regions. Here we want

to focus our attention to the case of quadratic solitons, which are formed

by mutual trapping and locking of multiple-frequency waves. The sim-

plest case correspond to the process of second harmonic generation (SHG)

where a fundamental wave and its second-harmonic are able to compen-

sate diffraction effects [8–10]. The resulting soliton contains both the fun-

damental and second harmonic fields, for this reason they are intrinsically

multicolor entities. One of the properties of quadratic solitons is the en-

ergy sharing between the multicolor beams, depending on the total energy

and the existing material wave-vector mismatch [11].

The first demonstration, of such a kind of solitons, was carried out by W.

Torruellas in 1995 [12, 13]. Torruellas observed a spatial soliton formed

by parametric wave interaction (the beam-trapping mechanism was due

to the energy exchange between the fundamental and second harmonic

component) in crystals with quadratic nonlinearities (KTP crystals), pre-

viously predicted by Karamzin and Sukhorukov in the 70s [14]. After

this demonstration, several research groups have theoretically studied the

mechanisms that allow this regime of propagation, with the introduction of

new theoretical concepts. Different families of solutions have been found

by Buryak et al. [15, 16]. Moreover, in 1989, Belashenkov demonstrated

that, under particular conditions, the propagation of an optical beam in

a quadratic medium may be described as the propagation in a medium

with third-order nonlinear susceptibility by using the concept of cascad-
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ing effects [17, 18]. This concept suggested the existence of much richer

families of quadratic solitons.

In recent years, quadratic solitons have been the subject of an intense re-

newal of interest from experimental and theoretical point of view because

of their particle-like behaviour, which enables the coherent energy trans-

port and processing. In the next sections we will focus on two classes of

TWRI solitons, that were first predicted by Zakharov and Manakov [4] and

Nozaki [19]. These solitary waves result from an energy exchange between

dispersionless (or diffractionless) waves of different velocities. The first

type of solitons, Zakharov-Manakov solitons (ZM solitons), describes the

mixing of three waves that travel with their respective linear group velocity,

and interact just for a short time [4, 20–22]. The second type of solitons,

also known as simultons, are formed as a result of the mutual trapping

of waves at three different frequencies which travel locked together with

a common group velocity [19, 23]. Such kind of soliton solution are simi-

lar to the well known "walking solitons", where the quadratic solitons are

able to counteract the spatial walk-off existing between the multiple sig-

nals needed to form the solitons. Nevertheless, the walking solitons, exist

in the presence of non-negligible diffraction and group velocity mismatch

whereas the simultons exist only with non negligible group velocity mis-

match.

1.3 Zakharov-Manakov solitons

Compression and amplification of ultra-short laser pulses during sum-

frequency (SF) generation in presence of group velocity mismatch (GVM)

was theoretically predicted [24, 25] and observed in several experiments.

The temporal collision of two short pulses in a quadratic nonlinear crystal

permits to generate a short and time-compressed SF pulse. This kind of

collision may lead to the formation of a ZM-soliton. This type of soliton

is intrinsically unstable since its energy decays back into the two incident



1.3. Zakharov-Manakov solitons 7

pulses after a relatively short distance. Let’s note that the shapes, intensi-

ties and widths of the input pulses are unchanged in spite of their interac-

tion. In figure 1.1 we show a typical example of the ZM-soliton generation

Figure 1.1: Sum-frequency generation at ω3 from parametric interaction
of two short optical signals at ω1 and ω2. The normalized delays are δ1 = 0,
δ2 = 2, δ3 = 1.

through SF interaction between two optical pulses [26]. In this scenario,

whenever the faster pulse A2 overtakes the slower one A1, an idler pulse A3

at the SF is generated and propagates with a velocity given uniquely by the

linear part of the susceptibility (named linear velocity). At high intensity

the SF pulse generation leads to the formation of a ZM-soliton. Rigorously

speaking, the ZM-soliton is composed only by the SF pulse. For further

propagation distance the SF wave (ZM-soliton) decays back into the two

original isolated ZM-solitons at frequencies ω1 and ω2 (see fig. 1.1). These
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ZM-solitons are an exact solution of eq. 1.10, and they are defined as:

A1 = −ı∆

4p

δ2 − δ3

δ2δ3
A∗2A3,

A2 = ı
4pδ3

∆

√
δ2

δ2 − δ3
eıq2τ2exp

[
−2ı

δ3

δ2 − δ3
(k − ıp)τ2

]
,

A∗3 = ı
4pδ2

∆

√
δ3

δ2 − δ3
eıq3τ3exp

[
2ı

δ2

δ2 − δ3
(k + ıp)τ3

]
,

(1.11)

where

∆ = 1 + exp

(
− 4pδ3

δ2 − δ3
τ2

)
+ exp

(
− 4pδ2

δ2 − δ3
τ3

)
,

qn = q(δn+1 − δn+2), n = 1, 2, 3mod(3),

τn = −τ + δnξ.

(1.12)

For a given choice of the linear group velocities, the ZM-soliton is identi-

fied by three parameters p, k, q. The parameter p is associated with the

re-scaling of the wave amplitudes, and the coordinates τ and ξ. The value

of k and q adds a linear phase shift in τ and ξ.

The ZM-soliton is then generated under perfect conditions for SF genera-

tion i.e. with a perfect walk-off compensation between initial waves. The

decay of the SF pulse which is shown in fig. 1.1 appears at a given non-

linear crystal length depending on the input pulses characteristics. This

limited time of existence can be a significant drawback for applications.

The temporal duration of the SF pulse is reduced with respect to the input

pulse widths, depending on the time widths and intensities of the input

pulses.

1.4 Simultons

In this section we introduce the concept of simulton. We limit our expla-

nation to the simplest case of SF generation. Indeed, in the presence of

GVM, the parametric SF conversion with a pulsed signal and a quasi-CW

pump generally leads to the generation of an idler pulse with low intensity,

whose duration is associated to the interaction distance in the crystal. By
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increasing the input intensity, we obtained the sum frequency generation

with the compensation of the GVM between all of the waves representing

the simultonic solution. Figure 1.2 illustrates the generation of a simulton

from the parametric SF conversion of an optical signal and a CW back-

ground control wave with an arbitrary intensity level. We injected in the

quadratic nonlinear crystal a short signal A2 at frequency ω2, with a de-

layed and relatively long pump-control pulse A1 at frequency ω1. The SF

Figure 1.2: Simulton generation at ω3 from parametric interaction of a
short pulse at ω2 and quasi-CW control at ω1. The normalized delays are
δ1 = 0, δ2 = 2, δ3 = 1.

process displayed in fig. 1.2 leads to stable generation of a simulton in

both time and space domain.

When the faster pulse A2 at ω2 recover its initial delay and overtakes the

quasi-CW background A1 at ω1 (at τ = 0, in fig. 1.2), their collision leads

to the generation of a short idler pulse A3 at the SF ω3, and a depletion is

observed on the quasi-CW wave at ω1. Additionally, the propagation speed,

the intensity and duration of the input wave A2 are modified. By following
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the notation of eq. 1.10, the simulton solution is:

A1 = {1 +
2pb∗

|b|2 + a2
[1− tanh[B(−τ + δξ)]]} ıag1exp(ıq1τ1)

g(δ2 − δ3)
,

A2 =
2pa√
|b|2 + a2

g2

g(δ2 − δ3)

exp[ı(q2τ2 + χτ + ωξ)]

cosh[B(−τ + δξ)]
,

A3 =
2pb∗√
|b|2 + a2

g3

g(δ2 − δ3)

exp[−ı(q3τ3 + χτ + ωξ)]

cosh[B(−τ + δξ)]
,

(1.13)

where

b = (Q− 1)

(
p+

ık

Q

)
, r = p2 − k2 − |a|2,

Q =
1

p

√
1

2

[
r +

√
r2 + 4k2p2

]
,

B =
pδ2 + δ3 −Q(δ2 − δ3)

δ2 − δ3
,

δ =
2δ2δ3

δ2 + δ3 −Q(δ2 − δ3)
,

χ =
k
(
δ2 + δ3 − δ2−δ3

Q

)
δ2 − δ3

,

ω =
−2kδ2δ3

δ2 − δ3
, τn = −τ + δnξ,

qn = q(δn+1 − δn+2), gn = |(δn − δn+1)(δn − δn+2)|−1/2,

g = g1g2g3, n = 1, 2, 3mod(3).

(1.14)

The simulton is then composed by two bright pulses at ω2 and ω3 plus a

dark pulse all of them running with a common speed δ.

For a given choice of the linear group velocities, the simulton is identi-

fied by four parameters p, a, k, q. The parameter p is associated with the

re-scaling of the wave amplitudes, and coordinates τ and ξ. Whereas the

parameter a measures the amplitude of the CW background of wave A1

(namely a
√
δ2δ3). The value of k is related to the soliton wavenumber. The

parameter q adds a linear phase shift in both τ and ξ (see [21] for details).

We may describe the initial wave A2 as a single ZM-soliton [4], which in-

teraction with the quasi-CW generates a simulton or in this assumption a

stable TWRI simulton [21]. So, we may analytically predict the parameter

p, k, q, a of the generated TWRI simulton from the corresponding parame-
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ters of the initial ZM-soliton:

A1 = 0, A2 = 2P
√
ρδ2δ3

eıρφτ2

cosh(2Pρτ2)
, A3 = 0, (1.15)

where

ρ =
δ3

δ2 − δ3
, τ2 = −τ + δ2ξ. (1.16)

For a given choice of the three linear group velocities, or characteristic

delays δj, the above ZM-soliton is determined in terms of the two real

parameters P , φ. The parameter P is always positive and fixes both the

soliton peak amplitude and its temporal width. Whereas the parameter φ

corresponds to a phase shift which is linear in both τ and ξ coordinates.

On the other hand, the quasi CW wave at frequency ω1 can be described

by

A1 =
Ce−ıγτ

2

[
tanh

(
τ − τi
τr

)
− tanh

(
τ − τf
τr

)]
, A2 = 0, A3 = 0, (1.17)

where C is the complex amplitude and γ is the frequency shift with respect

to the quasi-CW signal A1; τi (τf ) and τr are the switch-on (switch-off) time

and the rise/fall time of the quasi-CW signal, respectively (see fig. 1.3). We

consider the case for which |C|2 < P 2δ2δ3. We suppose that the initial ZM

Figure 1.3: Definition of rise/fall, switch-on and switch-off time for the
case of quasi-CW signals.
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soliton (wave A2) adiabatically (i.e., without emission of radiation) reshapes

into a simulton after its collision with the quasi-CW pump at a given point

in time (say, at τ = 0), and hence:

• the energy of the initial ZM soliton (wave A2) is conserved in the gen-

erated simulton;

• the phase of initial ZM soliton (wave A2) and the generated simul-

ton are continuous across their time interface (at τ = 0, where A2

reshapes into a simulton);

• the amplitude and phase of the control pump C are properly chosen

to obtain simultonic propagation.

If we consider the above three conditions, we obtain the following relations

that connect the parameters of the incident ZM soliton and those of the

transmitted simulton:

p = P, a
√
δ2δ3 = |C|, q(δ2 − δ3) = γ, q(δ2 − δ3)− 2k = φ, (1.18)

with |C| < P
√
δ2δ3.

The important consequence of this result is that we may analytically

predict and control the characteristic of the generated idler pulse at ω3

(namely, its velocity, time duration and energy) simply with the intensity

level of the CW pump. It is important to underline that the stability of

the generated simulton is ensured by the stability of the whole SF idler

conversion process [27]. Simultons represent an entirely new family of

quadratic solitons, indeed the most remarkable physical property is that

their speed can be continuously varied by means of adjusting the energy

of the two short pulses (A2 and A3).
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1.5 Phase matching

The efficiency of the conversion processes described by eq. 1.7 strongly

depends on the parameter ∆k. Indeed by integrating the third equation of

eq. 1.7 on the length L of the dielectric structure, and by neglecting losses

at frequencies ω1 and ω2, we obtain an intensity relation between the three

waves (eq. 1.19).

Iω3(z = L) ∝ aIω1(z = 0)Iω2(z = 0)sinc2

(
∆kL

2

)
. (1.19)

The efficiency is maximum for ∆k = 0, when the photon momentum is

conserved. We can reformulate such condition in the following way:

k(ω3) = k(ω1) + k(ω2),

ω3 = ω1 + ω2.
(1.20)

These conditions can not be simultaneously satisfied in an isotropic

medium due to the frequency dependence of the refractive index (or the

wavevector). For this reason, in our experimental work, we exploit the

natural birefringence of a given crystal to reach the phase matching con-

ditions of eq. 1.20. This technique uses the anisotropy of the material for

compensating the dispersion of refractive index. To satisfy the condition of

velocity matching, which ensures the conversion process, we set the linear

polarization states of the incident waves along the main crystal axis.

We call collinear phase matching whenever eq. 1.20 is satisfied by waves

propagating in the same direction. Differently, when waves have different

propagation directions, the phase matching is non-collinear. Another tech-

nique commonly called quasi phase matching (QPM) uses a periodic dielec-

tric structures, to compensate the phase mismatch between the interact-

ing wave. In this thesis, only the non-collinear phase matching method

will be considered.
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Here we present the experimental demonstrations for the first time of

our knowledge of the existence of ZM solitons and simultons. These exper-

iments were carried out at the beginning of my PhD. Such kind of solitons

result from the energy exchange between waves with different velocities in

the limit where diffraction is negligible. In this case the nonlinear effect

may balance the spatial walk-off between the interacting waves.

The first important step was to define the general conditions for observing

both phenomena and to identify a suitable optical medium allowing these

nonlinear propagations.

In this chapter we first present the result concerning the solution given

in eq. 1.11 and then the simulton solution as expressed in eq. 1.13.

The last section of this chapter is denoted to a practical application onto
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new mode-locking technique. The experimental results will be compared

with numerical simulations. The theoretical results have been obtained

in strong collaboration with Matteo Conforti and Fabio Baronio, two re-

searchers from the University of Brescia, Italy.

2.1 General conditions

To obtain the experimental conditions suitable for soliton and simulton

propagation, we determined several parameters regarding:

• the laser source;

• the quadratic nonlinear crystal;

• the SF conversion process.

The observation of the solitonic and simulton propagation required rel-

atively high pulses intensity, so we opted for a Q-Switched mode-locked

Nd:YAG laser source. The mode-locking operation is assured by a semi-

conductor Bragg mirror (SESAM) acting as an ultrafast saturable absorber.

Such laser delivers a train of pulses, 40 ps wide, with a gaussian shape and

a central wavelength of 1064 nm. A Pockels cell selects the more powerful

pulse out of a train of them. Such pulse is then amplified by a single-pass

amplifier. This pulse is used as a source of our experiments.

In all experiments, we considered second-harmonic generation (SHG) pro-

cess which is a particular case of SF conversion in which the two initial

beams have the same frequency ω = ω1 = ω2.

We choose a potassium titanyl phosphate (KTiOPO4), or KTP crystal. KTP

crystals are commonly used in frequency doubling process owing to their

high nonlinear coefficient (deff ∼ 3 pm/V ), wide transparency window (from

350 to 2700 nm), broad angular and spectral acceptances (∼20 mrad cm

and ∼6 cm respectively). In particular, these crystals are suitable for SHG

because their conversion efficiency is rather good (80%) and their damage
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threshold is high (∼ 15 J/cm2). The KTP that we used is a type II nonlinear

crystal exhibiting extraordinary and ordinary axes. The crystal excitation

is realised on both axes whereas the second harmonic wave is obtained

with polarisation vectors parallel to the extraordinary axis.

Remembering the resonant condition presented in eq. 1.9 and the char-

acteristics of each beam velocity, we choose to use a spatial non-collinear

geometry. It consists of exciting the crystal with two beams at the funda-

(a) (b)

Figure 2.1: Schematic representation of input conditions on KTP crystal:
a) representation of the optical non collinear TWRI interaction; b) orienta-
tion of physical axes of KTP with respect to the propagation direction.

mental frequency with orthogonal polarization state aligned on the neutral

crystal axes (see fig. 2.1(a)). The two beams propagate inside the crystal

with its linear velocities and forming an angle α′ between them, defined by

α′ =
α

2

(
1

ne
+

1

n0

)
. (2.1)

The non-collinear type II interaction between the fundamental beams of

type (o) and (e) gives rise to a SH on the direction φNCL defined by the vector

sum ko
ω +ke

ω. In this direction the wave vector for SH is ke
2ω = 2π

λ ne
2ω(φNCL),

where ne2ω(φNCL) is the refractive index for the SH defined by the direction
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φNCL. The phase matching condition reads as:

∆kNCL = ko
ω + ke

ω − ke
2ω = 0 (2.2)

In our spatial non-collinear scheme, the spatial walk-off of each wave cor-

responds to a spatial velocity represented by an angle formed by the di-

rection of propagation and the phase matching direction (see Fig. 2.2). In

that configuration the condition of simulton existence on the time delays

δ1 < δ3 < δ2 in eq. 1.10 is transformed into the following condition on the

spatial velocities V2 < V3 < V1, which is perfectly respected.

Figure 2.2: Representation of spatial walk-off of the three waves with
respect to the physical axes of the crystal (red). In this case V3 = 0.

2.2 Zakharov Manakov solitons by using SHG

2.2.1 Experimental setup

The experimental setup used in these experiments is presented in fig. 2.3.

The laser beam diameter at the input face of the crystal exhibits a 300

µm diameter measured at full width half maximum of intensity (FWHMI)

and obtained by a spatial telescope made by two lens L1 and L2. The

diaphragm placed between L1 and L2 ensures a spatial unimodal Gaussian

shape of the input beam. The total intensity of the beam is controlled

by an attenuator composed by a half-wave plate and a Glan polarizer.

After the light has passed through a second attenuator, we obtain two
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Figure 2.3: Experimental setup used to study ZM soliton propagation
obtained under sum-frequency process in a type II crystal.

independent beams with orthogonal linearly polarized states. A half-wave

plate placed before the polarizer P1 and before the prism serves to adjust

the total intensity of the beam and the intensity balance between the two

beams. By means of two highly reflecting mirrors, a beam splitter and lens

L3 and L4, both beams are focused and spatially superimposed in the plane

of their beam waist with a circular shape of 120 µm width FWHMI. An

interferometric scheme is used to temporally superimpose the two beams.

A 3 cm long type II KTP crystal cut for SHG is positioned such that its input

face coincides with the plane of superposition of the two input beams.

The crystal was oriented for perfect non-collinear phase matching. The

direction of the linear polarization state of the two beams are adjusted to

coincide with the ordinary and the extraordinary axes of the KTP crystal.

The wave vectors of the input fields were tilted at angles of θ1 = 0.7 deg

and θ2 = −0.7 deg (in the crystal) with respect to the direction of perfect

collinear phase matching for the extraordinary and ordinary components,

respectively. Inside the crystal these parameters corresponded to a tilt
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between the input beams equal to 3.7 times the natural spatial walk-off

which is introduced along the ordinary noncritical plane. The direction of

the sum frequency wave vector lies in between the input waves directions.

In these conditions, the spatial diffraction, temporal dispersion and GVD

can be neglected. The condition V2 < V3 < V1 between the waves Eoω, Ee2ω

and Eeω is also satisfied. The spatial waves’ patterns at the output of the

crystal were imaged with magnification onto a CCD camera and analysed.

We alternately used different filters and polarizers to select either the IR or

green output.

2.2.2 Experimental observation

All the results that we present here have been obtained under the same

conditions of incidence angle, polarization states of each beams and phase

matching. Only the incident intensities are modified. In tab. 2.1 we

report the intensities calculated from the measured energy at the input

and output faces of the crystal for the fundamental beams and the SH

beam, respectively. The energy meter error rate is close to 10%.

test number Ioω[MW/cm2] Ieω[MW/cm2] Ie2ω[MW/cm2]

1 3.36 3.97 0

2 9.37 11.10 0.15

3 10.90 14.40 0.23

4 55.60 69.00 1.52

5 182.00 236.00 7.38

6 1210.00 1580.00 67.60

7 7110.00 6960.00 212.00

8 8030.00 8360.00 243.00

Table 2.1: Calculated intensities of the input beams, A1 and A2 @1064
nm, and the third beam A3 @532 nm.

For an accurate analysis of the measurements we compare the experi-

mental data with the parabolic function that defines the relation between

the input intensities and the generate SH intensity for the case of a weak
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nonlinear regime (see fig. 2.4):

Ie2ω = a ∗ L2Ieω ∗ Ioω (2.3)

where L is the distance of propagation and a is a function which depends

on the refractive indexes, the frequency ω and the nonlinear response of

the medium.

In the first test the input intensities are too low to excite a nonlinear pro-

cess, so we do not observe a non-collinear SHG process. We identify the

same behaviour from the analysis of the recorded spatial output profile

of the extraordinary polarized wave at the sum frequency 2ω, the profile

of the extraordinary polarized component and the profile of the ordinary

polarized component at frequency ω (fig. 2.5 and fig. 2.6). Fig. 2.6(a)

(a) (b)

Figure 2.4: a) Theoretical curve (blue) compared with experimental mea-
surement (red point), b) zoom for low input intensities.

shows the waves Eeω and Eoω, overlapped at the crystal entrance, spatially

separated at the crystal output because of linear spatial walk-off in the

ordinary plane. For low intensity (fig. 2.5(a)) no component at frequency

2ω is observed. At moderate input intensities, the experimental data agree

with the theoretical prediction (see fig. 2.4(b)). At the output face of the

crystal we observe that the fundamental components are spatially sepa-

rated and a weak SH component, whose position lies in between the out-
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put position of the two fundamental waves. The generated SH has the

same spatial profile as those of the fundamental waves, when increasing

the input intensities, the experimental measurements of the SH intensity

do not follow the standard quadratic evolution (fig. 2.4(b)). This discrep-

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.5: Evolution of the generated SH wave for different input inten-
sities corresponding to the test (a) # 1, (b) # 2, (c) # 3, (d) # 4, (e) # 5, (f)
# 6, (g) # 7, (h) # 8.

ancy arises from the fact that eq. 2.3 is not suitable in a strong nonlinear

regime (fig. 2.5(e)). Additionally, we note the presence of a spatial defor-

mation of the SH component. Such a distortion is more evident when we

increase the input intensities (fig. 2.5(h)). This spatial deformation cannot

be explained by the well know SHG theory, which only predicts saturation

of the nonlinear conversion. Moreover, we observed the apparition of two

well defined ordinary and extraordinary fundamental waves Eeω and Eoω,

which turned out to be spatially shifted with respect to the initial funda-

mental components (fig. 2.6(h)).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.6: Evolution of the FF waves for different input intensities corre-
sponding to the test (a) # 1, (b) # 2, (c) # 3, (d) # 4, (e) # 5, (f) # 6, (g) #
7, (h) # 8.

2.2.3 Discussion

In the last section we identified three different regime of propagation de-

pending on the input intensities. For low intensities (I=3MW/cm2) the in-

put waves do not interact and propagate in absence of noticeable diffrac-

tion in the KTP crystal, following their own characteristic velocities V1 and

V2 (fig. 2.7). At moderate input intensity (I=10MW/cm2), the beams at fre-

Figure 2.7: Linear interaction between two fundamental beams.

quency ω interact and generate a steady field at the sum frequency 2ω.
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When the faster wave overtakes the slower one, we observe an energy con-

version to the sum frequency wave A3; next the three waves propagate

alone with their own characteristic velocities (see fig. 2.8 ). At high input

intensity (I=0.2GW/cm2), the beams at frequency ω interact and generate a

field at the sum frequency 2ω. Each input wave split into a linear compo-

nent, travelling at its own linear velocity, and a nonlinear component that

takes part in the formation of a TWRI soliton. The observation of the two

new spatially shifted waves provides a clear evidence that a TWRI soliton

is generated at the sum frequency inside the crystal: the sum frequency

wave has enough energy to sustain at least one soliton. Such soliton has

subsequently decayed into two solitons at the fundamental wavelength

right before the end face of the crystal (fig. 2.9(a)). In that configuration,

Figure 2.8: Non collinear SHG.

the second harmonic wave is strongly depleted because of a non collinear

difference frequency process. By removing the attenuation filters used to

protect the camera, the deformation observed on the SH beam is a com-

ponent generated mainly through type I SHG by the extraordinary and

ordinary waves at ω (fig. 2.9(b).

Now it is interesting to interpret the result by the inverse scattering trans-

form (IST) which allows certain nonlinear problems to be treated by what

are essentially linear methods [1–3]. In particular, this method allows to

decompose a given solution of the partial differential equation (PDE) in

its continuum spectrum component (radiation) and in discrete spectrum
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(a)

(b)

Figure 2.9: (a) spatial representation of the propagation of the three waves
in the x−z plane and (b) experimental output profile of Eω for I=0.2GW/cm2

(left) and E2ω (right).

component (solitons). From a IST point of view, the input waves contain

one soliton each plus radiation. The solitons in the waves Eeω and Eoω inter-

act and generate a soliton in the wave Ee2ω which, due to its finite lifetime,

decays into solitons in the wave Eeω and Eoω.

In order to provide a theoretical confirmation of the experimental results,

numerical simulation of eq. 1.10, with δ1 = −δ2 and δ3 = 0, in the x − z

plane corresponding to the initial data at z = 0 ( A1(x, 0) 6= 0, A2(x, 0) 6= 0,

A3(x, 0) = 0) are performed for three different input intensities (see fig.

2.10), corresponding to the three regimes previously identified. The nu-

merical intensity level required to reach the linear (I = 1MW/cm2), fre-

quency conversion (I = 0.1GW/cm2) and solitonic regime (I = 2.5GW/cm2)
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Figure 2.10: Numerical x− z TWRI dynamics of waves at frequency ω1, ω2

and ω3. (a) Linear, (b) frequency conversion, and (c) solitonic regime.

are quite different from the measured ones. This difference may be ex-

plained by different reasons: fluctuation of the laser pump, errors coming

from energy meter, incertitude on the nonlinear coefficient value. Disre-

garding these minor discrepancies, the numerical simulation confirms the

existence of the three different regimes namely linear (I=1MW/cm2), fre-

quency conversion (I=0.1GW/cm2) and soliton (I=2.5GW/cm2). In fig. 2.11

we compare the experimental beam profiles recorded at the output face of

the KTP crystal with the calculated profiles solving eq. 1.10.

2.2.4 Conclusion

In conclusion, we have investigated the spatial dynamics of two beams at

frequency ω, mixed to generate a field at the sum frequency 2ω. The nu-

merical simulation well reproduces the experimental results. Depending

on the input intensities, three different propagation regimes exist: lin-

ear, frequency conversion and solitonic regime. Our experimental results

demonstrate the possibility of reaching soliton regimes in non-diffractive
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Figure 2.11: Experimental (dashed lines) and numerical (solid lines) spa-
tial output profile at the exit face of the KTP crystal along x, intersection
between the exit face of the crystal and the ordinary plane. Eeω (red lines)
and Eoω (blue lines).

TWRI systems. We demonstrated that when the generated field at 2ω can

sustain a TWRI soliton, which subsequently decays into fundamental soli-

tons at ω. This is the first evidence of transition from a steady frequency

wave generation to solitonic decay in nonlinear optics.

2.3 Simultons in SHG regime

2.3.1 Experimental setup

Fig. 2.12 shows the experimental setup used for the observation of simul-

ton as a solution of the TWRI equation. The laser output pulse passes

through a spatial diaphragm that adjust the beam diameter to 2.2 mm at

FWHMI. The waves Eoω and Eeω are focused and spatially superimposed on

the input face of the KTP crystal with a circular shape of 2.2 mm and 200

µm FWHMI respectively. An interferometric scheme, composed by a cube

splitter and a series of three mirrors M2, M3, M4, is used for temporally

superimpose the two beams. The half-wave plate and the quarter-wave

plate, positioned on the arms of the interferometer, serve to adjust the in-

tensity of the waves Eeω and Eoω, respectively. By orienting a second cube

splitter, we adjust the incidence angle α. The wave vector of the input
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waves are tilted at angles of θ1=2.1deg and θ1=-2.1deg with respect to the

direction of perfect collinear phase matching for the extraordinary and

the ordinary components, respectively. Inside the crystal these parame-

ters correspond to a tilt between the input beams which is greater than

the natural walk-off angle and it is introduced in the plane exhibiting the

lowest critical phase matching. The sum-frequency direction lies in be-

tween the input directions (θ3
∼= 0.4 deg). By this way we fix the relation

V1 < V3 < V2 between the spatial velocities of the three waves. The rest of

the setup is similar to that of fig. 2.3.

Figure 2.12: Experimental setup used for demonstrating the existence of
simultons.

2.3.2 Experimental observation

Here, in tab. 2.2, we report the corresponding output intensities of the

waves Eeω and Eoω, and the output intensities of the generated Ee2ω wave.

These values have been calculated from our measurements in energy and

taking into account the laser pump parameters.

We realized several tests, keeping fixed the polarization state of each wave,

the incidence angle and the phase matching conditions. Only the input

intensity of fundamental waves has changed. We observe in tab. 2.2 that
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test number Ioω[MW/cm2] Ieω[MW/cm2] Ie2ω[MW/cm2]

1 0.005 1.20 0

2 0.005 2.70 0.049

3 0.007 3.52 0.102

4 0.014 8.57 0.296

5 0.022 12.70 0.559

6 0.033 18.70 0.842

7 0.053 24.80 1.45

8 0.077 33.40 2.50

9 0.176 101.20 5.72

Table 2.2: Estimated intensities from measured energies of the input
beams, A1 and A2 @1064 nm, and the third beam A3 @532 nm.

the second harmonic component grows larger with the input intensities.

Indeed, for low input intensities the waves Eeω and Eoω do not interact and

no SH component is created (see fig. 2.13(a)). When increasing the input

intensities, we observe in the spatial output profile that a dip appears on

the Eoω component and correspondingly a SH beam appears with a polar-

ization state along the extraordinary axis. The initial point of interaction

between the beams Eeω and Eoω corresponds to the left part of the dip in

the ordinary input component (red circle fig. 2.14(c)) . Whereas the fi-

nal point of interaction is represented by the right part of the dip (black

circle fig. 2.14(c)). Indeed in the x-y plane the wave Eeω propagates from

left to right. When the input intensities are relatively high we observe in

the dip of the wave Eoω the birth of an ordinary component at frequency

ω. At the same time a deformation of the generated SH beam takes place.

The spatial wave pattern of the wave Ee2ω is gradually reshaped to a well

defined horseshoe-like shape as the input intensities increase. For higher

input intensities the formation of multiple horseshoes in the wave Ee2ω is

observed as shown in fig. 2.13(i). The same behaviour is found on the

ordinary fundamental wave (see fig. 2.14(i)).



34
Chapter 2. Experimental study on Zakharov Manakovsoliton and

simulton generation

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.13: Evolution of the generated SH wave for different input inten-
sities corresponding to the test (a) # 1, (b) # 2, (c) # 3, (d) # 4, (e) # 5, (f)
# 6, (g) # 7, (h) # 8, (i) # 9..

2.3.3 Discussion

By the interpretation of the experimental results, we have identified for

low input intensities (Ioω = 1.20MW/cm2 and Ieω = 0.005MW/cm2) a linear

regime of propagation. Indeed, the recorded output spatial profiles show

that the fundamental beams propagated without diffraction in the KTP

crystal, following their own characteristic spatial directions. We do not ob-

serve nonlinear effects owing to the low values of input intensities.

When the input intensities are high enough to excite a weak non linear

response of the KTP (Ioω = 2.7MW/cm2 and Ieω = 0.005MW/cm2), we observe

the typical behavior of a noncollinear SHG: the input waves propagate with
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.14: Evolution of ordinary FF wave for different input intensities
corresponding to the test (a) # 1, (b) # 2, (c) # 3 (the red circle and the
black one indicate the initial and the final point of interaction, respec-
tively), (d) # 4, (e) # 5, (f) # 6, (g) # 7, (h) # 8, (i) # 9..

their own spatial velocity (V1 and V2 for the waves Eoω and Eeω respectively)

and a SH beam is generated as long as the wave Eeω overtakes the wave Eoω.

Indeed, the spatial width of the SH beam (fig. 2.13(c)) is directly dependent

on the interaction length between the two fundamental waves.

For high input intensities (Ioω = 0.014MW/cm2 and Ieω = 8.57MW/cm2) in-

stead, the interaction of the input beams leads to the generation of a nar-

row SH beam and to the formation of narrow dip in the wave Eoω observable

at the output of the KTP crystal. Fig. 2.14(e) and fig. 2.13(e) reveal that

the intensity, the width and the propagation direction of the Eeω wave are
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.15: Evolution of extraordinary FF wave for different input inten-
sities corresponding to the test (a) # 1, (b) # 2, (c) # 3, (d) # 4, (e) # 5, (f)
# 6, (g) # 7, (h) # 8, (i) # 9..

modified. This is a clear evidence of a stable bright-dark-bright solitary

triplet generation moving with a locked spatial nonlinear velocity (nonlin-

ear walk-off angle) that lies between the input beams velocities [4]. This

solitary wave, called simulton, results from the energy exchange between

diffractionless waves of different spatial velocities. The horseshoe shape

of the generated SH beam (fig. 2.13(e)) is another important consequence

of simulton formation and propagation. The spatial modification of the

propagation direction of the waves is also a clear signature of simulton

generation. The left side of the horseshoe represents the place where the

SH wave is generated with moderate intensity levels of the Eeω wave. This
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SH part is moving under a velocity set by the linear response of the sus-

ceptibility . In contrast, the central part represents the wave Ee2ω forming

the solitary triplet. The simulton velocity, as described in Ref. [4] varies

between the velocity V2 and V3 of the waves Eeω and Ee2ω, respectively. The

nonlinear spatial walk-off which partially compensates the linear one in-

creases when approaching the center of the beam.

At input intensities Ioω = 0.176MW/cm2 and Ieω = 101.20MW/cm2 the shape

Figure 2.16: Numerical dynamics in the x-z plane (right) and x-y
plane (center), compared to the experimental results (right) for the fre-
quency conversion regime; the numerical results are obtained with Ioω =
0.03MW/cm2 and Ieω = 10MW/cm2 .

of spatial pattern of the wave Ee2ω (fig. 2.13(i)) reveals that two different

simultons are generated: each horseshoe corresponds to a pairs of simul-

tons. In the equation 1.10, it exists several couple of intensity and velocity

permitting to obtain simulton propagation. Then by increasing the input

energy, our spatial noncollinear scheme make possible propagations of in-

dependent simultons.

From a IST (Inverse Scattering Transform [1–3]) point of view, in the fre-

quency conversion regime, the wave packet is composed only of radiations

propagating independently with their own velocity. In the simulton regime
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the wave packet is composed of both a radiation and a number N of dis-

crete solutions (solitons). The number N of solitons depends on the input

intensities: for Ioω = 0.022MW/cm2 and Ieω = 12.70MW/cm2, N = 1 instead

for Ioω = 0.176MW/cm2 and Ieω = 101.20MW/cm2, N = 2.

In order to confirm the interpretation of the experimental results, we per-

Figure 2.17: Numerical dynamics in the x-z plane (right) and x-y plane
(center), compared to the experimental results (right) for the simulton
regime with N=1; the numerical results are obtained with Ioω = 0.1MW/cm2

and Ieω = 50MW/cm2 .

formed some numerical simulations of eq. 1.10 in the x-z and x-y plane.

We show the results for the regime of frequency conversion (fig. 2.16) and

simulton formation (for N=1 see fig. 2.17, for N=2 see fig. 2.18). Simi-

larly to what happened for ZM-solitons, we observed even for this case a

discrepancy between the experimentally measured beam intensities and

the values obtained by numerical simulations. We believe that this fact

is due to the incertitude in the real nonlinear response of the crystal, to

the power jitter of the laser pump, as well as to the experimental errors in

measurements. Nevertheless, the numerical results confirm the existence

of the different regimes of propagation.

The displayed results of the figure 2.18 show experimental evidences of
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velocity locked solitary triplets in a quadratic crystal, in the limit where

diffraction is negligible.

Figure 2.18: Numerical dynamics in the x-z plane (right) and x-y plane
(center), compared to the experimental results (right) for the simulton
regime with N=2; the numerical results are obtained with Ioω = 5MW/cm2

and Ieω = 500MW/cm2 .

2.3.4 Conclusion

In conclusion, we have shown the existence of simulton solution in

quadratic media. The theoretical description of that unusual type of prop-

agation is obtained by resolving the coupled equations 1.10. These solitary

waves, predicted in the 1970’s [5], are stable velocity locked bright-bright-

dark spatial triplets, obtained by the balance between the energy exchange

rate and the velocity mismatch between the interacting waves. In partic-

ular three different regimes of propagation depending on the input inten-

sities have been identified: linear regime, frequency conversion regime,

simulton regime.

The concept of three-wave solitons may be useful to describe the inter-

action between either three beams in the spatial domain (diffractionless

solitary waves) or three optical pulses in the time domain (dispersionless

solitary waves).
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To our knowledge this is the first experimental observation of efficient SF

generation based on simultons.
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Here we present a direct application of the soliton concept expressed

in chapter 2. We show results on mode-locking operation of a flash-lamp

pumped Nd:YAG laser using soliton decay in KTP crystal. In this chapter

we first briefly introduce some basic concepts on solid-state laser, then we

illustrate experimental results obtained with a particular resonator config-

uration. The last sections are dedicated to elucidate the operating principle

of our mode-locked laser.

3.1 Solid-state lasers

At the present time solid-state lasers are the most versatile lasers, widely

used in many applications as nonlinear spectroscopy, nano-periodic struc-

turing, micromachining or nonlinear conversion etc. Indeed the size and

shape of the active material can be chosen to achieve particular gain, pulse

duration, wavelength, repetition rate, peak power.



44
Chapter 3. Application of Zakharov Manakov solitons in

mode-locked laser

In analogy to the maser, the name "laser" was coined by its inventor,

T. Maiman, in 1960, as an abbreviation of light amplification by stimu-

lated emission of radiation. The first solid-state laser was build-up with

a ruby crystal, optically pumped by a helical flash-lamp that surrounded

the cylindrical laser crystal. The parallel ends of the ruby crystal were sil-

vered, with a small hole at one end for observing the radiation. The laser

emission was in the visible domain near 694 nm.

The output of the first ruby laser systems consisted of a series of irregu-

lar spikes, extending over the duration of the pump pulse. In 1961 R.W.

Hellwarth discovered a method called Q-switching for concentrating the

output energy from the ruby laser into a single pulse. The Q-switching is

an optical shutter which prevents laser action during the flash-lamp pulse,

and therefore the population inversion can reach large values. If the shut-

ter is opened, stored energy will be released in a time characterized by a

few round-trips between the resonator mirrors [1].

Later, the ruby crystal was replaced by a more efficient neodymium doped

glass (Nd:glass). The best choice of a host for neodymium ions is yttrium

aluminium garnet (Nd:YAG) with a main output emission close to 1064

nm. Nd:YAG crystal has several advantages as: large fluorescence dura-

tion, good thermal conductivity, laser efficiency and can be grown with

relative facility [2].

In 1965, a technique called "mode-locking" was invented. It permits to

transform the random phase fluctuations of the longitudinal modes of a

given resonator into a uniform and unique phase value leading to short

pulses with a duration inversely proportional to the laser emission band-

width.

3.1.1 Q-switching

A mode of laser operation commonly employed for the generation of high

pulse power is known as Q-switching. It has been so called because the
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optical quality factor Q of the resonator cavity is altered when this tech-

nique is used. Indeed resonators are characterized by the quality factor Q,

which is defined as 2π times the ratio between the stored energy Est and

the dissipated energy Ed per period T0 (where Ed = Est(1− exp(−T0
τc

)) and τc

represents the average lifetime of the photons in the resonator):

Q = 2π
Est
Ed

= 2π

[
1− exp

(
−T0

τc

)]−1

≈ 2πτc
T0

= 2πν0τc. (3.1)

Assuming that the finite lifetime of the photons determine the minimum

bandwidth of the passive resonator according to the Fourier transform

∆ω = 1
τc

, the Q factor can be defined as [3]:

Q =
ν0

∆ω
. (3.2)

In the technique of Q-switching, the energy is stored in the amplifying

medium by optical pumping while the cavity Q factor is lowered to prevent

the onset of laser emission. Although the energy stored and the gain in

the active medium are high,the cavity losses are also high. Consequently

the lasing action is blocked and the population inversion may reach levels

far above the threshold of a normal lasing action. When a high cavity Q is

restored, the stored energy is suddenly released in the form of very short

pulse of light, in a extremely short time. This is the reason why with the

Q-switching method, one can obtain high peak power.

Figure 3.1 shows a typical time sequence of the generation of a Q-switched

pulse. The typical pulse duration obtained with such kind of method is

mainly driven by the cavity length and is between 100 ps and several hun-

dreds of nanoseconds. It is also well known that gain switching in a pas-

sive optical resonator acts as Q-switching effect leading also to short pulse

generation [4].
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Figure 3.1: Development of a Q-switching laser pulse. Shown the flash-
lamp output, resonator loss, population inversion, and photon flux as a
function of time [3].

3.1.2 Mode-locking

The instantaneous output peak power emitted from laser oscillators is

subjected to strong fluctuations which originate from the interference of

longitudinal resonator modes exhibiting random phase relations. By es-

tablishing a fixed phase relationship among the longitudinal modes a pow-

erful well-defined single pulse circulating in the resonator can be gener-

ated. Mode-locking requires a mechanism able to produce ultrafast mod-

ulation loss in the resonator to favour intense radiations compared to the

average intensity. The speed of this modulator has to be shorter than the

time round-trip of the light contained in the resonator.

The process of pulse formation starts from amplification of noise coming

from laser radiation. The fluctuations experience a strong absorption and

are gradually suppressed: then the strongest peak power reach the inten-
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sity level for which the mode-locking mechanism lower the cavity losses

(see fig. 3.2). This result in a phase-locking between all the longitudinal

modes and in narrowing of the existing pulse. The shortest pulse duration

is inversely proportional to the gain bandwidth of the laser ∆νL (eq. 3.3):

indeed it is said to be transform limited.

tp ≈
1

∆νL
≈ tr
N
, (3.3)

where N = ∆νLtr is the number of axial mode that are contained within

the oscillating bandwidth, tr = 2L
c is the round-trip time in the optical res-

onator, L is the cavity length and c is the speed of light.

This mode-locking mechanism can be achieved by an externally driven

optical resonator (active mode-locking) or by an ultrafast saturable ab-

sorber (passive mode-locking). In pulsed solid-state lasers, the presence

of a saturable absorber results not only in mode-locked, but also in Q-

switched operation. Indeed for each flash-lamp pulse, a short packed of

mode-locked pulses is generated, for this reason the laser source is called

Q-switched mode-locked laser.

Only few mode-locking techniques, among all existing ones, are used in

flash-lamp pumped lasers. Indeed, high laser gain requires the use of fast

saturable absorbers exhibiting a large evolution of their absorption. The

oldest mode-locking method used in flash-lamp pumped laser is based

on saturable absorption obtained by means of an optical cell with a dye

solution [5, 6]. Unfortunately this method give rise to large instabilities

in time because of the fast deterioration of the saturable element. An-

other possibility to reach mode-locking regime is to use solid-state nonlin-

ear elements like nonlinear semiconductor Fabry-Perot saturable absorber

(SESAM) [7, 8] or frequency-doubling crystal combined with a dichroic

mirror [9, 10] or a polarizer to mimic the effect of an intensity depen-

dent mirror [11, 12]. If SESAM’s are particularly well adapted to diode

pumped systems, their use in flash-lamp pumped lasers are more prob-
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Figure 3.2: Numerical simulation of the process of mode-locked pulse
formation from noise using nonlinear absorber: (a-c) linear amplification,
(d-e) nonlinear absorption, (f) nonlinear amplification, saturation of the
nonlinear absorber [3].
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lematic because of large pumping fluctuation leading to the appearance

of extreme pulses able to damage the nonlinear component. Nonlinear

crystal cut for second harmonic generation offers an interesting alterna-

tive to reach mode-locking regime in laser exhibiting large gain with strong

intensity [9–11].

3.2 Mode-locking operation with Zakharov-

Manakov solitons

Here, we present a new mode-locking method based on TWRI obtained in a

type II KTP crystal cut for second harmonic generation. Indeed, we exploit

the decay process of Zakharov-Manakov solitons presented in chapter 2.

3.2.1 Experimental setup and results

The resonator configuration used to obtain the mode-locked regime is pre-

sented in fig. 3.3.

The laser consists of two flat mirrors M1 and M2, having respectively

Figure 3.3: Schematic setup of the flash-lamp-pumped Nd:YAG laser
operating in the mode-locked regime by means of TWRI solitonic decay.
L1,L2,L3 lenses; P1 polarizer; M1, M2 mirrors.

80% and 90% reflectivity at 1064 nm and 6% for the second harmonic.

The active medium is a 1.1% atomic doped Nd:YAG rod of 100 mm length,

transversely pumped by two flash lamps with a typical energy of 25 J. The

repetition rate is 10 Hz. Single-transverse-mode operation is ensured by

a diaphragm of 1 mm in diameter. The laser output is delivered through

mirror M1. A Brewster polarizer is used to ensure the linear polarization
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of the beam. We used a Wollaston cube polarizer and a half-wave plate to

obtain, after passage of the light through L1, two separated beams with

perpendicular linear polarization states. A lens L2 is used to focus and

spatially superimpose the two beams on the input face of the 3 cm long

type II KTP crystal cut and oriented for exact phase matching and for SHG

in a non-collinear geometry.

In this configuration, the two beam waists are spatially located at the in-

put face with a circular shape of 120 µm (FWHMI). The directions of the

linear polarization state of the two beams are adjusted so to coincide with

the ordinary and the extraordinary axes of the KTP crystal. The wave vec-

tors of the input fields were tilted at angles of θ1 =0.7◦ and θ2 =-0.7◦ (in the

crystal) with respect to the direction of perfect collinear phase matching

for the extraordinary and the ordinary components, respectively. Lens L3

ensures the initial beam re-composition after reflection on the end cavity

mirror M2.

The mechanism of TWRI solitonic decay illustrated in chapter 1 is here

used to obtain an intensity-dependent transmission after the beam round-

trip through the diaphragm, the Wollaston cube, the KTP crystal and the

two lenses. For low pump energies a stable intra-cavity beam is generated.

After its division in two components inside the Wollaston cube and their

superimposition at the input face of the crystal, a third beam at SH is

generated in the median direction between the two fundamental waves. In

this condition no solitonic propagation is obtained and no nonlinear trans-

mission behaviour is observed. Then a slight misalignment of the cavity

by means of the L3 lens shift is realized to increase the resonator losses.

By increasing the pump energy above a threshold level, we observe at the

laser output a train of energetic pulses, with an envelope duration of 180

ns (see fig. 3.4(a)). This is a clear signature that the mode-locked regime

is reached. Indeed, the shortest pulse observed, in the central part of the

pulse train, exhibits duration of 100 ps FWHMI (see fig. 3.4(b)), which is

typical of a mode-locked regime. In this case the mode-locked regime is si-
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multaneously accompanied by a repetitive 10 Hz Q-switching like regime,

due to the flash pumping repetition rate (in fact the envelope duration of

fig. 3.4(a) is typical of a Q-switching regime). The stability of peak power

from shot to shot is close to 80 %. All experimental results were measured

with a fast oscilloscope and a photodiode with minimum bandwidth of 12

GHz.

(a)

(b)

Figure 3.4: Experimental results obtained with the setup of fig. 3.3:
(a) characterization of the pulse train delivered by the mode-locked flash-
lamp-pumped Nd:YAG laser; (b) characterization of the profile and dura-
tion of a pulse selected in the central part of the delivered pulse train.
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3.2.2 Discussion

The reached Q-switched mode-locked regime is clearly due to the intensity-

dependent transmission created by the solitonic decay. Indeed, the soliton

threshold is reached leading to spatial reorientation of the two beams in-

side the cavity. In this case the misalignment induced by lens L3, is com-

pensated by solitonic dynamics and in a way similar to what is commonly

observed with a saturable absorber. The mode-locking regime is reached

by increasing the pump level above an intensity threshold. The threshold

intensity for mode-locked operation is estimated to be about 800MW/cm2.

As a proof, the repetition rate of the mode-locked pulse (measured to 136

MHz), matches with the cavity round-trip time.

Numerical simulation were performed to characterized the solitonic dy-

namics, inside the laser resonator. In fig. 3.5 we show the calculated

intensity-dependent transmission curve induced by soliton propagation.

This results are obtained considering the effect induced by the combina-

tion of KTP crystal and lens L3 represented by a numerical filter which

provide 100 % transmission of the soliton components and 15 % trans-

mission of the linear components (spatial filtering). This data corresponds

to a single-pass transmission through the setup. The intracavity soliton

dynamics shown in section 2.2 is shown in fig. 3.5. For a linear regime of

propagation (a of fig. 3.5) the low transmission is due to the strong losses

imposed by the cavity. When increasing the pump intensity, a part of the

fundamental beams is converted into SH (frequency conversion regime),

which is partially transmitted by the mirror M2. This corresponds to in-

crease the loss of the resonator (b of fig. 3.5). For higher intensity, the

soliton threshold formation is reached (solitonic regime, c) and d) of fig.

3.5), so all the energy is enclosed in the soliton components, which are to-

tally reflected. Additionally, the weak initial misalignment of the resonator

is compensated by the solitonic propagation which decreases instanta-

neously the resonator losses and gives rise to picosecond pulses.
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Figure 3.5: Numerical data representing the intensity-dependent trans-
mission of the setup of fig. 3.3. I is the intensity of the input beams, Is
define the ZM soliton threshold.

3.3 Conclusion

In conclusion we have demonstrated, for the first time, the passive Q-

switched mode-locked operation of a flash-lamp pumped Nd:YAG laser

thanks to TWRI solitonic dynamic in a type II phase-matched KTP crys-

tal. The mode-locked regime produced pulse train with duration close to

100 ps, repetition rate of 136 MHz and modulation depth almost 100 %.

The mode-locked pulses are modulated with a longer 180 ns pulse enve-

lope with repetition rate of 10 Hz. The intensity threshold for mode-locking

is imposed by solitonic threshold formation which depends on the input

condition of waves travelling through the nonlinear crystal.
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In this chapter we present the main characteristics of a particular phe-

nomenon that leads to the extreme spectral broadening of an optical pulse,

named supercontinuum (SC) generation. In particular we are interested in

describing the nonlinear effects that are responsible for SC generation in

an optical fibre. At the end of this chapter a brief historical overview of SC

generation is introduced, a particular attention is given to the excitation

regime.

4.1 Photonic crystal fibre

A major discovery for modern telecommunications is the optical fibre: a

long filament of glass (or in some cases plastic) that guides light, usu-
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ally over a long distance. Optical fibres are also used in other domains,

ranging from medicine to astrophysics. Most of the optical fibres are com-

posed by a central core that is surrounded by a cladding with low dielectric

constant, which confines the light by total internal reflection (fig. 4.1(a)).

Since 1980s, the interest of many researchers has been attracted by the

ability to structure materials at the scale of the optical wavelength itself

in order to develop new optical media, known as photonic crystals. Pho-

tonic crystals fibres (PCFs) rely on a regular microstructure, which alters

its optical properties [1]. In such a fibre, the cladding is composed by a

periodic structure of air holes that surround the silica core [2, 3] as shown

in fig. 4.1(b). These air holes reduce the average index of refraction of the

cladding thus allowing to guide the light inside the core.

In the next subsections, we will show how PCF geometry can modify

the chromatic dispersion and nonlinear response.

(a) (b)

Figure 4.1: (a) Step index fiber with core radius a. (b) PCF with lattice
period Λ and air-hole diameter d.

4.1.1 Dispersion

As I have presented in the first part of my thesis, the concept of group

velocity plays an important role in nonlinear optics.

A pulse propagating inside a PCF undergoes a chromatic dispersion (dis-
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persion due to the dependence of the refractive index versus the wave-

length). This chromatic dispersion is mainly due to two contributions:

the material dispersion Dm and the waveguide dispersion Dw. The total

chromatic dispersion is:

D = −2πc

λ2
β2 = Dm +Dg, (4.1)

where

Dm = −λ
c

∂2

∂λ2
(nsilica),

Dw = −λ
c

∂2

∂λ2
(neff ),

(4.2)

with c the speed of light, nsilica the refraction index of the silica glass as a

function of wavelength (normally calculated from the Sellmeier equation),

neff the effective refraction index of the fundamental mode, β2 the group

velocity dispersion (evolution of group velocity as a function of wavelength)

and it is calculated from the second order derivative of β(ω) upon angular

frequency. More generally, far from resonances, we can approximate the

dependency of wavenumber with angular frequency by a polynome:

β(ω) = neff (ω)
ω

c
= β0 + β1(ω − ω0) +

1

2
β2(ω − ω0)2 +

1

6
β3(ω − ω0)3 + ... (4.3)

By properly changing the geometrical characteristics of the air holes in

the PCF cross-section [4], the dispersion parameter can be significantly

changed, thus obtaining wide tunability of the zero-dispersion wavelength

(ZDW), as well as particular values of the dispersion curve slope [5]. The

fibre can be tailored in relation to the laser source used: it is then pos-

sible to pump the fibre in the near infrared domain (800 nm-2 µm) in an

anomalous dispersion regime. Most of PCF available at present days are

extremely lossy with respect to standard fibres. Their applications are then

limited to short segments. In fig. 4.2 we show a typical example where the

dispersion curves of a conventional fibre is compared with the PCF ones.

We call normal dispersion if D < 0 (β2 > 0) or anomalous dispersion if
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Figure 4.2: Chromatic dispersion curves of the fundamental mode for
different PCFs and for a standard single mode fibre SMF-28 [6].

D > 0 (β2 < 0). The case when D = 0 (β2 = 0) corresponds to the ZDW.

When a pulse propagates in the anomalous dispersion regime, the short

wavelength tail of its spectrum travel faster than the long wavelength tail.

4.1.2 Non-linearity

One of the primary applications of PCFs has been to enhance the nonlinear

optical effects. Nonlinear phenomena in fibres are typically due to the Kerr

effect, in which the refractive index varies in proportion to the intensity of

the light. Differently from what observed in chapter 2 for crystals, here the

lowest order nonlinear contribution to the polarization vector comes from

the third-order susceptibility χ(3) which takes into account the nonlinear

refractive index n2 and the two-photon absorption coefficient α2:

n2 =
3

8n0
Re
(
χ(3)
xxxx

)
and α2 =

3ω0

4n0c
Im
(
χ(3)
xxxx

)
. (4.4)
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The coefficient α2 is small for silica fibre and is usually neglected. The

commonly used value for n2 is 3.2× 10−20m2/W [7]. Silica based materials

have rather weak non-linearities, and it is necessary to use very high in-

tensity or to propagate over a very long distance before the effects of n2I

become significant. Large index contrast may then reduce the mode field

diameter and then enhance the nonlinear effect: this is one of the interests

for PCF.

Generally, the strength of the nonlinear effects for a given waveguide mode

can be characterized by a single parameter γ, called nonlinear coeffi-

cient [7]:

γ =
n2ω0

cAeff
. (4.5)

where Aeff is the effective area of the propagation mode in the core which

depends on fibre parameters such as the core radius and the core-cladding

index difference but also varies with respect to the wavelength. So, for

wavelengths much smaller than the core diameter, the propagation mode

is mainly confined into the core. For wavelengths of the same order of the

core diameter, the propagation mode tends to widen thus increasing the

effective area [8]. Finally as the effective area is a function of wavelengths

also the nonlinear coefficient turns to be wavelengths dependent.

A direct consequence of the intensity dependence of the refractive index is

the nonlinear phase shift:

φNL(ω, t) =
2π

λ
n2I(t)L. (4.6)

This nonlinear phase shift is self-induced by the propagation of an optical

beam over a fibre distance L and modifies the cumulated phase as follows:

φ(ω, t) = n(ω, t)
ω

c
L = [n0(ω) + n2I(t)]

2π

λ
L =

=
2π

λ
n0(ω)L︸ ︷︷ ︸
φL(ω)

+
2π

λ
n2I(t)L︸ ︷︷ ︸
φNL(ω)

. (4.7)
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4.2 Nonlinear Schrödinger equation

The propagation of electromagnetic field in a dieletric medium along

the coordinate z is described by an extended version of the nonlinear

Schrödinger equation (NLSE) [7] assuming a slowly varying envelope. By

considering a moving frame centered on the pulse and moving at the speed

vg = 1
β1

, the NLSE reads as:

∂A(z, t)

∂z
−
∑
n≥2

βn
in+1

n!

∂nA(z, t)

∂tn
+
α

2
A(z, t) =

= ıγ

(
1 +

ı

ω0

∂

∂t

)(
A(z, t)

∫ +∞

0
R(τ)|A(z, t− τ)|2∂τ

)
,

(4.8)

where α represents the loss inside the fibre, βn are the Taylor expansion

coefficients of the propagation constant β, γ is the nonlinear coefficient

as expressed in eq. 4.5. In the eq. 4.8 it is included also the nonlinear

response of the medium R(t), defined as:

R(t) = (1− fR)δ(t) + fRhR(t). (4.9)

where δ(t) is the Dirac function and hR(t) is the Raman response function.

The function R(t) therefore includes the delayed vibrational contribution

of the Raman response through the coefficient fR = 0.18 and the instanta-

neous electronic contribution through the term (1− fR).

In the next section, will be presented some nonlinear effects involved in

the propagation of an optical pulse in a fibre. These examples will be use-

ful to understand the experimental and theoretical work presented in the

next chapter. It is proven useful to introduce two length scales, known as

the dispersion length LD and the nonlinear length LNL [7].

LD =
T 2

0

|β2|
, LNL =

1

γP0
, (4.10)
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where T0 and P0 are the input pulse width and the peak power of the

incident pulse, respectively. These two lengths, LD and LNL, provide the

distance over which dispersive or nonlinear effects become important for

a pulse evolution. Similary to what I did in the first part of my thesis

in nonlinear crystals, it is necessary to compare these lengths. Here we

identify four different regimes:

• if L � LNL and L � LD the nonlinear and dispersive effects do not

play a significant role during pulse propagation;

• if L � LNL and L � LD dispersion and non-linearity act together as

the pulse propagates along the fiber;

• if L� LNL and L ∼ LD the pulse evolution is governed by GVD;

• if L ∼ LNL and L � LD the pulse evolution is governed by nonlinear

effects.

4.3 Nonlinear effects in optical fibre

This section presents some of the nonlinear effects involved during pulse

propagation inside the fibre. These effects can be organized in two cate-

gories:

• elastic phenomena (self-phase modulation, cross-phase modulation,

four wave mixing, modulation instability);

• inelastic phenomena (Raman effect).

We will also talk about solitonic effects in optical fibre, which is due to a

combination of the effects mentioned in the above categories.

4.3.1 Self phase modulation

One of the first expression of the optical Kerr effect is the self-phase mod-

ulation (SPM): that is the instantaneous dependence of the refractive index
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upon the intensity associated to the electric field. Taking into consider-

ation only the instantaneous electronic contribution and neglecting the

Raman term, the NLSE takes the form:

∂A(z, t)

∂z
−
∑
n≥2

βn
in+1

n!

∂nA(z, t)

∂tn
+
α

2
A(z, t) = ıγ A(z, t)|A(z, t)|2︸ ︷︷ ︸

SPM

, (4.11)

As expressed in eq. 4.6, the nonlinear phase shift is proportional to the

pulse intensity. This phenomena leads to a modification of instantaneous

frequency:

ω(t) = −∂φ
∂t

= ω0 + δω(t) ∝ ω0 − n2
∂|A(z, t)|2

∂t
= ω0 − n2

∂I(t)

∂t
. (4.12)

thereby, all frequencies lower than the central frequency of the pulse are

generated on the leading edge of the pulse (Stokes side) instead all fre-

quencies greater than the central frequency of the pulse are generated on

the trailing edge (anti-Stokes side) as expressed in fig. 4.3.

Figure 4.3: Effect of SPM on a gaussian input pulse: modification of the
spectrum due to nonlinear phase shift.
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Therefore the SPM could broaden the input spectrum by a factor δωMAX,

defined as the maximum of δω(t) [7]:

δωMAX ≈ 0.86 ∆ω0 φMAX , (4.13)

where ∆ω0 is the 1/e half-width of the initial spectrum. The maximum

spectral broadening is proportional to the numerical value of the maxi-

mum nonlinear phase shift φMAX.

4.3.2 Cross-phase modulation

If two waves, at different carrier wavelengths λ1 and λ2, travel simultane-

ously in the fibre, the nonlinear refractive index of the wave 1 is influenced

by the intensity of both waves. This effect is called cross-phase modula-

tion (XPM) and may be as twice as large than the SPM in a scalar model.

Indeed when a field is constituted of two frequencies, the instantaneous

intensity is composed of two part: two constant values related to the inten-

sity of the two frequencies taken singularly plus two terms beating at the

frequency detuning between the two channels. In a third order interaction

these last terms provide a double effects of refractive index change for the

same value of intensity per channel. Note that in principle both SPM and

XPM have no direct equivalent in a χ(2) crystal. Due to XPM the nonlinear

phase of the wave 1 is:

φ1
NL(t) =

2π

λ
n2L [I1(t) + 2I2(t)] . (4.14)

The same behaviour is expressed in the NLSE (still in the limit of the

instantaneous response of the medium):

∂A1(z, t)

∂z
−
∑
n≥2

βn
in+1

n!

∂nA1(z, t)

∂tn
+
α

2
A1(z, t) =

ıγ1

|A1(z, t)|2︸ ︷︷ ︸
SPM

+ 2|A2(z, t)|2︸ ︷︷ ︸
XPM

A1(z, t).

(4.15)
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4.3.3 Four wave mixing

The four-wave mixing (FWM) is a nonlinear process due to the third order

nonlinear susceptibility, where the mixing of photons generates photons

at different frequencies. This parametric generation is only observable if

there is a matching between the different phase velocities of the waves

and if the total energy is conserved. FWM is the conceptual analog for fibre

of the TWRI developed in the chapter 1 for nonlinear crystals. By follow-

ing the same procedure one could formulate four (instead of three) coupled

equations in which frequency conversion of pulse waveforms occurs only

when a condition of temporal superposition is satisfied. In this context non-

linear interactions are limited by temporal walk-off while all waves have

wavevectors oriented in the same direction. We now limit first our analysis

to four monochromatic waves. Two types of FWM exist. In the first one, the

mixing of three photons at three different pulsations ω1, ω2, ω3, gives rise

to a fourth photon with angular frequency ω4 = ω1 + ω2 + ω3. This effect

permits, for example, to explain the third-harmonic generation process in

optical fibre. This type of FWM is difficult to obtain because of the phase

matching condition which is not well satisfied in optical fibres. The second

type of FWM permits the generation of two photons at frequency ω3 and ω4

from two photons ω1 and ω2 pertaining to two pump waves. This process

is schematically represented in fig. 4.4(a). The scalar phase matching and

the energy conservation condition read as:

ω1 + ω2 = ω3 + ω4, k1 + k2 = k3 + k4. (4.16)

The waves at ω3 and ω4 (assuming ω3 > ω4) are usually called Stokes and

anti-Stokes waves. When the two pump waves are at the same frequency

ω1 the process is called degenerate FWM (see fig. 4.4(b)).

In the limit of the instantaneous response of the medium, the NLSE for
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(a) (b)

Figure 4.4: Schematic representation of FWM in the case with (a) two
pump waves and (b) with only one pump wave (degenerate case).

field A1(z, t) read as:

∂A1(z, t)

∂z
−
∑
n≥2

βn
in+1

n!

∂nA1(z, t)

∂tn
+
α

2
A1(z, t) =

= ıγ1

|A1(z, t)|2︸ ︷︷ ︸
SPM

+ 2|A2(z, t)|2︸ ︷︷ ︸
XPM

 A1(z, t)+

+ 2A∗2(z, t)A3(z, t)A4(z, t)eı(k3+k4−k1−k2)z︸ ︷︷ ︸
FWM


(4.17)

4.3.4 Modulation instability

Modulation instability (MI) is a noise-seed nonlinear phenomenon due to

the interplay between SPM and dispersion which leads to the break-up of

an input pulse. It was first discovered in fibres in 1986 [9], but MI can also

be found in many areas of physics such as plasma waves and water sur-

face waves [10, 11]. This phenomenon takes place only in the anomalous

GVD region. Other forms of conditional stability arise in specific conditions

involving polarization, high order dispersion and multiple pumps. MI can

be interpreted as degenerate FWM in anomalous dispersion regime, where

the phase matching is obtained thanks to the compensation of the linear
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phase mismatch with SPM. Quasi CW pulses break-up and generate a

train of pulses. A signature of this modulation is seen in the optical spec-

trum by the appearance of two symmetrically distributed sidelobes around

the pump (see fig. 4.5). The frequency shift between the pump and the MI

Figure 4.5: Gain spectra of modulation instability at three power levels
with β2 = −20ps2/km and γ = 2W−1/km [7].

gain frequencies is equal to the repetition rates of the pulses created in the

break-up of the initial pulse. Neglecting high order effects, it is possible

to predict the angular frequency shift of the peak of the MI gain using the

following expression [7]:

Ωmax = ±

√(
2γP0

|β2|

)
, (4.18)

where Ωmax is the angular frequency detuning of the maximum gain from

the pump.
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4.3.5 Inelastic phenomena

The nonlinear response of the material is very fast but is not instanta-

neous. One part of the nonlinear response comes from the vibrational

modes of the medium with a finite response time. When this vibration

is associated with optical phonons, the phenomenon is called Stimulated

Raman scattering (SRS). SRS is a nonlinear process due to the interaction

between photons and phonons. It can transfer a fraction of power from

one optical field to another field, whose frequency is downshifted (Stokes

side) by an amount determinated by the vibrational modes of the medium.

Molecules may absorb photons by changing their vibrational state. Dif-

ferently from an other type of scattering (Rayleigh) the re-emitted photons

may have different energies. For this reason this type of nonlinear scat-

tering is called inelastic. Raman scattering can also transfer energy from

a pump field to another field upshifted in frequency (anti-Stokes side),

but this process is less efficient (in terms of emission probability) than the

Stokes case, because it needs to take energy from the medium. The energy

exchange, between the pump and the medium, is represented in fig. 4.6.

The processes of Stokes and anti-Stokes generation may have a sponta-

neous counterpart, which is characterized by a small energy transfer. The

energy transfer in silica medium is maximum for ∆ωR = ωp−ωS = 13.2THz.

This value corresponds to the peak value of the Raman gain spectrum (fig.

4.7(a)). Differently from the case of short crystals SRS plays an important

role in nonlinear optics in fibre due to the long interaction between light and

matter. However if we focus our attention to the system of coupled equa-

tions between pump, Raman Stokes and anti-Stokes we find again a cou-

pled system of three-wave mixing equations as those described in chapter

1. Despite the physical mechanism are different, the mathematical model

of three-wave mixing has a sort of generality in nonlinear optics. From a

time domain point of view, the Raman effect is interpreted as the delayed

nonlinear response of the medium. In this condition, the nonlinear polar-
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(a) (b)

Figure 4.6: Energy level diagrams for (a) Stokes Raman scattering and (b)
anti-Stokes Raman scattering.

ization corresponding to the Raman effect is:

P(3)
R (t) = ε0E(r, t)

∫ t

−∞
hR(t− τ)|E(r, τ)|2dτ, (4.19)

where the integral is calculated from −∞ to t to satisfy causality: hR(t) is

equal to zero for τ > t. In the case of SRS, where we have to consider two

waves (pump and Stokes), the total electric field is:

E(r, t) =
1

2

[
Ep(z, t)e

ı(kpz−ωpt) + ES(z, t)eı(kSz−ωSt)
]
e, (4.20)

Substituting eq. 4.20 in eq. 4.19 and taking in consideration only the

terms involved in the Raman effect, in the case of slowly varying enve-

lope approximation, the coupled propagation equation considering only

the Stokes wave read as (one for the pump and one for the Stokes):

∂Ap(z, t)

∂z
= ıγR,pAS(z, t)

∫ t

−∞
hR(t− τ)e−ıΩpS(t−τ)A∗S(z, τ)Ap(z, τ)dτ

∂AS(z, t)

∂z
= ıγR,SAp(z, t)

∫ t

−∞
hR(t− τ)e−ıΩSp(t−τ)A∗p(z, τ)AS(z, τ)dτ

(4.21)
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(a) (b)

Figure 4.7: (a) Measured Ramain gain curve (Im(ĤR) [12] and (b) calcu-
lated real and imaginary part of ĤR.

where γR = gRΓR
ΩR

and ΩpS = ωp − ωS = −ΩSp. The coefficient gR, ΓR and ΩR

represent the Raman gain, the bandwidth of the Raman response and the

Raman resonance frequency. The temporal Raman response is:

hR(t) = Ω2
Rτ1e

−t
τ2 sin(

t

τ1
) (4.22)

where τ2 = 1
ΓR

and τ1 = 1
(Ω2
R−Γ2

R)1/2 ≈ 1
ΩR

are two parameters and they have

been chosen to provide a good fit to the Raman gain spectrum (fig. 4.7(a)).

The values used in this manuscript are τ1 = 12.2fs and τ2 = 32fs [13]. The

Raman response spectrum is obtained by Fourier transform of eq: 4.22:

ĤR(Ω) =
Ω2
R

Ω2
R − Ω2 − 2ıΓRΩ

. (4.23)

The real part of ĤR(Ω) modifies the refractive index, while the imaginary

part represents the gain as shown in fig. 4.7(b). The Raman effect can be
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also integrated in the NLSE in the following form:

∂A(z, t)

∂z
−
∑
n≥2

βn
in+1

n!

∂nA(z, t)

∂tn
+
α

2
A(z, t) =

= ıγ

(
1 +

ı

ω0

∂

∂t

)A(z, t)

∫ +∞

0
R(τ)|A(z, t− τ)|2dτ︸ ︷︷ ︸

Raman effect

 .

(4.24)

where the terms proportional to ı
ω0

∂

∂t
takes into consideration the variation

of the γ coefficient upon frequency.

4.3.6 Solitonic effects

When an optical fibre is pumped in the normal dispersion region (D < 0

and β2 > 0), the SPM spectral broadening stops when the dispersion has

spread the pulse. With PCFs it is possible to shift the zero dispersion

wavelength toward the short wavelengths so as to make easy to inject a

laser beam in the anomalous dispersion region (D > 0 and β2 < 0). When

a fibre is pumped in the anomalous dispersion region, the competition

between dispersion and non-linearity may even balance giving rise to the

formation of solitons. Such solitons have a single wavelengths and they

are not multicolor solutions as simulton described in chapter 1. Optical fibre

solitons are particular waves able to propagate without any deformation

inside the fibre. We can explain the soliton formation considering that

the only nonlinear effect involved is the SPM. More precisely, the spectral

blue components, created on the trailing edge of the pulse by SPM, travel

faster then the red components, and they are shifted to the leading edge

of the pulse. Hence, if the phase induced by SPM compensates exactly the

phase introduced by the dispersion, a wave propagating without changes

in spectral profile and time duration is created. Such kind of wave is called

soliton.

Considering only the group velocity dispersion (terms β2 in eq. 4.3) and
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the SPM, the NLSE take the form:

∂A(z, t)

∂z
= −β2

i

2

∂2A(z, t)

∂t2
+ ıγA(z, t)|A(z, t)|2, (4.25)

with β2 < 0 and γ > 0. The soliton is a specific solution of the equation

4.25, and is defined as:

A(z, t) =
√
P0 sech

(
t

T0

)
e
ı z
2LD , (4.26)

where P0 is the peak power, T0 is the soliton time width and LD is the

dispersion length defined in eq. 4.10. In solitons context, it is useful to

normalize eq. 4.25 in soliton units, by introducing three dimensionless

variables directly related to soliton features like peak power, dispersion

length or temporal width:

U =
A√
P0
, ξ =

z

LD
, τ =

t

T0
, (4.27)

so it is possible to write the NLSE in the following normalized form:

ı
∂U

∂ξ
= sgn(β2)

1

2

∂2U

∂τ2
−N2|U |2U, (4.28)

where N is defined as

N2 =
LD
LNL

=
γP0T

2
0

|β2|
. (4.29)

The dispersion length LD and the nonlinear length LNL are defined in eq.

4.10. The parameter N represents the soliton order: a first order soli-

ton (fundamental soliton) is obtained when LD is equal to LNL and high

order soliton when LD is greater then LNL. First order solitons are able

to propagate inside the fibre without any type of temporal and spectral

deformation because the dispersive and nonlinear effects exactly compen-

sate each other. Otherwise, a high order soliton is periodic in ξ with period
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ξ0 = π
2 . In the normalized units the soliton period z0 is:

z0 =
π

2
LD =

π

2

T 2
0

|β2|
. (4.30)

This characteristic of high order solitons is called "breathing": the soliton,

during its propagation, undergoes a periodic compression and broadening

in time domain. This effect is shown in fig. 4.8 for a third order soliton.

High order solitons may be described as several fundamental solitons

Figure 4.8: Temporal evolution of a third order soliton (N=3) over one
soliton period [7].

which propagate in coupled manner [14], so a soliton of Nth order is com-

posed by N fundamental solitons. The peak power and the temporal dura-

tion of each of these solitons are defined as:

Pk =
(2N − 2k + 1)2

N2
P0 and Tk =

T0

2N − 2k + 1
, (4.31)

where k = 1...N denote the kth fundamental soliton constituting the soliton

of order N with peak power P0 and time duration T0. These fundamental

solitons have the same group velocity in absence of any perturbation dur-
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ing its propagation, so the high order soliton can breath. If some pertur-

bation affect the soliton propagation, this state of equilibrium can break.

Ones of the effects responsible for this break up are the third and fourth

order dispersion. High order solitons can then break into their N consti-

tuting fundamental solitons. This effect is the so called soliton fission or

soliton break-up. It is possible to define a length for which the soliton

fission takes place:

Lfission =
LD
N
. (4.32)

A soliton, propagating in an optical fibre, is subject not only to the

Kerr effects which compensate the dispersion, but also to Raman ef-

fect. Indeed, when the soliton spectrum is so broad (typically for time

duration T0 < 100fs) to overlap the Raman gain spectrum, the longer-

wavelength components experience Raman amplification to the detriment

of the shorter wavelengths. This effect is called soliton self-frequency shift

(SSFS), and causes an overall spectral shift of the soliton toward longer

wavelengths. The strength of this effect depends strongly on the pulse du-

ration, since shorter solitons exhibit a higher peak power and a broader

optical spectrum. The latter is important because of the Raman gain is

weak for small frequency offsets. During propagation, the rate of the fre-

quency shift often slows down, because the pulse energy is reduced and

the pulse duration increased due to losses inside the fibre. SSFS was first

discovered in 1986 by Mitschke [15] and modelled by Gordon in the same

year [16]. In particular the work done by Gordon shows that the frequency

shift ∆ν0 experienced by a soliton with time width T0 after a distance z is:

∆ν0 =
λ2D(λ)q(T0)z

T 4
0

, (4.33)

where D(λ) is the chromatic dispersion at the soliton carrier wavelength

λ and q(T0) is the overlapping function between the soliton spectrum and

the Raman spectrum.

Differently from multi-component solitons described in chapter 2, it is dif-
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ficult to study the existence of multi-soliton solution in fibre. However we

cannot deny that multiple self sustained solitons may interact one with each

other giving rise to new frequency components.

4.4 Supercontinuum generation

The temporal as well as spectral evolution of optical pulses, propagating

inside a highly nonlinear fibre, is affected not only by a multitude of non-

linear effects such as SPM, XPM, FWM and SRS, but also by the disper-

sive properties within the pulse spectrum. For sufficiently intense pulses,

through the interaction of many nonlinear processes, the pulse spectrum

may become extremely broad. Such extreme spectral broadening is re-

ferred to as supercontinuum generation (SC).

4.4.1 Hystorical review

The first remarkable spectral broadening of quasi-monochromatic laser

pulse was obtained by Stoicheff in 1963, in a liquid medium [17]. However

the attention of the scientists on this subject was attracted ten years later

when Alfano and Shapiro demonstrated, for the first time, the generation

of spectra ten times larger then the input one [18]. The experiment was

carried out pumping a borosilicate glass (BK-7) with picoseconds pump

pulse, obtaining an output spectra extended till the visible region. It is only

in 1984 that the terms "supercontinuum" was coined by Manassah [19].

From the first demonstration, several investigation groups developed re-

search concerning SC generation in different medium such as liquid, gas

and solid [20–27]. The experiments were focused on the understanding of

the physical phenomena which SC is based on, and several mathematical

models were developed to explain the role played by the nonlinear effects

involved in SC generation [28–32]. However, many points remained to be

clarified on the global development of SC. It’s in the 80s that the SC at-

tract more interest. Indeed, because of optical fibre, is it possible to obtain
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Figure 4.9: Chronological history of the main results (in red) concerning
the SC generation.

wider spectral broadening but also to control some guide’s features , for

instance chromatic dispersion. The first SC generation in optical fibre was

reported by Lin and Stolen [33], after that many effort have been done to

achieve the simplest configuration that allows one to generate SC [34, 35].

Another important stage in the SC generation’s history, is the invention of

the photonic crystal fibre (PCF). The first report on PCFs was presented

by Knight in 1996 [36]. As discussed in the previous chapter, these fibres
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allow to reduce the fibre length and the peak power request for SC gen-

eration. Indeed, it is possible to control the nonlinear coefficient so as to

increase the impact of nonlinear effects. In 2000, Ranka demonstrated the

potential of PCF in SC generation [37]. After that many research groups

have investigated on the characteristic of the SC spectra and on the non-

linear effects involved in the propagation [38–41].

Over the last decade, this effect has attracted much attention because

of applications in many different fields, such as laser-frequency metrol-

ogy, biology or medical imaging [42, 43]. In fig. 4.9 the main historical

researches in SC generation are resumed, showing in red the most impor-

tant results.

4.4.2 Specificity of pumping regimes

Spectral broadening over a spectral range of several hundreds of nano me-

ters are been observed in nanosecond, picosecond and femtosecond, and

also in a continuous wave (or quasi-continuous wave) regimes. Each type

of excitation differs from the others in terms of nonlinear process involved,

temporal and spectral characteristics. In SC generation, the type of exci-

tation permits to control the importance of nonlinear effects respect to the

dispersion effects. The ZDW of the fibre is another important parameter

in SC generation process, which determine if the pump is in anomalous

or normal dispersion region. In general, an efficient SC generation is ob-

tained pumping the fibre close the ZDW because of the low impact of the

dispersion on the powerful pulse shape.

Since the early experiences of SC generation using femtosecond pump

lasers [37], alternative regimes of inputs have been investigated to cover

a full range of possible durations including picosecond, nanosecond and

CW laser sources which potentially benefit from more compactness and

low costs [38, 44, 45]. The CW laser source delivers smaller peak power

than the pulsed laser. In order to counteract this difference, it is essential
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to use very long highly nonlinear fibre. This is exactly what Avdokhin [46]

demonstrated in 2003 using a CW laser source pumping in the anoma-

lous dispersion region, obtaining high spectral density (12 mW/nm) and

a spectral broadening higher than 400 nm. The first experiment in the

nanosecond regime was carried out by Lin and Stolen in 1976 [33], which

has opened a new research interest. A major effort was done demon-

strating the interest to use different laser sources and different optical

fibers [47–50], with the purpose to obtain a SC with high average power.

The picosecond regime permits to control the spectral evolution highlight-

ing the non-linearity (with shorter fibre length) or increasing the dispersion

(with longer fibre length) [51]. But these different time durations are usu-

ally associated with qualitatively different nonlinear mechanisms.

Femtosecond regime

The femtosecond regime has been extensively studied with the advent of

PCFs. Because of the possible control of ZDW position, it is possible to

pump the PCF close to it. This allows to preserve the peak power of the

ultra-short pulse over a distance of several centimeters. Indeed, with such

kind of pulse (generated by a Ti:sapphire or ytterbium doped fibre lasers),

it is possible to obtain very high peak power (> 15 kW) that leads to the

generation of very broad spectrum. The temporal profile is composed by

multiple sub-pulses whereas the spectral profile is not flat, as shown in

fig. 4.10. The main nonlinear processes involved in this regime of propaga-

tion are SPM, solitonic effects, SSFS and dispersive wave generation [52].

Initially, the pulse is injected into the fibre in the anomalous dispersion

region and close to the ZDW, and propagates as a high order soliton. In the

first centimeters of the fibre, the pulse experiences a spectral broadening

due to SPM (fig. 4.10 left, label A). This spectral broadening is accompa-

nied by temporal compression. The perturbation induced by high order

dispersion and by SRS leads to the break-up of N-order soliton into N fun-
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Figure 4.10: Numerical simulation showing SC spectral and temporal
evolution with a pump pulse with duration (FWHM) of 100 fs (with peak
power of 10 kW and pump wavelength of 835 nm. The dashed line shows
the fibre ZDW [42].

damental solitons with different time duration and peak power as defined

in eq. 4.31 (fig. 4.10 left, label B). Now, the central wavelengths of the fun-

damental solitons are shifted toward IR region due to SSFS (fig. 4.10 left,

label C). So, each fundamental soliton has different central wavelength

and different group velocity, depending on the time duration and the peak

power. The soliton that experience the largest frequency shift and the

bigger time delay is the fundamental soliton which has the shortest time

duration and the highest peak power. In that regime of excitation, the low-

est wavelengths propagating in the normal dispersion regime are mainly

created by dispersive wave generation [52].

Picosecond, nanosecond, continuous-wave regimes

For longer pulse (from picosecond to continuous-wave) the IR supercon-

tinuum generation process cannot be explained in terms of SPM or soliton

fission only. Indeed for longer excitation pulse located in the anomalous
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dispersion regime, the SPM starts first followed by MI [42]. Because MI

process is based on amplification of noise and not of the pump itself, the

coherence of the output pulse is drastically damaged. The periodicity of MI

impose the soliton number and rate whereas the total energy obtained in

an MI period is confined into a single soliton. This will produce a distribu-

tion of fundamental soliton with peak power higher than the pump pulse

(fig. 4.11 left). Generally, the strongest soliton is created in the central

part of the pump pulse, where the peak power is higher. In a second step,

the fundamental solitons starts to red shift due to Raman gain effect.

Figure 4.11: Numerical simulation showing SC spectral and temporal
evolution with a pump pulse with duration (FWHM) of 16 ps (with peak
power of 300 W and pump wavelength of 1060 nm and ZDW at 1025 nm).
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In this chapter we study how the pump pulse duration impacts the SC

generation. After describing the motivation of this work, we present a first

demonstration of the phenomenon in the nanosecond regime, from a both

experimental and numerical point of view. Then we introduce a deeper

investigation in the picosecond regime, including a direct comparison be-

tween experimental and numerical results.

5.1 Motivation

In the previous chapter, we have introduced the different nonlinear effects

leading to SC generation and we have described the particularities of the

short-pulse and long-pulse temporal regimes.

In the first case (short-pulse regime, pulse duration < 100 fs typically),
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when a PCF is pumped in slightly anomalous dispersion regime, the spec-

tral broadening - mainly driven by SPM and soliton fission - is well un-

derstood. Many experimental studies have been conducted by using a

femtosecond Ti:sapphire laser, and they could often be corroborated by

NLSE-based numerical modeling, which is an effective method when con-

sidering such input pulse duration. In particular, the emission of disper-

sive waves by the fundamental solitons, resulting from a fission process,

has been extensively examined.

In the second case (long-pulse regime, pulse duration > 500 fs typically),

still considering a pumping in anomalous dispersion regime, the spectral

broadening is initiated by MI, giving birth to ultrashort pulses that may

interact together and behave as solitons afterwards. The larger the input

pulse duration is, the higher the number of ultrashort pulses brought into

play is and more complex the SC generation process is. Furthermore, the

numerical solving of NLSE for long pulses becomes difficult, especially in

the case of the nanosecond regime (high number of samples, high com-

putation time). For that reasons, the long-pulse regime lacks a thorough

understanding of the spectral broadening mechanism because of the huge

number of radiations propagating together. In particular, to the best of

our knowledge, it is unknown what the effect of pump pulse duration is

on this mechanism.

To get a new insight in this context, we study hereafter the influence of in-

put pulse duration on SC generation by keeping the peak power at a con-

stant value. Experimental results are supported by numerical simulations

based on NLSE so as to identify the phenomenon having the strongest

impact on the spectral broadening.
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5.2 Impact of pump pulse duration: a first demon-

stration in the nanosecond regime

The work presented in this section has been realized in the frame of

"NextGenPCF" European project, which was dedicated to the design, fab-

rication and use of PCF for biomedical applications, telecommunications

and gas sensing. The SC experiments have been conducted by XLIM in

collaboration with Multitel (Belgium) and Leukos (France).

5.2.1 Specifically designed adjustable pump laser source

In order to study the influence of the temporal characteristics of the pump

source on SC generation, a versatile all-fibred laser source had been firstly

designed and fabricated. For the purpose of this work, the pump laser

(with carrier wavelength of 1060 nm) has to be adjustable in terms of pulse

duration and repetition rate. We achieved this functionality using Master

Oscillator Power Amplifier (MOPA) configuration, as described in fig. 5.1.

The MOPA laser, developped by Multitel, can be divided into four blocks.

The first block is an adjustable seed source which is then amplified in the

next two blocks, referred to as the preamplifier and the booster. The last

block is the fibred output.

The seed source is directly modulated by an opto-electronic modula-

tor (OEM), and is composed by a laser diode (Lumics LU1055M200), that

is heated to 41 ◦C to reach the 1060 nm emission wavelength (0.3nm/ ◦C

spectral shift with temperature). The OEM driver provides one adjustable

parameter namely pulse width. The pulse duration can be continuously

tuned from ∼200 ps to ∼2 ns and the repetition rate can be adjusted be-

tween 250 kHz and 1 MHz. The upper limit of the repetition rate is imposed

by the driving electronics, whereas the lower limit is manually set so as to

limit the peak power in the booster.

The preamplifier consists of two stages. The first stage is a single-pass
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Figure 5.1: Scheme of the MOPA laser.

linear amplifier and the second stage is a round-trip amplifier, both stages

being fed using one single monomode pump diode.

The booster is based on a double-clad Yb-doped fibre amplifier pumped by

a multimode diode.

The last block is the fibre delivery, composed by HI1060 fibre, which al-

lows to filter out the residual multimode pump power. Fig. 5.2 shows a

picture of the complete adjustable laser source.

Figure 5.2: Picture of the complete adjustable laser source.
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5.2.2 Experimental setup

The experimental setup used for studying SC generation in the nanosec-

ond regime is presented in fig. 5.3(a). An external pulse generator, which

(a) (b)

(c)

Figure 5.3: (a) Experimental setup used for studying SC generation with
20 m of PCF. (b) Calculated dispersion curve of the PCF used in the exper-
iment. The dashed black line corresponds to the ZDW. (c) Experimental
setup used for studying SC generation with 144 m of PCF.

provides a TTL signal, is connected to the seed source so as to set the

repetition rate at 500 kHz. By controlling the DC current applied to the

OEM driver through a potentiometer placed on the front panel of the laser,

we set the pulse duration to 185, 658 ps and 1.16, 1.21, 1.41, 1.51, 1.75,

1.81 ns, measured at FWHM. The HI1060 fibre output beam of the laser

source is launched into a nonlinear air-silica PCF, whose hole diameter
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and period are 2.5 µm and 4 µm, respectively, the core diameter being 3

µm. The ZDW of the fundamental guided mode is located at 1025 nm (see

fig. 5.3(b)), so that the fibre is pumped in the anomalous dispersion region

(the pump wavelength is 1060 nm). Finally, the SC at the PCF output is

measured by an optical spectrum analyser (350-1750 nm bandwidth, 1 nm

resolution).

5.2.3 Experimental results

In a first step, the length of the PCF is fixed to 20 m and the latter is directly

spliced with the HI1060 fibre (fig. 5.3(a)). The output spectral broadening

is recorded as a function of the input pulse duration, the peak power of

the pump laser being maintained to ∼400 W . The results obtained are

plotted in fig. 5.4. First of all, it is noticeable that the SC extension is

contained roughly between the wavelengths of 1000 and 1670 nm. This

IR broadening, essentially pointed towards the Stokes side of the pump,

is mainly due to MI, SRS and SSFS. Consequently no significant energy is

created on the anti-Stokes side of the pump. Furthermore, when the input

Figure 5.4: Experimental SC spectra generated as a function of pulse
duration, with constant peak power of ∼400 W .

pulse duration is varied, the SC spectral bandwidth remains roughly the
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same. Only the spectral power density is modified, consistently with the

variation of the pump average power. As a result, no impact of the pump

pulse duration on the spectrum width can be observed on the nonlinear

mechanism at this step of the study.

In a second step, the whole PCF coil is used, bringing the fibre length

to 144 m. For technical reasons, no more splicing is made between the

HI1060 fibre and the PCF. As an alternative, the coupling is operated in

free space by using a collimating lens and a focusing lens, as depicted in

fig. 5.3(c). Hereafter, we present the SC results achieved for different input

pulse durations with three different values of the peak power, P1 ∼200 W ,

P2 ∼300 W , P3 ∼1 kW (see fig. 5.5). The two peaks present in the out-

put spectra, situated at 976 nm (denoted as "A") and at 1060 nm (denoted

as "B"), correspond with the residual CW multimode pump and the pulsed

pump, respectively. Moreover, as already noted previously, the SC extends

mostly towards the longer IR wavelengths.

For a fixed pulse duration, we observe that the SC spectrum is enlarged

when the peak power is increased. For example, considering 185 ps input

pulses, the longest wavelength of the spectrum is ∼1400 nm, ∼1470 nm

and ∼1750 nm for P1, P2 and P3, respectively. Certainly, this behaviour is

fully expected, since SC generation is based on nonlinear effects, as de-

scribed in the previous chapter.

On the other hand, the evolution of the SC spectrum with the pulse dura-

tion, the peak power being constant, is not predictable. The examination

of the graphs of fig. 5.5 reveals that, whatever the peak power is, the spec-

tral bandwidth is increasing with the pulse duration. For example, in the

case of fig. 5.5(a), the longest SC wavelength varies from ∼1400 nm to

∼1750 nm when the pulse duration is increased from 185 ps to 1.81 ns.

As a conclusion of this experimental study, it has been demonstrated that,

beyond a certain PCF length, the spectral broadening depends on the in-

put pulse duration. This non-obvious phenomenon would suggest that

there exists a particular process in SC generation, which is affected by a
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(a) (b)

(c)

Figure 5.5: Experimental SC spectra generated as a function of pulse
duration, with constant peak power (a) P1 ∼200 W , (b) P2 ∼300 W , (c)
P3 ∼1 kW .

modification of the pulse duration.

5.2.4 Numerical study and discussion

In order to understand how the input pulse duration can have an impact

onto the mechanism of SC build-up, numerical simulations based on solv-

ing the full NLSE (including full dispersion coefficient, SPM, Raman effect

and fibre loss) using the split step Fourier method are performed. So as

to keep reasonable computation time, the study is made in the picosecond

regime and, consistently, with a reduced propagation length compared to
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the nanosecond case. The input Gaussian pulse duration is fixed to 6, 8,

10, 13 and 15 ps (measured at FWHM) alternately. The PCF length and

the input peak power are fixed to 14.4 m and 300 W respectively. Figure

Figure 5.6: Numerical SC spectra for different input pulse durations and
constant peak power of 300 W after a propagation distance of 14.4 m. The
dashed line represents the ZDW.

5.6 shows the calculated SC spectra for the different values of pulse dura-

tion and at constant peak power. We can observe the progressive growing

of the spectral IR bandwidth upon pulse duration: the longest SC wave-

length varies from ∼1400 nm to ∼1600 nm when the pulse duration is

increased from 6 ps to 15 ps. This displays the same tendency as for the

experimental results. To determine which effect among dispersion and

nonlinearity is predominant on the pulse propagation, the characteristic

lengths LD and LNL are estimated. Using equation 4.10 with T0=6 ps (LD

is minimum in this case) and β2=-5.097e-27 s2/m, it comes LD ∼7 km. As

well, equation 4.10 with γ = 0.01521/W/m, gives LNL ∼22 cm for a peak

power of 300 W . It means that the nonlinear effects affect the pulse prop-

agation since the first centimetres of the fibre. As a matter of fact, when

an intense optical pulse is injected into an optical fibre in the anomalous

dispersion regime, the lowest threshold nonlinear effect is MI. The latter

leads to the break-up of the initial pulse into a periodic train of ultrashort
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pulses that may be considered as solitons. Afterwards Raman effect acts

as a perturbation that breaks the symmetry of the soliton train and hence

most of the energy takes the form of individual solitons shifting towards

lower frequencies via SSFS. Since SSFS is proportional to the square of the

soliton power, a soliton which is initially generated in the central part of

the input pulse downshifts faster than the neighbouring solitons. Besides,

because of the dispersion-induced slowing down, this central soliton may

collide with other solitons of the train [1]. Another important consequence

of Raman gain is that during each collision, the slower, lower-frequency

central soliton acquires energy from a higher-frequency soliton while re-

ducing its time width down to the femtosecond range, so as to keep the

shape of a fundamental soliton [2]. As a result of all collisions, the most

energetic solitons run away from the initial soliton train and a broad SC

is thus generated. For better visualising the whole nonlinear mechanism,

we have plotted in fig. 5.7 the temporal evolution of the input pulse along

the fibre, in the case T0=6 ps. In inset can be seen how MI breaks the

initial temporal pulse profile and how the soliton train appears at the end

of the fibre. To sum up, the collision-enhancement of the most energetic

soliton down-shift rate is crucial for understanding the mechanism of SC

generation in optical fibres. It is highlighted that the phenomenon cannot

be explained in term of SSFS alone.

5.3 Deeper investigation in the picosecond regime

The experimental work presented in this section (laser development and

SC experiments) has been carried out by Multitel in partnership with XLIM

and Leukos.

5.3.1 Pump laser source

A simplified scheme, showing the composition of the laser used in this

experiments, is presented in fig. 5.8. An oscillator, emitting 200 fs pulses



5.3. Deeper investigation in the picosecond regime 99

Figure 5.7: Numerical temporal evolution of the input pulse as a function
of propagation distance for the case where T0 = 6 ps. Inset: temporal profile
at different position along the fibre

Figure 5.8: Scheme of operating principle of the laser source.

at 1030 nm and 30 MHz, is directly connected with a stretcher, which

raises the pulse duration up to 300 ps. The pulses are stretched to lower

the peak power, because too high peak power could cause optical damage

in the amplifier. Then, the stretched pulses pass through a pulse picker

based on a Pockels cell, which reduces the repetition rate to 300 kHz. They

are afterwards directed to Yb:KGW amplifier and finally to a compressor,

composed by a diffraction grating mounted on a motorized translational
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stage. This compressor allows to tune the pulse duration from 500 fs to

10 ps.

Thereby a (sub)picosecond pump laser source operating at 1030 nm

with adjustable pulse duration is obtained. The peak power can be

changed between 3 and 15 kW .

5.3.2 Experimental setup and results

In fig. 5.9(a) is represented the experimental setup used for collecting SC

spectra for different pulse durations and fixed peak power. The output

beam of the laser passes through a half-wave plate (λ/2) and a polariz-

ing beam splitter (PBS), which allows to direct a part of the signal to an

autocorrelator. This autocorrelator is used to measure the pulse duration

before the injection into the PCF. A second pair of half-wave plate and PBS

is employed to control the incident power. The beam is then coupled to

a HI1060 singlemode fibre 99/01 splitter. The 1% output of the splitter

is used for monitoring the power injected into the HI1060 fibre by means

of a power meter (PWM). The 99% output is spliced to a PCF, the splice

loss being about 2 dB. The PCF is 8 m long and is characterized by a 5

µm core diameter, a 3 µm hole-to-hole pitch and a 1.5 µm hole diameter.

Its ZDW is located at 974 nm (see fig. 5.9(b)), the 1030 nm pumping be-

ing thus operated in the anomalous dispersion regime. Finally, an optical

spectrum analyser (OSA, 350-1750 nm bandwidth, 1 nm resolution) and a

PWM are used to measure the spectral power density, as a function of the

wavelength, at the ouput of the PCF.

It is important to note that all the values of pulse duration (and corre-

sponding peak power) are measured at the output of the laser, before the

injection into the fibre splitter. Therefore these values are different from

the ones that would be obtained at the PCF input, because of nonlinear

effects in the short piece of HI1060 fibre in one hand and splice loss on

the other hand. The expected impact of nonlinear effects is not negligible
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(a)

(b)

Figure 5.9: (a) Experimental setup used for the SC generation in sub-
picosecond regime. (b) Calculated dispersion curve of the PCF used in the
experiment. The dashed black line corresponds to the ZDW.

indeed, since the fibre length (40 cm from the splitter input to the 99%

output) is distinctly superior to the nonlinear length (∼1 cm for 15 kW

peak power). The most likely nonlinear phenomena are SPM and SRS,

given that pulses propagate in normal dispersion regime. Moreover, the
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expected effect of HI1060 fibre dispersion on pulse duration is not neg-

ligible (80 fs stretching for 500 fs input pulse duration, without taking

nonlinear effects into account).

Figure 5.10: Experimental output SC spectra for different input pulse
durations and constant input peak power after the propagation in 8 m pf
PCF.

In fig. 5.10 we show the SC spectra obtained for pulse duration of 500

fs, 1, 2, 4, 6, 8 and 10 ps , the peak power being fixed to 3 kW . As pointed

out in the nanosecond regime, the spectral broadening is enlarged with

respect to the pulse duration. The main difference here is that, due to the

higher incident peak power, some energy is generated on the anti-Stokes

side of the pump. In the case of 10 ps pulses, the output spectrum extends

roughly from 650 to 1500 nm. It is also clear that the spectral broadening

tends to saturate when the pulse duration exceeds ∼6 ps. Furthermore,

the input pulse duration visibly affects the shape and the smoothness of

the spectrum, which appears to be more perturbed for short pulses.

5.3.3 Comparison with numerical results

The same numerical method as previously, based on the full NLSE, is em-

ployed to simulate the pulse propagation in the PCF. Here, the actual value

of the input pulse duration (i.e., the one used in the experiment) can be
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used, contrary to the nanosecond case. So we consider Gaussian pulses

with duration of 500 fs, 1, 2, 4, 6, 8 and 10 ps. The peak power is fixed to

140 W and the fibre length is 18 m. The SC spectra obtained are plotted

in fig. 5.11. To facilitate the comparison with experimental results, each

spectrum results from an average calculated over ten different noise seeds.

The first noticeable point is that the Stokes bandwidth increases with re-

spect to the input pulse duration, with an excellent agreement with the

experimental results. Additionally the agreement between simulation and

experiment relates to the smoothness of the SC spectra, which is enhanced

when the pulse duration is enlarged. Again, the characteristic lengths LD

Figure 5.11: Numerical SC spectra for different input pulse durations
(from 500 fs to 10 ps) and constant peak power of 140 W after a propaga-
tion distance of 18 m. The dashed line represents the ZDW.

and LNL show the predominant role played by the nonlinear effects during

the propagation: LD is minimum for T0=500 fs and is ∼34 m, whereas

LNL ∼15 cm for 140 W peak power, considering β2 = −7.234 e−27 s2/m and

γ = 0.04581/W/m. Once more, the lowest threshold nonlinear effect is MI,

with subsequent creation of a train of fundamental solitons. Next Ra-

man gain acts as a perturbation that breaks the symmetry of the soliton

train, and individual solitons undergo SSFS towards lower frequencies.

The whole nonlinear mechanism is exhibited in fig. 5.12(a) in the case of a
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2 ps pulse duration. Soliton collisions are the enhancement factor of SSFS,

bringing additional energy to the slower soliton (see fig. 5.12(b)). At the

(a) (b)

Figure 5.12: Numerical spectral (a) and temporal (b) evolution over the
distance of propagation for an input pulse with T0 = 2 ps. In evidence the
effect of MI, the spectral trajectory of the most red-shifted soliton due to
SSFS, and a temporal soliton collision.

output of the fibre, whatever the pulse duration, the Stokes bound of the

spectral broadening coincides with the spectral position of the most ener-

getic fundamental soliton generated initially from the central part of the

input pulse. This statement is clearly confirmed by the spectro-temporal

representation of fig. 5.13, which also shows the matching between the

temporal position of all solitons with the different spectral peaks. Finally,

it is obvious in fig. 5.14 that the number of solitons is increasing with the

input pulse duration, and accordingly the IR spectrum becomes smoother

(fig. 5.11).

5.3.4 Conclusion

In this chapter, we have introduced a new insight of the nonlinear mech-

anism which resides behind long-pulse SC generation in PCF. In the case

of nanosecond and picosecond regimes, we have pointed out the impact
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Figure 5.13: Calculated spectrogram at z = 18m for a pulse with duration
of 2 ps. The spectrogram is calculated following the procedure expressed
in Ref. [3].

of input pulse duration on the spectral broadening, both numerically and

experimentally. Beyond the key involvement of MI and SSFS, the effect of

multiple soliton collisions has been highlighted, the longest IR wavelength

being raised by the most energetic soliton, which is initially created in the

central part of the input pulse. Basically, the number of solitons produced

by MI explains why a longer input pulse leads to a larger IR bandwidth

at the output: more solitons means more collisions, so more possibilities

to exacerbate the SSFS of the most energetic soliton. Additionally, this

increase of the spectral bandwidth comes with an enhancement of the

spectrum flatness, due to the higher number of radiations generated.
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Figure 5.14: Numerical temporal profile at z = 18m for different input
duration.
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In this chapter we develop a simplified analytical model that describes

how the infrared (IR) tail of the SC is generated. In particular we focus

on the mechanisms responsible for the enhancement of SC bandwidth.

This chapter is organized as follow: first we introduce the context of this

work, then we present some slight modifications to well known models for

Raman SSFS and collisions, so to make them closer to our experimen-

tal conditions. Finally a comparison between analytical model, numerical

solution of the full NLSE and experimental results is presented.

6.1 Introduction

In Chapter 5, some of the physical mechanisms driving SC generation

in the IR have been discussed. For long pump pulse propagating in the

regime of anomalous dispersion, the nonlinear effect that initiates SC gen-

eration is MI. In the first stage of propagation, MI acts to break up the
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pump pulse into a periodic train of short pulses, which can be approxi-

mated as first-order solitons. Assuming that the MI period, which we de-

note as TMI , is much shorter than the input pulse duration T0, the number

of solitons can be roughly evaluated as

Nsol =
T0

TMI
= πT0

√
2|β2|
γP0

, (6.1)

where P0 is the peak power of the input pulse, γ is the nonlinear coef-

ficient, and β2 is the second-order dispersion coefficient. Subsequently,

as the solitons are further propagating in the fiber, the SSFS induced by

Raman scattering acts to break the periodicity of the soliton train. More

specifically, the rate of SSFS being proportional to the fourth power of the

inverse soliton duration [1], the most-powerful soliton which is initially

located in the central part of the soliton train, down-shifts in frequency

and decelerates in time faster than the neighbouring solitons. Therefore,

that soliton will successively collide with the other solitons delayed in the

trailing of the soliton train. Thus, it is gradually amplified throughout

collisions in the presence of Raman scattering, since the soliton acquires

energy from higher-frequency solitons. Thereby, the soliton frequency is

increasingly down-shifting. Because the number of collisions can be very

high at the large values of T0, the soliton can become extremely power-

ful, thus dramatically emerging from the rest of the soliton background.

Hence, it is sometimes referred to as the giant soliton or rogue soliton,

although the question is still being debated whether the latter term is ap-

propriate [2]. Note that the giant soliton never collides with the solitons

of the leading edge and therefore, the maximum number of collisions en-

dured by the giant soliton is only half the number of solitons in the train,

i.e. Ncoll = Nsol/2.

As the result of all collisions in the presence of Raman scattering, the

giant soliton is the most shifting from its initial position (both temporally

and spectrally) and therefore plays a major role in determining the exten-
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sion of the SC spectrum towards the IR. As pointed out in the previous

chapter, the collision-enhancement of soliton down-shift rate is crucial for

understanding the mechanism of SC generation in an optical fibre.

6.2 Simplified analytical model

The SC spectrum in the anomalous region consists of both an ensemble

of solitons of various amplitudes and a dispersive background. In our

simplified model, we neglect the dispersive background by assuming that

the SC spectrum only consists of solitons, each individual soliton being

determined by the three following parameters, namely the peak power (or

equivalently time width), the carrier frequency and the temporal position.

Under this assumption, the physical system reduces to a finite number

of degrees of freedom and is therefore considerably simplified. Hence, we

suppose that solitons of different peak powers are moving at different ve-

locities in the time-frequency space under the effect of SSFS. When the

temporal positions of two solitons coincide, we assumed that a collision

takes place and the two solitons can potentially exchange some energy

via the Raman gain. Note that the soliton collision is assumed to be of

negligible length. Additionally, we suppose that only pairs of solitons are

colliding since collisions between three or more solitons are much less

probable. Note that it is reasonable to assume that interaction of the soli-

tons with dispersive waves in the visible has negligeable impact on soli-

ton propagation in the IR. As a further simplification, stable propagation

of higher-order solitons is prohibited because of the presence of Raman

perturbation and therefore solitons are assumed to be of the first order.

Nevertheless, we supposed that the Raman perturbation is not too large

so that a soliton keeps the shape of a hyperbolic secant after collision.

In practice, the length of fiber is discretized into many steps on which

we numerically integrate the fundamental parameters of each soliton. That

yields the trajectory of each soliton in the time-frequency space. Whenever
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a collision occurs between two solitons, i.e. the provided time positions

coincide, the relative Raman gain is calculated and the peak powers of the

two interacting solitons are updated accordingly. Because solitons after a

collision tend to reshape adiabatically in order to recover the more stable

form of first-order solitons [3], we assume that the time width is resized

according to the soliton condition

τ2
s

|β2|
=

1

γPs
, (6.2)

where τs and Ps are the time width and peak power of the soliton, respec-

tively. Therefore, for the given peak power, we modify the time width to

fit again a soliton solution of the same energy. Subsequently, the updated

peak power and time width are used as initial conditions for the next stage

of calculation of the trajectories until the next collision takes place or until

integration is finished over the entire fibre length.

Note that in our model the wavelength-dependence of the dispersion

and nonlinear coefficients are included.

Thus, we can investigate how the evolution of the peak power impacts

the soliton down-shifting in frequency and deceleration in time domain

in the anomalous dispersion regime. In doing so, it is possible to obtain

a set of trajectories in the time-frequency space, i.e. one per individual

soliton. In particular, we focus our attention to the giant soliton which

is most red-shifted and therefore represents the upper wavelength limit

of the SC spectrum. Note that the giant soliton is formed by acquiring

energy from other solitons whereas the total number of individual solitons

remains constant throughout propagation in our model.

In Fig. 6.1(b), we have represented the flow-chart of the algorithm im-

plemented for solving the soliton trajectories. Besides, we have shown an

example of three temporal trajectories. After each collision, the Raman-

amplified soliton will experience a larger frequency shift per unit of propa-

gation length whereas the soliton which is depleted will undergo a smaller
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(a) (b)

Figure 6.1: (a) Block diagram representing how our model works. (b)
Example of temporal trajectories of three solitons.

rate of frequency shift. This is clearly visible from the changes of the

slopes in the trajectories of the colliding solitons. Hence, Raman gain and

SSFS are the key ingredients of our simplified model to describe soliton

dynamics which governs the extension of SC towards the IR. In the next
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subsections, the detailed procedures for evaluating both the Raman gain

and the rate of SSFS are described.

6.2.1 Raman gain in soliton collision

To evaluate the amount of Raman gain that is experienced during colli-

sions between solitons, we have used a theoretical approach inspired by

that of Islam in Ref. [4]. Nevertheless, we have refined this basic procedure

in order to reproduce some essential features observed in the experiments

of chapter 5. Hence, in some extreme cases, the time width of solitons

can become so short that it is comparable or even inferior to the period of

molecular oscillations, that is about 75 fs in silica glass. In other situa-

tions, the two colliding solitons may have a frequency detuning exceeding

that of the Raman-gain peak. In both situations, one has to take account

of the finite bandwidth of the Raman gain, that was unfortunately ne-

glected in Ref [4] thereby leading to overestimate the Raman gain. When

accounting for the finite bandwidth of the Raman gain, the amount of Ra-

man gain experienced during the collision is moderated and subsequently

the amplification of the giant soliton is restrained. Another simplification

in Ref. [4] that artificially maximize the Raman gain is the approximation

that the pump soliton is not depleted, leading to unrealistic prediction of

the Raman gain when the number of collisions is high. In our approach,

the depletion of the higher-frequency colliding soliton is taken into ac-

count.

Here, the Raman effect is treated as a perturbation of first-order soli-

tons, for which dispersion and nonlinearity are already balanced. In soli-

ton units, this perturbation will read as:

∂A

∂z
w ıA

∫ +∞

−∞
f(s)|A(t− s)|2ds, (6.3)
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we write A(t) as A = A1 +A2e
ıΩt and we substitute it into eq. 6.3:

∂A1

∂z
+ eıΩ t ∂A2

∂z
' ı (A1 +A2 e

ıΩ t)

×
∫ +∞

−∞
f(s){|A1(t− s)|2 + |A2(t− s)|2 +A1(t− s)A∗2(t− s)e−ıΩ (t−s)+

+A2(t− s) eıΩ (t−s)A∗1(t− s)}ds

(6.4)

where A1(t) and A2(t) are the complex amplitudes associated with the two

interacting first-order solitons separated by a frequency detuning Ω. For

clarity, we assume that A2(t) is pumping A1(t). If we neglect the effect of

dispersion and phases on soliton interaction, and if we focus only on A1(t),

we can write (same procedure for A2(t)):

∂A1

∂z
= ı A1

∫ +∞

−∞
f(s){|A1(t− s)|2 + |A2(t− s)|2}ds+

+ ı A2

∫ +∞

−∞
f(s){A1(t− s)A∗2(t− s) eıΩs}ds

(6.5)

We exploit the property ∂|A1|2
∂z = A∗1

∂A1
∂z +A1

∂A∗
1

∂z so that:

∂|A1|2

∂z
= ıA∗1A2

∫ +∞

−∞
f(s){A1(t− s)A∗2(t− s) eıΩ s}ds+

− ı A1A
∗
2

∫ +∞

−∞
f(s){A∗1(t− s)A2(t− s) e−ıΩ s}ds =

= −={2A1A
∗
2

∫ +∞

−∞
R(t)A1(t− s)A∗2(t− s)e−ıΩs}.

(6.6)

In case the soliton temporal duration is much longer than the typical pe-

riod of the molecular oscillation included in the Raman response f(s) (gen-

erally for τs ≥ 100fs), the integral of eq. 6.6 can be simplified by assuming

that the two field envelopes are constant. In doing so the integral be-

comes proportional to the Fourier transform of F (Ω) = F (f(s)). Now the

limitation of the procedure presented in Ref. [4] is in the assumption that

F (Ω) w Ωtd, with td = Tdτs is the slope of the Raman gain, Td w 6fs is

sometimes called the relaxation time of the Raman response. In fact, if the

collision implies a weak energy exchange, one can find that the gain factor
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in power for |A1|2 is e4td per collision and otherwise for |A2|2 is e−4td . In

these conditions the gain factor does not depend on the frequency detun-

ing Ω, because it is balanced by the difference in group delays which make

the collision faster and hence less effective. When the number of collision

is large, however this assumption leads to an overestimation of the Raman

gain. To avoid this problem, we introduce a projection coefficient Q as to

estimate the inner integral in eq. 6.6 as QA1(t)A∗2(t).

Q

∫ +∞

−∞
|A1(t)|2|A2(t)|2dt =

∫ +∞

−∞
A∗1(t)A2(t)

[∫ +∞

−∞
f(s)A1(t− s)A∗2(t− s)e−ıΩsds

]
dt.

(6.7)

Note that in the assumption of Ref. [4], where A1(t) and A2(t) are long

pulses (≥100 fs), our definition of Q converges to the coefficient Ωtd.

The power exchange between the colliding solitons, can be written as:



∂|A1|2

∂z
= 2Q|A1|2|A2|2

∂|A2|2

∂z
= −2Q|A1|2|A2|2.

(6.8)

To simplify the calculation of the power exchange and the projection co-

efficient Q, we use a Gaussian fit of the solitons involved in the collision.

The soliton solutions for |u1(t)|2 and |u2(t)|2 are:

|u1(t)|2 = P1(z)sech2

(
t

τ1

)
and |u2(t)|2 = P2(z)sech2

(
t

τ2

)
(6.9)

whereas the Gaussian fit reads as:

|u1(t)|2 = P1(z)e
− t2

a2
1 , , and |u2(t)|2 = P2(z)e

− t2

a2
2 , (6.10)

where a1 and a2 are chosen so that pulses under gaussian approximation

have the same peak power and the same energy of the original solitons.

Therefore a1 = 2τ1/
√
π and a2 = 2τ2/

√
π. Now, if we substitute eq. 6.10 in
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eq. 6.7 we obtain:

Q =

∫ +∞

−∞
f(s)e

− 1
4

(
1

a2
1

+ 1

a2
2

)
s2

e−ıΩsds. (6.11)

The advantage under this approximation, is that the coefficient Q does not

depend on z and can be calculated one single time per collision. If we use

the new expression of Q into the system of eq. 6.8 and if we take the time

average so to reduce to single coordinate z, we obtain:



∂P1

∂z
= 2P1P2

a2√
a2

1+a2
2

e
− Ω2z2

a2
1+a2

2

∂P2

∂z
= −2P1P2

a1√
a2

1+a2
2

e
− Ω2z2

a2
1+a2

2

(6.12)

Note that here we conserve the energy E = P1(z)a1 + P2(z)a2 because we

have assumed that during the collision the gamma coefficient is constant

in frequency. Since the solution of eq. 6.12 is known in closed form for the

whole real axis z, we match the asymptotic solution at z = −∞ with the

parameters of the two pulses before collision, while we get the values after

the collision at z = +∞, being the center of the collision in z = 0. With

this consideration, we can write the solution as a function of the input

parameters:

P1,OUT =
C1a2e

ψ

κ+ a1eψ
, P2,OUT = C1 −

C1a1e
ψ

κ+ a1eψ
, (6.13)

where

ψ =
a2
√
πQC1

Ω
, C1 = P2,IN + P1,IN

a1

a2
, κ =

C1

P1,IN
a2e
−ψ − a1e

−ψ. (6.14)

At this point, our assumption is in good agreement with the exponen-

tial results in Ref. [4] in the limit of weak conversion and long pulses

(Q w Ωtd and P1,IN � P2, IN ). We study the power gain under various
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pulse durations in the case of a single collision between two solitons of

the same pulsewidth. In fig. 6.2 we assume that a reduction in temporal

Figure 6.2: Red curve: analytical prediction of gain enhancement under
linear approximation of Ref. [4]. Blue curve: analytical prediction following
eq. 6.13. Green curve: results from full numerical solution of the NLSE
obtained neglecting high order dispersion effects (constant dispersion).

pulsewidth corresponds to an increase in the frequency separation, as to

avoid large spectral overlap for the two solitons. We observe a difference

in gain between the results presented by Islam and our calculation for

solitons shorter than 75 fs, which is a range of pulse duration potentially

reachable in experiments and numerical simulations. When reducing the

pulse duration the gain predicted from eq. 6.13 becomes smaller in a way

similar to the results of the full numerical solution of NLSE. Our results

shows that we have extended the validity of the approximated approach to

a wider range of pulse durations.

6.2.2 Raman SSFS

Here we present the procedure used to evaluate the SSFS in our model.

For this purpose, we have used the generalized form of the procedure

explained in Ref. [1]. Indeed in our case we need an expression which
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remains valid even in the case of pulses with duration shorter than the

typical molecular period of silica response. Differently from the case of

collisions, SSFS affects the whole propagation dynamics. Hence we need

to consider the combined action of dispersion and Raman susceptibility.

The modified NLSE including Raman effect reads in soliton units:

− ı∂A
∂z

=
1

2

∂2A

∂t2
+A(t)

∫ +∞

−∞
f(s)|A(t− s)|2ds (6.15)

Now we define the soliton in time and frequency domain (through Fourier

transform) in normalized units:

A(t) = sech(t)eı
z
2
F−→ Ã(Ω) =

1

2
sech(π

Ω

2
) (6.16)

with Ω = (ω − ω0)τs in normalized form as expressed in eq. 4.27, τs the

soliton time width, f(−|s|) = 0 and
∫ +∞
−∞ f(s)ds = 1. It is convenient to write

eq. 6.15 in frequency domain through Fourier transform:

− ı∂Ã(Ω)

∂z
= −1

2
Ω2 Ã(Ω) +

∫ +∞

−∞
χ(Ω′′)Ã(Ω− Ω′′)dΩ′′

∫ +∞

−∞
Ã∗(Ω′)Ã(Ω′ + Ω′′)dΩ′

(6.17)

where

χ(Ω) =

∫ +∞

−∞
f(s)eıΩsds and χ(Ω) = χ′(Ω) + ıχ′′(Ω) (6.18)

Under our choice of normalization χ(0) = 1. We associate the imaginary

part of χ with the Raman attenuation coefficient αR by considering the

following pump-signal configuration:

A(t) = Ape
−ıΩpt +As(t)

F−→ Ã(Ω) = Ap δ(Ω− Ωp) + Ãs(Ω) (6.19)

Substituting the latter expression in the eq. 6.17 and considering the

terms proportional to the pump power, we have:

∂

∂z
|Ãs(Ω)|2 = −2χ′′(Ω− Ωp)|Ap|2|Ãs|2, Ω 6= Ωp, (6.20)
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where αR(Ω) = 2χ′′(Ω). Since we take into account the soliton mean fre-

quency, and assuming the effect of χ′′ as a small perturbation of the soliton

defined in eq. 6.16, we obtain:

〈Ω〉 = π

∫ +∞

−∞
Ω |Ã(Ω)|2dΩ. (6.21)

Combining eq. 6.17 and eq. 6.21 we can write:

∂〈Ω〉
∂z

= −π
∫ +∞

−∞
αR(Ω′′)dΩ′′

∫ +∞

−∞
Ã∗(Ω) Ã(Ω′′)dΩ

∫ +∞

−∞
Ã∗(Ω′) Ã(Ω′ + Ω′′)dΩ′.

(6.22)

At this point, we know that a change in the mean frequency of the soliton is

equivalent to a change in ω0. By using the formula
∫ +∞
−∞ sech(x+ a

2 )sech(x−
a
2 )dx = 2 a

sinh(a) we can write:

∂ω0

∂z
= −π

8

∫ +∞

−∞
Ω3 αR(Ω)

sinh2(π2 Ω)
dΩ (6.23)

Here we have done the implicit assumption that the bandwidth of signal As

is large enough to cover a part of the Raman loss spectrum R (normalized

to the value of 0.492 which is the peak value of αR(Ω)), which leads to:

αR(Ω) = R

(
Ω

2πtc

)
, (6.24)

Now if we come back to physical units the self induced frequency shift

reads as:

∂ν0

∂z
= −105λ2D(λ)

16πcτ3
s

∫ +∞

−∞
Ω3

R( Ω
2πτs

)

sinh2(πΩ
2 )

dΩ

[
THz

km

]
(6.25)

using λ, D(lambda), c and τs in units of cm and ps.

The key point of our calculation is in the latter equation: Gordon in Ref. [1]

use a linear approximation R(ν) = 0.492( ν
13.2) which give a good description

of the phenomenon only for soliton pulsewidth τs longer than the typical

molecular period (75 fs). In our experimental conditions we expect that the
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initial solitons are longer than 75 fs. However in our mathematical model

as well as in the experiment we may cope with time durations closer to this

limit due to pulse compression. When solitons have pulse duration much

shorter than the molecular oscillation response, SSFS is proportional to

pulse energy. To consider all possible cases, we calculate the Raman loss

spectrum using a Lorentzian approximation. The results of our calculation

compared with results in Ref. [1] is shown in fig. 6.3(a). We observe a

disagreement for solitons pulsewidths below 75 fs as we could expect. We

(a) (b)

Figure 6.3: (a) Calculated SSFS using linear (red) and Lorentzian (blue)
approximation. (b) Numerically computed h(t).

recall the result of Ref. [1] in terms of SSFS:

∂ν0

∂z
∝ C

τ4

[
THz

km

]
(6.26)

where τ = 1.763 τs is the FWHM transformation and C is depending on the

fiber dispersion. We can reformulate our calculation so to have a direct

comparison with that of Gordon (Ref. [1]). This is rendered possible by

using a comparative function h(t), such as:

∂ν0

∂z
∝ C

τ4
h(τ)

[
THz

km

]
(6.27)
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Figure 6.3(b) shows the resulting values of h(t). The disagreement previ-

ously mentioned is more evident in fig. 6.3(b).

6.3 Discussion

The procedure can be summarized as follow. Starting from an ensemble of

input solitons whose peak powers and time widths are individually fixed as

initial conditions, eq. 6.25 is used to evaluate the amount of SSFS between

two consecutive collisions and eq. 6.13 is used to calculate the amount

of energy exchanged during each collision. In practice though, it is then

necessary to make some assumptions to determine a realistic set of initial

parameters for the solitons from the given input pump pulse duration and

peak power. We know that the soliton break-up due to MI takes place in

a fiber distance which varies upon several conditions. One way to obtain

the full description of each soliton would be to follow the propagation with

a full numerical solution of the NLSE until solitons are clearly formed [5].

Of course different noise realization might cause different set of soliton

parameters, so that finally one need to consider the stochasticity in input

conditions when use our model. By using the eq. 6.1 we can calculate the

total number of solitons, but not their parameters. We have followed, as in

Ref. [5], a fully deterministic approach to calculate the soliton parameters.

If MI period is much shorter than the input pump pulse T0, one can image

to fragment the input pulse into a discrete series of time bins, each of

them described by the parameter TMI . Then each time bins k give rise

to a single soliton of the same energy. For Gaussian input pump pulse

(|A(t)|2 = P0exp(−t2/T 2
0 )), the optical energy falling in bin of index k is:

Ek = 0.5P0T0

√
πWk, (6.28)
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where Wk = Erf((2k − 1)ε)− Erf((2(k − 1)− 1)ε) and ε = TMI/2T0. Now the

soliton durations is:

τk =
2T 2

MI

π
√
πT0Wk

, (6.29)

By fixing the time duration and assuming that all solitons are of the first

order, it is easy to calculate the remaining soliton parameters (peak power

and carrier frequency). At this stage, the only parameter that we have

to calculate is the fibre length which is required to transform a Gaussian

pulse into solitons bunch by means of MI. This fibre length represents the

propagation length needed to obtain our initial conditions that we intro-

duce in our model. To do that, we compare our input conditions to the

soliton bunch obtained by solving NLSE for a given pump pulse propagat-

ing on a fixed fibre length (see fig. 6.4(a)). By the analysis of the solution

of NLSE we are able to calculate the exact fiber length that we need to

determine our input conditions. To exemplify this situation, we report in

(a) (b)

Figure 6.4: (a) Example of input condition of our model (red curve upper
figure) and pulse profile numerically computed by NLSE after the pulse
break-up. In dark the input Gaussian pulse with duration 10 ps. (b)
Example of 10 ps pulse break up and soliton formation from numerical
solution of NLSE. The dashed white line indicates the fibre length required
for the soliton train formation in our assumption.
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fig. 6.4(b) the propagation of a 10 ps pulse into few meters of fibre. As

we can see in fig. 6.4(b) a relatively regular pulse train appears nearby

2.7 m of propagation. After this length, collisions start to modify the sym-

metry of the soliton train. We show an example of results obtained from

our analytical model in figure 6.5(b). On the left-hand side of this figure

we plot the number of collisions upon the number of input soliton compo-

nents directly linked to the input pulse duration (the number of solitons

is imposed by MI). On the right side, we show how solitons spread out in

different wavelengths during propagation in fibre. Note that here the co-

ordinate z = 0 does not identify the input end of the fibre but the position

where the soliton train is assumed as regularly formed.

(a) (b)

Figure 6.5: (a) Analytical calculation of number of collision versus number
of input soliton for different pulse duration. (b) Wavelength evolution of
the solitons for an input pulse duration of 10 psn calculated along the
fibre (z=0 m, z=1.75 m, z=3.50 m, z=5.25 m; z=7 m).

Now, after these considerations on the input conditions of our model,

we compare on the fig. 6.6 our results. The input pulse duration varies

from 500 fs to 10 ps and the input conditions introduced in our model

match with the parameters obtained from numerical simulations. The

green curve comes from a full numerical solution of NLSE, while the red
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Figure 6.6: Comparative results: analytical solution (blue error bars), nu-
merical solution of the largest red-shifted peak (green curve), experimental
results at -20 dB (red curve).

one reports the experimental results of the longest spectrum measured at

-20 dB (spectra of fig. 5.10).

The three curves show the same tendency, since the number of collision is

proportional to the input pump pulse time width, the IR SC bandwidth is

increased when the pump pulse duration grows larger.

6.4 Conclusion

In conclusion we have developed an analytical model that describes the

enhancement of IR SC bandwidth through multiple soliton collisions. Our

model is based on two main effects which are SSFS and soliton collisions.

Additionally, we have identified some mechanisms limiting soliton red-

shifting process:

• when the largest red-shifted solitons do not overlap in time with the

remaining pulses;

• when the frequency detuning between colliding solitons becomes

larger than the Raman gain bandwidth;

• when the colliding soliton has been fully depleted by the most red-
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shifted soliton.

The transfer function that we have used for the SSFS takes into consider-

ation these three mechanisms, and this is probably the reason why there

is a fairly well agreement with the experiments that we have carried out.

It is important to notice that the predicted SSFS obtained with our model,

has to be compared to a mean result obtained by using numerical sim-

ulations including a random noise seed, or to the experiments obtained

from averaging measurements. In fact, it is well-known that the observed

SC spectra represent an average of spectra resulting from the various fem-

tosecond red-shifted solitons that are obtained with quasi-similar pump

pulses. We stress on the deterministic and not stochastic nature of the

Figure 6.7: Upper frame: red-shifted soliton upon distance from analytical
prediction, assuming pulse duration of 2 ps. Lower frame: peak power of
the red-shifted soliton.

input conditions that we have assumed in our model. Moreover we have

neglected multiple and simultaneous collisions (like triplets) as well as

soliton phases. In fig. 6.7 we show the evolution of the carrier wave-

length versus distance for the most red-shifted soliton as predicted from

our model. Each discontinuity identify a collision involving such soliton.

Other collisions pertaining to the other solitons are here not shown. Again
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the distance here is measured from the point of appearance of the soliton

train. One should add 0.5 m to obtain the approximated position in the

fibre. As we can see, for each collision correspond an enhancement of the

SSFS of the most red-shifted soliton.

We emphasize the fact that the mechanism of growing of infrared spec-

tral component with pulse energy well agrees with a simplified model

which takes into account multiple collisions during propagation.
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General conclusion

This thesis deals with the propagation and interaction of solitary waves

(solitons) in media with second and third order non-linearities.

In a first step, I have investigated, in crystals, the spatial dynamics of

two classes of solitons, that were first predicted in the 70s by Zakharov

and Manokov. These solitons result from the energy exchange between

waves of different velocities when the dispersion is negligible.

First, I have theoretically and experimentally investigated the spatial

dynamics of two spatial narrow beams at frequency ω, which are mixed to

generate a field at the sum frequency 2ω. Depending on the input intensity,

when the generated field at 2ω can sustain a ZM soliton, it decays into

ZM solitons at the fundamental frequency ω. This is the first evidence of

transition from a steady frequency wave generation to solitonic decay in

nonlinear optics.

In a second step, I studied the dynamics of a spatial narrow beam at

frequency ω and a quasi-plane wave at frequency ω which are mixed to

generate a beam at the sum frequency 2ω, when diffraction is negligible.

Depending on the input intensities different nonlinear regimes exist: linear

regime, frequency conversion regime and simultonic regime. Simultons

are stable velocity-locked bright-dark-bright spatial triplets, determined by

the balance between the energy exchange rates and the velocity mismatch

between the interacting waves.

Our experimental findings on ZM soliton and simulton dynamics

demonstrate the possibility of reaching soliton regimes in media where

the diffraction is negligible. These nonlinear regimes could pave the way

to the construction of novel systems for storing, retrieving and processing

information in the optical and plasma domains.

Additionally ,I used the ZM soliton dynamics to develop a passive Q-

switched mode-locked operation of a flash-lamp pumped Nd:YAG laser.
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The ZM soliton creation is responsible for the high losses in the resonator

which allows the mode-locking regime as it happens with saturable ab-

sorber. Indeed, the intensity threshold for mode locking is imposed by

the corresponding threshold of ZM soliton formation. As results a train

of pulses with duration close to 100 ps, repetition rate of 136 MHz and

strong modulation depth is produced.

In a third step, I have experimentally and numerically investigated, in

optical fibre, the soliton dynamics in the context of SC generation. I stud-

ied the dependence of the spectral broadening in the infrared associated

with SC generation obtained in a PCF, by continuously varying the pulse

temporal duration of a pump laser from picosecond to nanosecond. I have

identified the crucial role played by the most energetic soliton (formed in

the central part of the pump pulse), which is responsible for the IR broad-

ening. Because of the corresponding dispersion-induced slowing down,

this central soliton collides with all subsequent solitons in the train formed

by MI. So, for different input pulse duration, MI break-up the pump pulse

into a different number of soliton. The number of these solitons increase

with respect to input pulse duration. This is how the IR SC spectra is

formed by pumping in the anomalous dispersion region for long input

pulses.

In this context, I have developed a simplified analytical model that de-

scribes the SSFS enhancement experienced by the most red-shifted soli-

ton, as a result of its energy collection process from all of its neighbours.

The mechanism responsible of the growing of infrared spectral component

with respect to the pulse energy is in agreement with the results obtained

by a simplified model which takes into account of multiple soliton colli-

sions during propagation.

Part of the work about solitons in PCF has been carried out in the

framework of an European project called "NextGenPCF". My PhD thesis

has been done under a joint supervision program (Cotutelle-de-Thése) be-

tween the Universities of Brescia and Limoges. My work has been also
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partially supported by the Université Franco-Italienne under the program

"Vinci".
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Résumé:

En spectroscopie, aussi bien que dans beaucoup d’applications futuristes
dans le biophotonique, la gestion des délais entre les différentes longueurs
d’onde interagissant par l’intermédiaire de la non-linéarité peut ouvrir
un itinéraire vers de nouvelles applications. Dans ce manuscrit la façon
d’égaliser et de contrôler la vitesse de groupe des différentes régions d’un
spectre optique est étudiée. Le contrôle non linéaire associeé à la con-
naissance de formes d’ondes optiques auto-supportées appelées solitons.
Dans les cristaux, de nouveaux types de propagations solitonic et simul-
tonic non linéaire au moyen de génération de somme de fréquence est
étudiés. Cette dynamique peu commune de propagation permet la com-
pensation de vitesse de groupe entre toutes les ondes en interaction.

Mots clés : Soliton, Simulton, Mode-locking, TWRI, Génération de
supercontinuum, Interaction de soliton, Effet Raman.

Abstract:

In spectroscopy, as well as in many futuristic applications in biophoton-
ics, the managing of time delays between different wavelengths interact-
ing via the non-linearity may open a route towards new applications. In
this manuscript the way to equalize and control group velocity of different
wavelenghts is studied. The nonlinear control is related with the knowl-
edge of self-sustained optical waveform called solitons. In crystals, new
types of nonlinear solitonic and simultonic propagations by means of sum-
frequency generation is studied. This unusual dynamics of propagation
allows group velocity compensation between all the interacting waves.

Keywords: Soliton, Simulton, Mode-locking, TWRI, Supercontinuum
generation, Soliton interaction, Raman effect.
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