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There should be no boundaries to human endeavor. We are all different. 

However bad life may seem, there is always something you can do, and succeed 

at. While there's life, there is hope.  

Stephen Hawking 
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extracted at Δl = -0.05 evidencing the DXS intensity and the superstructure peaks. . 139
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General Introduction

Ion irradiation and ion implantation are powerful techniques which are utilized in many fields of ma-
terials science : (i) in the microelectronic industry for the doping of semiconductors; (ii) in nanoscale
technology, ion irradiation is used to synthesize nanostructured materials, realize nano-patterning and
to shape nanoparticles for various physical properties; (iii) ion irradiation is also employed to simulate
the various irradiation conditions encountered in extremeenvironments, such as in thenuclear industry.

In this latter case, a longer and better management of radioactive waste is one of the major fields
of research, given the dangerousness of these wastes. Nuclear waste poses various global, political and
economic challenges formany countries. For example, the discontinuation of nuclearweaponprograms
has led to the yield of several thousands of tons of weapon grade and civilian plutonium. Similarly, the
energy production by nuclear fission since a few decades has generated huge volumes of spent nuclear
fuel which contains highly radioactive elements. Currently, these nuclear wastes are, in France, vitrified
in borosilicate glasses, which is a good barrier protection, stored in lead-sealed, ventilated wells (e.g., in
La Hague). Though this technology can serve for short-term storage, a better solution is needed for
long term storages. For this reason, the advanced nuclear fuel design concepts have recently focused on
the inert-matrix fuels (IMFs). Refractory oxide ceramicmaterials have an advantage to embed radionu-
clides in their crystal due to their chemical and physical stableness. Among the large amount of ceramic
oxides, yttria-stabilized zirconia (YSZ) is one of the promising materials that could be used as an IMF.

In the past few decades, a large number of studies have been devoted to the understanding of the
behaviour of materials under electron/ion irradiation. One of the main objectives of all these inves-
tigations is to understand the damage formation mechanism in out-of-equilibrium environment. For
this purpose, many experimental techniques are utilized, the most common ones being, X-ray diffrac-
tion (XRD), Rutherford Backscattering Spectrometry in the channellingmode (RBS/C), Raman spec-
troscopy and transmission electron microscopy (TEM). XRD is highly sensitive to atomic scale dis-
placements while probing macroscopic volumes, which is advantageous for the study of radiation dam-
age. X-ray diffraction techniques have been used from several decades to obtain various information
such as the level of strain and damage in irradiated crystals, especially in semiconductor materials or
in metals. In this thesis, we make use of well-established X-ray diffraction techniques combined with
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General Introduction

advanced data analysis and simulation procedures to study irradiated ceramic materials, mainly cubic
zirconia.

This thesis is branched into four chapters. In the first chapter, ion-solid interaction concepts and
the application to the cubic zirconia will be presented. Additionally, the theory of kinematical and dy-
namical theory of diffraction and diffuse X-ray scattering will be introduced. In the second chapter,
all the experimental techniques and the computation tools will be presented. Introduction to parallel
computing and its implementation is also presented in this chapter. In the third chapter, a compre-
hensive study of ion irradiated zirconia will be performed, using X-ray diffraction and complementary
RBS/C and TEM characterizations. Useful information such as strain and damage buildups obtained
for a broad range of temperatures and fluences will be detailed. In chapter 4, we present a simulation
procedure for the evaluation of the diffuse scattering from lattice defects in irradiated crystals of large
dimensions. Reciprocal space maps corresponding to irradiated zirconia crystals are computed using a
combination of multi-processing and GPU-based parallel computing.

The following thesis has been realized in the SPCTS -UMRCNRS 7315 laboratory of theUniversity
of Limoges, France. This work was partly financed by the région Limousin.
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1
Literature Survey

1.1 Introduction

Energetic ions are charged atomswith kinetic energy andwhen they penetrate into a solid, they inter-
act with the nuclei and electrons of the material through Coulomb forces. These inter-particle interac-
tions depend onmany parameters, themost important being the ion velocity and the impact parameter,
but also the ion and atom size, atomic number and mass. Usually, the binary collision approximation
(BCA) is assumed, in which the energy from an energetic incoming ion is transferred to a single atom
of the target i.e., the primary interaction takes place by excitation or scattering of individual atoms. In
this case, interaction cross-sections are well defined. Moreover, it is technically straightforward to con-
trol the energy, atomic species, direction and number of ions that impinge on a target surface. This
degree of control, together with the well-established interaction probabilities between ions and atoms
or electrons, make ion beams uniquely powerful tools for quantitatively and controllably analysing and
modifying materials over the field of material science.
Historically, the interaction of energetic ions with materials is often associated with the development
of nuclear physics. During the World War II, understanding of the problems of radiation damage in
nuclear reactor and weapon materials was of main concern. This called for a study of the atomistic pro-
cesses involved in defect formation and later on, the development of electron microscopy and other
techniques further encouraged the investigation. During 1960s and 70s, isotope separators were devel-
oped and it provided a convenient source of energetic ions for these radiation damage studies and this
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CHAPTER 1. LITERATURE SURVEY

led to ion implantation. It was quickly realised that this process provided a superior doping technology
for the emerging semiconductor industry. Ion implantation is one of the most important processing
tools in silicon integrated circuit technology [1] [2]. Although the majority of research and develop-
ment involving ion implantation has been devoted to semiconductors, the technique has also proven to
be successful as a means of altering the physical and chemical properties of the near-surface region of
metals and alloys [3][4].
Ionbeam technologies havebeen established as indispensable tools inmodernmaterials research, devel-
opment, and production, and are being employed for both themodification and the characterization of
surfaces and thin films of solids. Some of the examples are investigations formaterials optimization and
waste disposal in nuclear fission and fusion research, the radiation cancer therapy in the health section
[5] [6] [7]. They also play an increasing role in emerging technologies which operate at the nanometer
scale, such as for mechanical and chemical sensors and new photovoltaic materials, for nanopatterning,
and, in general for the creation and analysis of surfaces and thin films with tailored electrical, optical
or magnetic properties [8] [9] [10] [11] [12] [13]. Furthermore, there are evidences that the atomic
structure andmorphology of carbonnanomaterials such as nanotubes and graphene canbe changed in a
controlled way by irradiation [14] [15]. The arrays of inter-connected carbon nanotubes with different
electronic properties canbemanufacturedbyusing spatially localized irradiation, which could be funda-
mental for carbon-based electronics. Interestingly, all the above applications of ion beam technologies
rely on the fundamental knowledge of ion-surface interactionwhich has beenmainly established during
the past 50 years.

1.2 Interaction of ion beamswith materials

Charged particles have their own effects when interacting with solids and in this study, the focus is on
ions. When energetic ions penetrate through a solid, they lose energy due to collisions with the elec-
trons and with the target nuclei. Depending on the energy (or rather, on the velocity) of the incident
particle, this interaction is broadly differentiated into inelastic (due to electrons) and elastic (due to
screened nucleus) interactions. Inelastic interaction occurs at high energies (roughly > 1 MeV/amu)
whereas for lower energies (i.e. <∼10 keV/amu), elastic interaction takes place. Figure (1.1.1) shows
the two different types of energy losses as a function of the energy (or velocity) of the particles.

Stopping power

When the ions travel through the solid, they slow down and gradually transfer energy to the orbital
electrons and nuclei resulting in their energy losses. This slowing-down process is defined by the energy
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Figure 1.1.1: Schematic representation of the variation of electronic energy loss, Se and nuclear
energy loss, Sn with ion velocity

loss of the particle, which is the amount of energy transferred per unit length (dE/dx). Energy loss is not
constant and depends on various factors such as nature and initial energy of the ion, the composition of
the target material etc. The total energy loss is given by the sum of electronic and nuclear contributions
and is written as:

dE
dx

=

(
dE
dx

)
n
+

(
dE
dx

)
e

(1.1)

The former term is called nuclear energy loss and refers to the energy loss per unit length via nuclear
collisions between ion and nuclei, while the second term is called electronic energy loss and holds for
the energy loss per unit length due to electronic interaction.
One frequent unit of measure for dE/dx is keV.nm−1. It is also common to define the stopping cross-
section S, which is the energy loss per unit length per scattering center: S = 1/N(dE/dx) where N is
the atomic density of the solid. For instance, in the case of Yttria-stabilized zirconia (YSZ) irradiated
with 4 MeV Au ions (since this material is extensively studied in this thesis), the nuclear energy loss
regime is predominant, with a nuclear stopping power of ∼ 5keV/nm ¹. However, electronic energy
loss is significant and might also play a role in the defect creation process (See section 1.6).

¹This value was determined with the help of SRIM calculations. SRIM (Stopping and Range of Ions in Matter)[16] is a
Monte-Carlo program that allows simulation of ion/matter interactions.
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1.3 Defect creation via elastic nuclear interaction

The interaction of ions withmatter creates different types of defects depending on the nature of interac-
tion and the amount of energy transferred, and above all, on the target material. Long time irradiation
of amaterial could lead to significantmodifications in the properties of thematerials such asmechanical
resistance, thermal and electrical conductivity etc. Hence it is necessary to understand the behaviour of
the material under highly irradiating conditions. But prior to that, the knowledge of primary stages are
crucial. In this work, the focus is mainly on the low energy irradiation effects on defect generation.
As described previously, the cross-section for elastic nuclear collision is higher for low energy ions. The
elastic conservation of momentum holds good for interactions. The collision results in the transfer of
energy from the ion to the atomic nucleus. The minimum energy required to permanently displace
an atom from its lattice site is called the displacement threshold energy Ed. If the transferred energy to
the lattice atom is greater than the threshold energy Ed, the atom will be permanently ejected from its
position. This displacement of the atom results in an empty lattice site, known as vacancy and in an
atom in interstitial position; both vacancy and interstitial form a Frenkel pair. The first displaced atom
[also called primary knock-on atom(PKA)]might carry sufficient energy to induce secondary displace-
ment(s). These secondary displaced atoms in turn can create further displacements and this process
may continue leading to a series of displacements. In the end, a highly disordered region around the
path of the ion is generated which is known as a collision cascades. Collision cascades usually happen at
the terminus of ion’s trajectory and the set of point defects created is known as a displacement cascade.
Kinchin and Pease [17] created a model half a century ago to estimate the number of displacements
which is given by

Nd = 0 if T < Ed

Nd = 1 if Ed ≤ T < 2Ed

Nd = T/2Ed if T ≥ 2Ed

where T is the kinetic energy of the primary knock-on atom. In the first case, the target atomwill not be
displaced whereas in the second case, it is displaced which gives rise to a Frenkel pair. In the third case,
target atom is displaced from its site and becomes a projectile which leads to collision cascades. The
number of displacements per atom (dpa) represents a way to estimate irradiation-induced disorder in
thematerial. dpa is calculated as a ratio of the number of displaced atoms per unit volume on the atomic
density of the material. During the collision cascades, interstitials and vacancies might easily recom-
bine since they are produced very close to each other. This recombination results in the more or less
pronounced annihilation of the collision cascades. Hence, depending on the material, only a very low
percentage of the initially created point defects may survive. Defect accumulation and agglomeration
may take place by increasing the number of projectiles.
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Figure 1.4.1: Crystalline structure of cubic Zirconia (ZrO2) where the bigger circles represent the
O atoms and the smaller circles represent the Zr atoms

1.4 The material - Zirconia

Zirconium dioxide (ZrO2) or zirconia is a polymorphic ceramic material which exists in three well-
known structural phases, namely monoclinic, tetragonal and cubic. The natural form is obtained from
themineral baddeleyite which has amonoclinic crystalline structure. The three crystal structures below
the melting point of 2715 °C are [18]

(i) monoclinic for temperatures < 1,170 °C

(ii) tetragonal between 1,170 – 2,370 °C

(iii) cubic for temperatures > 2,370 °C , which is isostructural with fluorite (CaF2)

Thehigh temperature tetragonal and/or cubicphases are stabilizeddown to roomtemperaturebyblend-
ing zirconia with some oxides likeMgO, Y2O3,TiO2,CaO,Ce2O3. The crystal structure of cubic Zirco-
nia (ZrO2) is illustrated in figure (1.4.1). The structure of cubic zirconia can be represented by a cubic
lattice of oxygen ions where half of the cubes are occupied by zirconium ions.

1.5 WhyCubic Zirconia?

Yttria (Y2O3) stabilized cubic zirconia (YSZ) is an extensively studied oxide ceramic material, having
numerous applications in the fields of bio-ceramics, sensors, nanomaterials, and nuclear waste manage-
ment. Another major application of YSZ is in Solid Fuel Cell (SOFC) technology [19] and it is also
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Formula ZrO2 − Y2O3

Structure Fluorite CaF2

Density 5.92 g.cm−3

Bulk lattice parameter 0.5145 nm
Melting point 2715 °C
Thermal conductivity 2W.m−1K−1

Y2O3 percentage ∼ 8 - 20 % mol

Table 1.5.1: Characteristics and properties of YSZ

widely used as Thermal Barrier Coating (TBC) [20]. There is also a growing interest in the electrical
properties of YSZ [21] [22]. Some of the properties of YSZ are listed in table (1.5.1).
By the end of the last century, the discontinuation of nuclear weapon programs and increasing produc-
tion of reprocessed plutonium from the electronuclear programs have led to the yield of thousands of
tons of weapon grade and civilian plutonium [23][24]. There are also huge risks because it also con-
tributes to the largest radiotoxicities of conventional spent fuels after some 100 years. So to handle this
excessive plutonium, the advanced nuclear fuel design concepts have recently focused attention on the
inert-matrix fuels (IMF)² [26]. The reason behind this ismainly because (i) these fuels burn plutonium
or other actinides such as americium instead of uranium; (ii) the actinide inventory in the spent fuel is
significantly reduced compared to conventional uranium fuels. It is also encouraged to convert exces-
sive plutonium into mixed-oxide (MOX) fuel and to irradiate this fuel in commercial nuclear power
reactors. YSZ could also be used as a transmutationmatrix or as amatrix for nuclear waste confinement
in geological disposal. Of all the non-fertile material candidates for inert matrix fuels, YSZ is one of
the most promising material [7]. This high temperature refractory oxide is attractive mainly because it
possesses the same crystallographic structure as oxides of actinides (likeUO2), high chemical durability
and excellent radiation stability characteristics [27]. It has been proposed that burning plutonium in a
non-fertile fuel based on a zirconia matrix may constitute a final waste form [28] [29].
More specifically, the properties which make YSZ suitable for nuclear waste management applications
are its (i) high solubility of actinides within it, (ii) insolubility in aqueous and acidicmedium, (iii) redox
insensitivity and (iv) high melting point. Needless to say, either during Pu-incineration or transuranic
transmutation, the host YSZ matrix will get exposed to extreme radioactive environments involving
ballistic and ionization processes. Materials properties are likely to undergo changes under such aggres-
sive environment and it is therefore important to carry out experimental studies so as to predict such
changes.

²IMF refers to any nuclear fuel containing a low activationmatrix as a carrier for the fissile material. At present, the term
IMF is mostly associated with plutonium fuel that does not contain uranium to obtain the highest efficiency for destruction
of excess plutonium. Besides that, the term IMF is also used in the context of uranium-free fuels for transmutation of minor
actinides, although in many cases this is not appropriate as the fissile content is too low for fuel purposes [25].
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Figure 1.6.1: Damage accumulation in FSZ samples irradiated with Xe++ ions at 170 K. Damage
accumulation occurs in three stages [27].

1.6 Literature survey on YSZ under ion irradiation

The investigation of radiation damage effects in zirconia has been done by various researchers in the last
two decades with the help of advanced experimental characterization techniques such as X-ray Diffrac-
tion (XRD), Transmission Electron Microscopy (TEM) and Rutherford backscattering and ion chan-
nelling (RBS/C) [24] [30] [31] [32] [33] [34] [35]. Some of the important results are presented here.
Sickafus et. al., in 1998, [27] [36] [37] [38] irradiated the unstabilized monoclinic zirconia and fully-
stabilized cubic zirconia (FSZ) with Y, Ca and Er dopants. Irradiations were done with 340-400 keV
Xe++ ions and at temperatures ranging from 170 to 300 K. They performed experiments using XRD,
TEMandRBS/C.ByRBS/C, they observed the damage accumulation inXe-ion irradiatedFSZcrystals
progress in three stages (See figure 1.6.1). The first stage is the formation of isolated defect clusters and
in the second stage, the damage increases significantly and finally in the last stage, the damage level sat-
urates. The formation of a network of tangled dislocations is noticed. They observed no amorphization
under any of the performed irradiation conditions. The unstabilized monoclinic zirconia was observed
to transform to a higher symmetry, tetragonal or cubic phase, upon 300 - 400 Xe2+ ion irradiation and
no amorphization was observed up to Xe fluence equivalent to 680 dpa.
They also irradiated cubic stabilized zirconia with 72 MeV I+ ions to simulate a typical U or Pu fission
fragment [36]. Irradiations were performed over the fluence range from 1 × 1014 to 5 × 1015cm−2, at
temperatures of 300, 700 and 1170 K. At ambient temperature and at the highest I+ fluence (5 × 1015

I+/cm2), RBS/C measurements revealed a high degree of lattice disorder. Nano-indentation measure-
ments on the same sample indicated a decrease in elastic modulus, E, and hardness,H (both by about
9 %). These results suggest that an alteration in structure beyond simple defect accumulation occurs
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Figure 1.6.2: Bright-field TEM micrograph of a cross-section of YSZ irradiated with 400 keV Cs
ions at a fluence of 1 × 1017cm−2 in room temperature. The damaged surface layer (a), amorphous
layer (b) and the virgin layer which is beyond the irradiation zone (c) can be clearly observed from
Wang et. al. [40]

under these irradiation conditions. However, TEM observations and in particular micro-diffraction
measurements failed to reveal any structural transformations in the irradiated material. Using RBS/C
analyses, damage accumulation was found to saturate at much higher values (<770 K) compared to the
Xe++ ions. They suspected partial amorphization of the sample but however they were unable to con-
firm using TEM.
Wang et.al., in 2000 [39] were able to observe amorphization of YSZ submitted to the 400-keV Cs-ion
implantation to 1 × 1017cm−2 at room temperature. The Cs concentration at which amorphization of
YSZ occurred is about 8 at. % which is well above the typical value that could be reached in an inert
fuel matrix. A year later, Wang et. al., [40] confirmed the formation of the amorphous layer in YSZwith
the same conditions as above using TEM (see figure 1.6.2). TEM image shows the depth dependent
microstructure of YSZ.They speculated that amorphization occurs becausemonovalent Cs ions, which
possess a relatively large ionic radius, disrupt the local atomic configuration in cubic YSZ.

Yasuda et. al. [41] investigated the defect clusters induced in FSZ irradiated with ions and/or elec-
trons. Micro-structure evolution of YSZ (ZrO2−13mol%Y2O3), was investigated usingTEM. Anoma-
lous formation of large defect clusters was found under electron irradiation subsequent to ion irradia-
tion, such as 300 keVO+, 100 keVHe+ and 4 keVAr+ ions. Such defect clusters were not formed solely
with ion irradiation. Thedefect clusterswere transformed into a dislocation networkwhen they reached
a critical diameter of about 1.0− 1.5μm, and processes of nucleation, growth and transformation were
repeated under electron irradiation. The defect clusters were assumed to be oxygen platelets induced
through selective displacements of oxygen ions in YSZ with electron irradiation. The results suggest an
important role of low energy recoils and/or electronic excitation for the radiation damage processes in
YSZ, which induce selective radiation damage in the oxygen sublattice of YSZ.
Thomé and colleagues [42] studied the damage production in yttria-stabilized cubic zirconia single
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Figure 1.6.3: Damage kinetics of YSZ irradiated at room temperature with various noble-gas ions
[43]

crystals irradiated with low-energy (from 30 to 450 keV) ions (from He to Cs). The disorder created
in the two sub-lattices (Zr4+ and O2−) of the crystals and the lattice sites of ions were determined by
in situ Rutherford backscattering and channelling experiments. Damage was created at a depth close
to the ion projected range estimated with SRIM at low fluences which later proceed towards greater
depths with increasing fluences once the saturation of the radiation damage was reached. The kinetics
of the damage accumulation process revealed three stages, which (except for He) essentially depended
on the number of displacements per atom (dpa) induced by irradiating ions (ballistic contribution).
Channelling results show that the lattice location of the heaviest atoms (Xe, Cs and I) varied with the
nature of implanted species (chemical contribution). The position of Xe and I ions is almost random
over the whole fluence range investigated, meanwhile a large fraction of Cs ions is located in substitu-
tional lattice sites at low ion fluences. At high fluences, Cs loses its substitutionality and this could be
due to the precipitation of implanted species or the formation of compounds (such asCs2ZrO3), which
may explain the eventual amorphization. Formation of precipitates was further confirmed by Wang et.
al. [39].

Similarly, Jagielski et. al., [43] showed that, even after a huge irradiation dose of 100 displacements
per atom (dpa), the disorder level saturates at a moderate value (∼ 70%) (See figure 1.6.3). There was
no indication on any phase change or amorphization in the sample. This result has been obtained under
various irradiation conditions, namely Xe (450 keV), I (200 keV), Kr (300 keV), Ar (160 keV), Ne (80
keV) and Cs (300 keV).
Costantini et. al., [44] investigated YSZ using electron irradiation. ⟨100⟩ - or ⟨110⟩- oriented YSZ sin-
gle crystals were irradiated with 2.5 MeV electrons and also with different swift ion irradiation. Inves-
tigation was performed using X-band electron paramagnetic resonance (EPR) and UV - visible optical
absorption measurements to monitor the point defect formation. They noticed the electron and ion
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beams produce the same two paramagnetic centres : (i) the A-centre, identified as an F+-type centre
with an axial ⟨100⟩ symmetry, which is induced by the elastic collisions, (ii) and the B-centre similar
to the well-known T-centre with an axial ⟨111⟩ symmetry. They suspected that the latter defect was
probably produced by the electronic excitations deposited in the material by the charged particles.
Recently, a comprehensive work was proposed by Moll et. al., [34] regarding the behaviour of YSZ un-
der low and medium energy irradiation. The comprehensive study was performed by using RBS/C,
XRD and TEM, and the information was gained on the disorder buildup, the nature of the defects
and the mechanisms involved in the structural transformations. XRD results showed the presence of
a dilatation gradient along the direction normal to the sample surface and a positive strain induced by
defects. The damage buildup determined by RBS/C and the variation in the maximum normal elastic
strain as a function of the ion fluence measured by XRD were presented in the framework of MSDA
model. Multi-step damage accumulation model (MSDA) was developed by Jagielski and Thomé [43]
[45] [46] to account for a theoretical description of the damage accumulation kinetics. This model is
based on the assumption that the damage accumulation process occurs via a series of structural transfor-
mations, each step being described by a direct impact mechanism. The transformation of the irradiated
material into a new structure is triggered by the destabilization of the current structural organization of
the crystal leading to the next step of damage accumulation.
According to theMSDAmodel, the variationof the level of damage accumulation fD with the ionfluence
Φ is represented by the equation [45] :

fD =
m−1∑
i=1

{fsatD,iG[1−exp(−σ i(Φ−Φi))]×
i−1∏
k=1

[exp(−σk+1(Φ−Φk+1))]}+fsatD,mG[1−exp(−σm(Φ−Φm))]

(1.2)
where n is the number of steps required to describe the disordering process, fsatD,i is the level of damage
at saturation in the ith step, σ i is the cross-section for damage formation in the ith step, G is a ad-hoc
function which transforms negative values into 0 and leaves positive values unchanged. Moll et. al.,
[34] evidenced a three step variation (using MSDA) of the YSZ by RBS/C in the fluence range up
to 2 × 1016cm−2. At low fluences (up to 1015cm−2), the first step corresponds to a regular increase
in the damage yield and the strain by the formation of small defect clusters. A sharp increase in the
damage yield, together with a dramatic drop of the strain, is observed in the second step (from 1015 to
5 × 1015cm−2) due to the formation of dislocation loops which collapse in a network of tangled dislo-
cations. Finally, in the third step at high fluences (above 5 × 1015cm−2), where a decrease in the chan-
nelling yield is observed, which is ascribed to the reorganization of the dislocation network in weakly
damaged regions. The results were compared with the damage formation in low-energy ions [42] and
they concluded that several factors such as the effects due to themodification of the composition ofma-
terials during irradiation must be taken into account to untangle damage accumulation processes and
infer damage buildups. They also compared the results with high energy (940 MeV Pb ions) and the
damage buildup with the help of MSDA model [figure (1.6.4)] showed a direct transformation into a
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Figure 1.6.4: Accumulated damage fD versus fluence in YSZ crystals. The solid line represents
the fit made by using the MSDA model [47].

new structure via a single-step process in the case of high energy ions [47].
In summary, zirconia presents a very high resistance to ion irradiation with no amorphization discov-
ered up to hundreds of dpa. All these above studies show a high chemical stability and radiation resis-
tance of YSZ.Nonetheless, the complete understanding of its behaviour under irradiation is an ongoing
process. Indeed, detailed studies still need to be conducted in particular regarding the effect of the ir-
radiation temperature. This will be the motivation of part of the work presented in this manuscript.

1.7 Introduction to the theory of X-ray Diffraction

In the previous section, we saw in detail, the interaction of ion beams with materials and how the ir-
radiation with ions induce defects in the target material and consequently, changes the properties of
thematerial. A rather broad panoply of experimental characterization techniques such as X-ray Diffrac-
tion(XRD), Transmission Electron Microscopy(TEM) and Rutherford backscattering and ion chan-
nelling(RBS/C) are typically used to investigate materials at various spatial scales and with different
sensitivities. When using interferometric techniques, wavelengths similar to the atomic distances of∼
1 Å are required. When radiation of such short wavelength is scattered, the resulting interference pat-
tern is related to the details of the arrangement of atoms in the crystal. Therefore, analysis of the pattern
allows us to study the violations of the crystal perfection on this scale and precisely determine atomic
displacements. For example, lattice parameters can be measured with a precision down to 10−4 Å.
BothTEMandXRD rely on the constructive interference of scatteredwaves, and the same fundamental
laws (e.g. Bragg’s law, extinction rules) can be applied for the interpretation of the resulting diffraction
patterns. TEM is a very efficient and widespread technique used to analyse defects in irradiated mate-
rials. It has an advantage of being able to obtain the direct imaging and the latest developments allow
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to access displacements as low as 0.43Å [48]. In contrast, conventional XRD does not rely on imag-
ing, but it is a non-destructive technique. It doesn’t require sample preparation and since large volumes
are probed, it is a statistically relevant technique. X-rays can easily be monochromatized and allow the
precise determination of the lattice constants as well as the strain state of the materials. The coherence
length, the penetration depth as well as the dynamic range for detection are higher for X-rays than for
electron diffraction. The counterpart to that is that the information is not straightforward to obtain, i.e.
we have to build models to obtain the relevant information. The reason for that is, in a typical XRD ex-
periment we measure the scattered intensity (the squared modulus of the amplitude) where the phase
information is lost, so that the electron density distribution can not be obtained by a simple inverse
Fourier transform.
X-ray analysis is considerably used for the analysis of thin films and multilayers [49]. The diffraction
techniques also make a significant contribution to the studies of defects in crystals, particularly those
defects that are produced by irradiation and plastic deformation. For example, it yields information on
the types of the point defects (vacancies, interstitials, impurity atoms), their positions in the crystal lat-
tice, their concentrations, and the static displacement fields around them.

1.8 Production of X-rays

X-rays produced in the laboratory diffractometers have wavelengths varying in the range approximately
0.1 - 5 Å. A typical diffractometer consists of a source of radiation, a monochromator, slits to adjust the
shape of the beamand a detector. X-rays are produced by classical sealed tubes or rotating anode genera-
tors. In the recent decades, the use of synchrotron to produce X-rays have become increasingly popular.
The synchrotron takes its name from a specific type of particle accelerator. Synchrotron radiation has
become a generic term to describe radiation from charged particles travelling at relativistic speeds in ap-
plied magnetic fields which force them to travel along curved paths. In a storage ring, the synchrotron
radiation is produced either in the bending magnets needed to keep the electrons in a closed orbit, or
in insertion devices such as wigglers or undulators situated in the straight sections of the storage ring.
Several aspects of an X-ray source determine the quality of the X-ray beam it produces. These aspects
can be combined into a single quantity, called the brilliance, which allows one to compare the quality
of X-ray beams from different sources. Brilliance can be written as

Brilliance =
Photons/second

(mrad)2(mm2source_area)(0.1%BW)
(1.3)

The intensity in photons per second is the product of the brilliance, angular divergences set by the hor-
izontal and vertical apertures (in milli-radian), the source area (in mm2), and the relative bandwidth
of the monochromator crystal relative to 0.1%. The brilliance is a function of the photon energy. The
maximum brilliance from third generation undulators (see figure 1.8.1) is approximately 10 orders of
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Figure 1.8.1: The brilliance of X-ray sources as a function of time.

magnitude higher than that from a rotating anode at the Cu Kα line. This dramatic improvement has in
many ways led to a paradigm shift in experimental X-ray science. Experiments inconceivable only a few
decades ago are now performed on almost a routine basis.

Up until now, three generations of synchrotron radiation sources emitting radiation have been de-
veloped. The fourth generation, based on free-electron lasers, produces high power and ultrafast pulses
of highly coherent radiation and is the topic of intense research.

1.9 Kinematical Theory ofDiffraction

Since the discovery of X-ray diffraction in crystals in 1912, it has been a powerful tool in the study of
crystal structures. There are two general diffraction theories that are employed to explain the observed
X-ray diffraction phenomena in crystals, the kinematical and the dynamical theory. The dynamical the-
ory will be shortly presented in section (1.12). In the kinematical theory, the diffracted wave is con-
structed by the addition of the coherently scattered waves from all crystal atoms, with the assumption
that the transmitted X-rays only suffer normal linear absorption and the waves only undergo single scat-
tering (i.e., multiple scattering is neglected). If these scattered waves are all in phase, they constructively
interfere and amaximum (i.e., Bragg peak) is observed in the spatial distribution of the scattered waves.
If they are out of phase, the resultant diffracted wave amplitude will be cancelled to zero. The validity of
the kinematical approximation depends on various factors like the crystals dimensions, strength of the
scattering, crystalline perfection, scattering geometry etc.
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Figure 1.9.1: (a) Representation of scattering by one electron where the incident and the
diffracted wave vectors and the associated scattering vector are shown. (b) The case of scatter-
ing by two electrons where the path difference is given by δ

The fundamental scattering process is the interaction of the incident photons with the electric field of
the electron. The details of this scattering process, especially the separation of the elastic and inelastic
scattering contribution at large scattering vectors, must be calculated by quantum mechanics. How-
ever, the elastic scattering cross section can be quantitatively understood by a classical calculation of
the induced dipole radiation of the electron, that yields the Thomson scattering cross section:

dσ
dΩTh

=

∣∣∣∣ e2mc2

∣∣∣∣2 1 + cos2 2θ
2

(1.4)

e2/mc2 is the classical radius of the electron and its square is generally used as a reference unit for X-ray
scattering cross sections. The second factor of equation (1.4) is the polarization factor of the incoming
wave and here it is given for the case of a non-polarized incoming wave.
This is theThomson equation for the scattering of anX-ray beamby a single electron. If the values of the
constants e,r,m and c are inserted into this equation, it will be found that the intensity of the scattered
beam is only a minute fraction of the intensity of the incident beam.
In the case of elastic scattering of X-rays, the wave vectors of the primary and scattered waves have the
same length in vacuum:

|k0| = |k| = 2π
λ

(1.5)

where λ is the X-ray wavelength.
When a crystal is irradiated with a monochromatic plane wave (figure 1.9.1 a), the incident wave am-
plitude is given by

E0(R, t) = E0exp[i(k0 · R− ωt)] (1.6)

and the scattered amplitude is given by

E0(R, t) = feE0exp[i(k · R− ωt)] (1.7)
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where fe is the scattering length of the electron. Typical measurement times are of the order of 1 second,
which corresponds to 1018 timeperiods of theX-ray radiation. The intensity of thewavefield is therefore
given by the time-averaged multiplication of the amplitudes and is given by

I(R,R′) = ⟨E(R)E∗(R′)⟩ (1.8)

For simplicity, the ωt term will hence be omitted in the following. If there are several scattering centers,
there is a phase shift between the different scatteredwaves that has to be considered in the calculation of
the total scattering amplitudes. The resulting amplitude E′, for instance, from the two scattering centers
(figure 1.9.1 b) is

E′ = feE0[exp(ik · R) + expi(k · R+ φ)] (1.9)

where φ = 2π/λ × δ is the phase lag of the wave from electron 1 behind that of electron 2 and

φ = k · r− k0 · r = (k− k0) · r = Q · r (1.10)

where r is the distance separating the electrons and Q is the diffraction vector length for X-rays and is
given by

Q =
4π
λ

sin θ (1.11)

So the amplitude becomes

E′ = feE0exp(ik · R)[1 + exp(iQ · r)] (1.12)

Generalizing to an arbitrary number of electrons

E′ = feE0exp(ik · R)
∑
l

exp(iQ · rl) (1.13)

where rl is the position of the lth electrons. The scattering length of the system as a whole is therefore
given by

f = fe
∑
l

exp(iQ · rl) (1.14)

When an X-ray beam encounters an atom, each electron in it scatters part of the radiation coherently
in accordance with the Thomson equation. One might also expect the nucleus to take part in the co-
herent scattering, since it also bears a charge and should be capable of oscillating under the influence
of the incident beam. However, the nucleus has an extremely large mass relative to that of the electron
and cannot be made to oscillate to any appreciable extent; in fact, the Thomson equation shows that
the intensity of coherent scattering is inversely proportional to the square of the mass of the scattering
particle. For the scattering from an atom, considering that electrons are spread as a continuous charge
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Figure 1.9.2: Reciprocal lattice representation which satisfies the Bragg’s law for a set of planes
hkl

cloud over the volume of the atom

f(Q) = fe
∑
l

exp(iQ · rl) −→ fe
∫

exp(iQ · r)ρ(r)d3r (1.15)

where f(Q) is the atomic scattering vector or atomic form factor.
The crystallographic unit cell is the smallest unit by which the periodic order is repeated. The scattering
length of a unit-cell is the structure factor F and using the same approach to derive equation (1.14), the
structure factor is defined as the amplitude scattered by one unit cell and is given by

F =
∑
m

fm(Q)exp(iQ · rm) (1.16)

Hence, the overall diffracted amplitude from a crystal (i.e., a periodic distribution of unit-cells)is just
the sum of the amplitudes scattered by each unit cell within the sample

E(Q) =
∑
n

Fn(Q)exp(iQ · rn) (1.17)

Equation (1.17) is a Fourier series and therefore exhibit maxima when its argument (Q · rn) equals
multiple of 2π. Finding the conditions for which Q · rn = n × 2π correspond to establishing the
diffraction condition.

Reciprocal space

In order to find the vectors of the above Fourier series, we construct the axis vectors b1, b2, b3 of the
reciprocal lattice (Figure 1.9.2)

b1 =
a2 × a3

a1 · (a2 × a3)
; b2 =

a3 × a1

a1 · (a2 × a3)
; b3 =

a1 × a2

a1 · (a2 × a3)
(1.18)
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If a1, a2, a3 are primitive vectors of the crystal lattice, then b1, b2, b3 are the primitive vectors of the
reciprocal lattice. Each vector defined by equation (1.18) is orthogonal to two axis vectors of the crystal
lattice. Thus b1, b2, b3 have the property

bi · aj = δij (1.19)

where δij = 1 if i = j and δij = 0 if i ̸= j. Points in the reciprocal lattice aremapped by the set of vectors

G = hb1 + kb2 + lb3 (1.20)

where h, k and l are integers. The vectors bi and their linear combinations are referred to as reciprocal
lattice vectors because their dimension ism−1 and their length is inversely proportional to the length of
the corresponding real lattice vectors. They span the so-called reciprocal lattice. Since in equation (1.17),
rn is a vector of the real space lattice, rn = ua+ vb+ wc (u, v,w integers), the product

2πG · rn = 2π(hu+ kv+ lw) = n× 2π (1.21)

which fulfils the diffraction condition.
In other words,Q = 2πG is a diffraction condition, i.e., a diffraction peak is observed when the scatter-
ing vector is equal to a reciprocal lattice vector. Graphically this corresponds to the Ewald construction
(Figure 1.9.3). The Ewald sphere is defined by its center A and radius R = 1/λ = k0. Since the wave
vectors k and k0 have the same length and lie in the same sphere, the scattering vector must lie on the
surface of the sphere. Consider the end of the vector k0 as the origin O of the reciprocal lattice, the
Ewald sphere defines the locus of points of all possible scattering vectors. When the Ewald sphere in-
tersects a reciprocal lattice point, diffraction is observed for these planes.
From the properties of the reciprocal lattice, G = 1/dhkl where dhkl is the planar spacing of the (h, k, l)
planes. The above diffraction condition is therefore equivalent to Bragg’s law

2 sin θ
λ

=
1
dhkl

(1.22)

Returning to the equation (1.17), using the periodicity of the Fourier series, we finally obtain

E(Q) =
∑
G

∫
dr · F(Q)exp[i(Q− G)r] (1.23)

Equation (1.23) shows that the diffracted amplitude is located around points with coordinates given by
the reciprocal lattice vectorsG and the shape of the amplitude distribution is given by the integral term.
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Figure 1.9.3: Geometrical representation of the Ewald construction.

1.10 Effects of microstructure

Equation (1.23) assumes infinite extension for the integral and all unit cells located at their theoretical
position. Real crystal have finite dimension and exhibit a certain amount of lattice disorder, where the
unit-cells are shifted by an amount u(r). Now we take into account u(r), the lattice displacement at the
point r andΩ(r) as the crystallite shape function (equal to1 inside the crystal, and0outside). Thephase
termbecomes exp[iQ(r+u)] and, in the small displacements approximation, we have (Q−G) ·u ≪ 1,
so thatQ · un ≈ G · un [50]. Equation (1.23) finally becomes

E(Q) =
∑
G

∫
dr · F(Q)Ω(r)exp[iGu(r)]exp(iqr) (1.24)

where q = Q− G is the reduced scattering vector.
For the reflectionwith reciprocal lattice vectorG = h, the diffracted intensity is I(Q) = E(Q)×E(Q)∗.
From the amplitude equation (1.24), assuming that the structure factor is independent on rwe obtain

I(Q) = |F(Q)|2
∫

dr ·
∫

dΔr · Ω(r)Ω(r+ Δr)exp[ih{u(r+ Δr)− u(r)}]exp(iqΔr) (1.25)

Let us assume that at any position in the solid r, the function u(r + Δr) − u(r) remains statistically
unchanged and depends only on the correlation vector Δr. In that case, the choice of a particular origin
for the position vector r is unimportant and this term can be averaged over all defect configurations.
With this assumption, we can separate the diffraction effects due to crystallite size and shape (Ω) with
those due to defects (u). The diffracted intensity close to the reciprocal lattice point with vector h will
now become

I(Q) = |F(Q)|2
∫

dΔr · V(Δr)G(Δr)exp(iqΔr) (1.26)
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with
G(Δr) = ⟨exp{ih[u(Δr)− u(0)]}⟩ (1.27)

and
V(Δr) = Ω(Δr) ∗ Ω(−Δr) =

∫
dr · Ω(Δr)Ω(r+ Δr) (1.28)

From this equation, we can see that the diffraction intensity is the Fourier transform of the product of
two terms: the correlation volume V(Δr) and the pair correlation functionG(Δr). While the former is
solely dependent on the size and shape of the crystallites building up the solid, the latter depends only
on the lattice displacements induced by the presence of structural defects. The evaluation of V(Δr) is
easier compared toG(Δr) as it only relies on geometrical considerations.
V(Δr) gives rise to well-known features such as truncation rods in case of surfaces, interference (Laue)
fringes in thin crystals and peak broadening. The effects ofG(Δr) aremore complex andwill be detailed
in the next section.

1.11 Diffuse Scattering of X-rays by crystal defects

X-ray diffractionmethods allow the investigation of various crystal defects , i.e., defect sizes ranging from
the atomic level up to large dislocation loops that are well above the visibility limit of the transmission
electron microscope. The diffuse X-ray scattering distribution from a defective crystal is the weak part
of the scattering between Bragg peaks which arises from the strain field in the lattice surrounding the
defects. In recent times, the analysis of diffuse scattering has become an essential tool for the under-
standing the structures ofmany technologically importantmaterials such as alloys [51], shape-memory
alloys [52], ferroelectrics [53], superconductors [54] and semiconductors [55] and also protein mo-
tions [56]. Many studies and reviews have explored the diffuse scattering from various defects that can
bepresent in crystallinematerial [57] [58] [59] [60] [61], e.g. point defects [62] [63] [64], dislocations
[57] [65] [66] , stacking faults [67] , three-dimensional defects clusters [58] have all been previously
studied in detail. A general theory of diffuse scattering in crystals containing randomly distributed de-
fects with elastic fields of atomic displacements has been given by Krivoglaz [68]. We here briefly recall
this theory.
The amplitude scattered from a crystal with defects can be written using (1.17) and intensity, the dis-
placement vector u and the shape function

E =
∑
n

ΩnFnexp(iQ · un)exp(iQ · rn) (1.29)

I =
∑
n,n′

ΩnΩn′⟨FnF∗n′exp[iQ(un − un′)]⟩exp[iQ(rn − rn)] (1.30)
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from which we can write

Vn,n′ = ΩnΩn′ , Gn,n′ = ⟨FnF∗n′exp[iQ(un − un′)]⟩ (1.31)

The averaging, denoted by the angle brackets, is performed over the statistical ensemble mentioned
above. Vn,n′ and Gn,n′ are the terms similar to equation (1.26) but now includes F. First, we encounter
a variation of the structure factor Fn caused by the fact that the sites of the type s are occupied by atoms
of different species. A second perturbing factor is due to displacements u of atoms from the lattice sites.
While the variations of Fn are typically localized in space sharply enough, the violations of perfection
caused by atom displacements may involve small or large regions in the crystal, depending on the type.
For the sake of simplicity we assume that the defect concentration is low, i.e., the number of defects is
considerably smaller than the number of sites they can occupy. This restriction clearly does not reduce
the generality of the qualitative results obtained in this way. But since the regions of significant distor-
tions produced by individual defects can be large and overlap with each other, even when the defect
concentration is small, significant distortions can occur not only in individual regions but throughout
the crystal.
Krivoglaz [68] considered the displacement at site n as a result of the linear superposition of the dis-
placement of all the defects in the crystal. Let ct be the probability of having a defect in the site t, then

un =
∑
t

ctun,t (1.32)

un,t is the displacement vector for the center of the nth lattice cell caused by the introduction of a defect
to the position t. Here summation is performed over all positions t that can be occupied by a defect, i.e.,
over all lattice sites in substitutional solutions, over interstices in interstitial solutions, over points in a
given plane which can contain the dislocation line in the case of straight-line dislocations, and so on.
When the defect concentration is low, the configurations with two or more defects near the given nth
cellmake anegligibly small contribution andwe canuse a similar approach andwrite the structure factor
for the nth cell in the form

Fn = F+
∑
t

ctϕn,t (1.33)

where F is the structure factor for the crystal without defects and ϕn,t is the change in the structure
amplitude with the introduction of the defect. If we substitute (1.32) and (1.33) into the equation
(1.30), weobtain the equation for the scattering intensity corresponding to the givendefect distribution
in the crystal, i.e., the given numbers ct

I =
∑
n,n′

Vn,n′

(
F+

∑
t

ctϕn,t

)(
F∗ +

∑
t′

ctϕ∗
n′t′

)
eiQ(rn−rn′ )

∏
t′′

exp[iQ(un,t′′ − un′,t′′)ct′′ ] (1.34)
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The random numbers ct are statistically independent in the case of a random distribution of defects
consideredherewhen the defect positions are not correlated. Thenumbers ct canhave two values, either
the value is 1 with the probability c equal to the defect concentration and have 0 with the probability
1 − c. Averaging over the random variables ct, first in the case when defects do not affect the structure
amplitudes (ϕst = 0), the problem reduces to finding the average for the product of the statistically
independent factor exp[iQ(un,t− un′,t)ct]. When we average each factor over the numbers ct = 0, 1, we
obtain,

⟨exp[iQ(un,t − un′,t)ct]⟩ = c× exp[iQ(un,t − un′,t)ct] + 1 − c (1.35)

Then the average for the product in (1.34) can be written as∏
t

[cexp[iQ(un,t − un′,t) + 1 − c] = exp
∑
t

ln[1 + c(exp[iQ(un,t − un′,t)]− 1)] = e−T (1.36)

The Bragg scattering originates from the average structure, which means that the order of long dis-
tance for which the correlation length |rn − rn′| tend to infinity. The diffuse scattering is obtained by
calculating the total intensity by subtracting the Bragg scattering. If we now include structure factor
variations, we obtain

Idiffuse(Q) =
∑
n,n′

Vn,n′eiQ(rn−rn′ )e−2M

[(
|F̄|2 + c

∑
t

ϕn,tϕ
∗
n′,te

iQ(un,t−un′,t)

)
e−(T−T∞) − |F̄|2

]
(1.37)

and the Bragg scattering is

IBragg =
∑
n,n′

Vn,n′exp[iQ(rn − rn′)]e−2M (1.38)

T∞ is the limiting value of T. |F̄|2 is the mean structure factor squared. The real part of T∞ (= 2M) is
responsible for the weakening of the diffracted intensity; mutatis mutandis with the thermal scattering,
this term is called static Debye-Waller factor. The imaginary part of T∞ gives rise to a displacement
and an asymmetry of the peak, but there are no cases of widening of the peak.
Thediffuse contribution is a continuous function, but generally concentrated around theBraggposition,
such that it is often interpreted as the Bragg peak broadening. We should note that this distribution is
equally enlarged by an effect of size since it is present in the form of a truncated Fourier series by the
boundaries of the crystal (Vn,n′ term).

Classification of defects

The above results make it possible to find out whether the defects under consideration produce broad-
ening of the lines in the X-ray diffraction patterns. Various defects can be classified into two classes. The
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real part of the T∞ denoted as 2M, can be written as

c
∑
s

[1 − cos(Q · uts)] (1.39)

For the defects of the first class, M is finite. The introduction of defects leads to shifting of the lines,
to changes in their integrated intensity caused by the variation of the averaged structure factor, to the
emergence of the intensity weakening factor exp(−2M). The value ofM for defects of the second class
tends to infinity. The scattering intensity distribution becomes smooth andno lines andbackground can
be identified even in the limiting case of the infinite crystal. It can be shown that for small defect con-
centrations these distributions have sharp narrow peaks in the vicinities of the reciprocal lattice points
whose widths are proportional to the defect concentration. The resulting sharp peaks can be naturally
referred to as the broadened regular reflections implying that the lines in the X-ray diffraction patterns
are broadened owing to the introduction of defects into the crystal.
The convergence of the sum over s in the equation (1.39) is entirely determined by the convergence
of
∫
r>R0

(Q · uts)dV. A defect will be of first class if 2M is finite (i.e., if u ∝ 1/rn , and n ≥ 2). If
2M is infinite (i.e., if n ≤ 3/2) then it is said to be of second class. Hence, depending on the integral∫
r>R0

(Q · uts)dV converges or not, the defects belong to the first or second class, in accordance with the
asymptotic behaviour of displacements at large distances from the defects. Thedisplacements produced
by point defects decrease asymptotically as the square of the increasing distance ust ∼ r−2. According
to elasticity theory, the displacements also decrease as r−2 for a fairly general type of arbitrary bounded
defects with finite dimensions along three axes at distances much larger than these dimensions. There-
fore, all defects of such type belong to the first class and do not produce broadening of lines in the X-ray
diffraction patterns. When the defect is an infinitely long cylinder of impurity atoms in the crystal, or for
a point defect in a two-dimensional lattice, the resulting displacements decrease linearly with increas-
ing distance. The integral clearly exhibits logarithmic divergence, suggesting that such defects belong
to the second class. Dislocations with straight dislocation lines passing through the entire crystal can
also be regarded as infinitely long defects. The displacements produced by them do not decrease with
increasing distance from the dislocation line. Hence, the straight-line dislocations are defects of the sec-
ond class and produce broadening of the X-ray lines. In a finite crystal, M obviously does not become
infinite. But for dislocations or point defects in a linear chain, M is so large that exp(−2M) practically
vanishes.
The above results show that X-ray line broadening is also caused by infinitely extended defects such as
stacking faults randomly distributed in the crystal, or by systems of dislocations forming block bound-
aries in the infinite crystal. On the other hand, when the dislocation line is closed as it is in dislocation
loops, the defect size is finite, un,t decreases as r−2 at large distances and according to the above classifi-
cation, instead of line broadening, weakening of the line intensity must take place. A similar qualitative
analysis can be applied to the diffraction effects caused by any crystal defects. The defects belong to the
first or second class if defect dimensions are finite or infinite in one or two directions.
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Figure 1.11.1: Reciprocal space distribution calculated for spherical defects of various strengths.
(a) Pure Huang scattering shows the double-looped form of the intensity maximum and (b) typical
diffuse scattering from a zero defect strength defect [69].

As stated above, defects of finite size in an infinite crystal matrix are weak. If we look into the detail of
the reciprocal space map obtained from a crystal with defect, we can typically notice two parts (i) the
defect core, inwhich the structure differs substantially from the crystal structure of the surroundingma-
trix and (ii) the deformed area of the surrounding crystal matrix. If we investigate the reciprocal space
distribution of the diffusely scattered intensity close to the reciprocal lattice point corresponding to the
averaged lattice(i.e., for small values of |q|), the influence of the defect core can be neglected and the
diffuse scattering is caused mainly by the elastic deformation of the surrounding crystal. This is called
Huang scattering. The pure Huang scattering shows the double-looped form of the intensity maximum
as given in figure (1.11.1) which is typical of defects with r−2 displacement fields.

1.12 Dynamical Theory ofDiffraction

1.12.1 Historical background

The early development of dynamical theory originated back to Darwin’s work [70][71] in which he in-
troduced the scheme of multiple reflections over parallel planes. He obtained the correct form for the
total reflected intensity from perfect crystals and predicted the phenomena of primary extinction. An
improved dynamical theory was proposed by Ewald, later reformulated by von Laue [72] [73]. Ewald’s
theory [74] [75] [76] formed the backbone to the classical dynamical diffraction theory. Different from
the geometrical (kinematical) theory, the classical dynamical theory is based on the wave equation de-
rived fromMaxwell’s electromagnetic equations. Due to the periodicity of the crystal, the susceptibility
of the crystal is periodic too, resulting in a Bloch wave solution to the wave equation. In general, the
Bloch wave involves an infinite number of plane waves and their amplitudes cannot be solved exactly
[77].
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Fortunately, in most cases for an incident plane wave, only the directly transmitted wave (o-wave)
and diffracted wave(h-wave) with right Bragg condition have significant amplitudes. As a result the
wave equation can be reduced to two coupled algebraic equations and the exact solution can be found.
This is widely used as a two-beam approximation. The classical theory succeeds in prediction and ex-
planation of many dynamical diffraction phenomena, such as the Bragg intensities from perfect single
crystals, extinction effect, total reflection, anomalous transmission (Borrmann effect), pendellosung
fringes, double-refraction and double-reflection, which cannot be understood by application of kine-
matical theory.

1.12.2 Takagi-Taupin equations

Though the classical Ewald-von Laue theory describes a clear picture of the physics of X-ray dynami-
cal diffraction in perfect crystals, the integral form of its fundamental equations imposes a limitation
hard to overcome when dealing with imperfect crystals. A lot of efforts have been devoted to solving
the problem of dynamical diffraction in imperfect crystals and many theories have been developed. Al-
though initially not restricted to layered materials, a theory developed by Takagi and Taupin[78] [79]
[80] found huge success in the analyses of strained layered materials. The Takagi-Taupin equations are
also based on the wave equation derived from Maxwell’s equations. In this theory, the wave propagat-
ing within a crystal is assumed to be a modulated wave with slowly varying amplitude, instead of plane
waveswith constantwave amplitudes as in the classical theory. In the followingwe give a short overview
of the theory underlying the Takagi-Taupin equations.

The polarizability of a deformed crystal is previously given in the formof equation (1.16). Assuming
Takagi approximation, the polarizability now becomes

χ(r) =
∑
g

χgexp[ig · {r− u(r)}] = − reλ2

πV
F(r) (1.40)

where F(r) is the structure factor, re is the classical electron radius,V is the volume of the unit cell. Since
the deformation field u(r) violates the exact periodicity of the polarizability, the solution of the wave
equation cannot be found in the form of a Bloch wave. But since the first derivatives of u(r) are small
within the Takagi approximation, the solution of the wave equation for a slightly deformed crystal will
not be very different from a Bloch wave. The modified Bloch wave form in the two beam case for the
wavefieldD(r) inside the crystal is

D(r) = D′
0(r)e

iK0·r + D′
H(r)e

iK′
H·r (1.41)
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In the modified Bloch wave, the coefficients D′
0,H are unknown functions of the position r. The wave

vectors of the components of the modified Bloch wave is equal to the sum of the wave vector of the
incident vacuum waveK0 and of the wave vector

K′
H = K0 +H′, H′ = H−▽ψH (1.42)

which is affected by the deformation field in the crystal included in the term ψH = H · u(r). Here the
choiceof thewave vectors of these components is arbitrary and the sole requirement is that the functions
D′

0(r) andD′
H(r)must be nearly constant within the elementary unit cell. In this case, we assume that

ψH(r) is a function of the coordinate z perpendicular to the sample surface. Therefore, the amplitudes
D′

0 andD′
H are functions of z only. Introducing the complex diffractivity of the crystal at depth z is

R(z) =
DH

D0
(1.43)

Now, equipped with these equations and assumptions, the Takagi-Taupin equation for the complex
diffractivity gives

∂R
∂z

= − iK
2
PψH̄

γ0
R2 + iκ′(z)R+

iK
2
PψH

γH
(1.44)

where
κ′(z) = κ +

Kψ0

2γH

(
1 − γH

γ0

)
+

dψH(z)
dz

, κ = KHz − K′
Hz (1.45)

Here K′
Hz is the modified Bloch wave vector component which is the sum of wave vector of incident

vacuum wave K0 and of the wave vectorH, and,

γH = n · k = − sin(θB + ϕ) (1.46)

γ0 = n · k = sin(θB − ϕ) (1.47)

are the direction cosines of the reflected and the incident beams with respect to the crystal surface nor-
mal, n is the vector normal to surface, k is the wave vector.
The boundary condition for R(z) for the Bragg geometry and for a crystal with parallel surfaces, with
thickness t is given by

R(−t) = 0 (1.48)

since there is no diffracted wave at the rear surface of the crystal. In the Laue geometry, R(0) = 0 is
valid instead. In the case of a layer or layered systemof thickness tdepositedon a substrate, the boundary
condition at the layer-substrate interface is simply

R(−t) = Rsub (1.49)
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1.12.3 Recursion formulae for the Takagi - Taupin equations

The Takagi-Taupin equation defined in (1.44) can be rewritten as a function of

X =

(
FH̄
FH

)1/2 ∣∣∣∣γHγ0

∣∣∣∣1/2 R(z) (1.50)

to become
−idX/dT = X2 − 2ηX+ 1 (1.51)

where η and T are complex quantities given by

η =
−b(θ − θB) sin 2θB − 1

2ΓF0(1 − b)
|b|1/2PΓ(FHFH̄)1/2

(1.52)

T =
πPΓ(FHFH̄)1/2t
λ|γ0γH|1/2

(1.53)

where
Γ = reλ2/πV, re = e2/4πε0mc2, b = γ0/γH (1.54)

T is determined by the crystal thickness t and the structure factor (FH = F′H + iF′′H) of the reflection.
The departure from the Bragg angle θB determines the deviation parameter η. The second part of the
numerator of η corresponds to the refraction and absorption of X-rays. In the Bragg case, the direction
cosines γ0 and γH of the incident and the diffracted beamwith respect to the surface normal are opposite
in sign so that the asymmetry factor b is negative. The classical electron radius re is equal to 2.818 ×
10−5Å, λ is the X-ray wavelength and V is the volume of the unit cell. The differential equation can
be solved for layers of constant η and arbitrary thickness. This solution can also be used for sections
for which η can be considered to be constant. The following recursion equation [81] gives the relation
between the amplitude ratio X0 at the bottom of the layer and Xt at its top:

Xt = η +
√

η2 − 1
S1 + S2

S1 − S2
(1.55)

where
S1 = [X0 − η +

√
η2 − 1]exp[−iT

√
η2 − 1] (1.56)

S2 = [X0 − η−
√

η2 − 1]exp[iT
√

η2 − 1] (1.57)

and
X0 = Xt→∞ = η ±

√
η2 − 1 (1.58)
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Thereflectivityof a strained layer is calculated starting fromtheDarwin formulae (1.58) for the substrate
and adding strained layer by strained layer, using the recursion formulae (1.55) until the last layer is
achieved. Finally, the reflectivity is given by :

RH =

(
γH
γ0

) ∣∣∣∣DH

D0

∣∣∣∣2 = (ψH

ψH̄

)
|X|2 (1.59)

1.13 Conclusion

The first part of this chapter presented the literature survey on the ion/solid interaction concepts and
application to the cubic zirconia. Ion beams, having numerous applications in various fields ofmaterials
science, is a very useful technique to study the properties of amaterial. The interaction of the ion beams
with matter leads to the creation of defects in the target material. Depending on the energy of the inci-
dent particle, the interaction can be divided into elastic and inelastic interactions. YSZ is a promising
material to be used as an inert matrix for the transmutation of radiotoxic actinides. Previous studies
on the YSZ has proven that the material has high chemical stability and radiation resistance. The com-
plete understanding of its behaviour requires a detailed analysis of the evolution of its microstructure
under various irradiation, a task which can be conducted, partly, using XRD. The second part of the
chapter dealt with the theory of X-ray diffraction. XRD is an attractive technique to study irradiated
materials since it is a non-destructive technique, requires no sample preparation and a statistically rel-
evant method. In order to explain the X-ray diffraction phenomena in crystals, two general diffraction
theories were proposed: kinematical and dynamical theory. In the kinematical theory, the transmitted
X-rays suffer only normal linear absorption and the waves undergo a single scattering. In the dynami-
cal theory of diffraction, multiple scattering processes are taken into account. Takagi-Taupin equations,
basedon thewave equationderived fromMaxwell’s equations are used to describe the dynamical theory
of diffraction. X-ray diffraction technique allows the investigationof various crystal defects such as point
defects, dislocation loops, stacking faults etc. The diffuse X-ray scattering investigation can give valuable
information regarding the type of defects, their positions in the crystal lattice, their concentrations and
the static displacement fields around them. In the next chapter, all the experimental techniques and
computational tools required to conduct a comprehensive study on the effect of the irradiation temper-
ature and fluence on the behaviour of cubic zirconia is presented.
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2
Experimental andComputational Techniques

2.1 Experimental Techniques

2.1.1 Ion beam accelerator

In this study, the samples are irradiated in a wide range of temperatures and fluences. The samples
were irradiated with two different ion beam accelerators. Irradiations at low temperature (80 K) were
conducted at the Tandetron of the Instituto de Fisica of theUniversidade Federal of RioGrande do Sul,
Brazil. The accelerator is a 3MV tandem fromHigh Voltage Co. and is equipped with several beamlines,
one of them being an implantation/irradiation line that can be used in a wide range of temperature, i.e.,
from 80 K up to 1073 K. The rest of the irradiation experiments (i.e., at RT, 573 K, 773 K and 1073 K)
were performed at the JANNuS facility at CSNSM laboratory which is in Université Paris-Sud located
in Orsay, France. The schematic representation of the JANNuS facility at Orsay is presented in Figure
(2.1.1). The accelerator we usedwas a 2MVTandem, known-as ARAMIS, which is equippedwith both
an external negative ion source and a Penning source inside the chamber. Hence it is able to accelerate
a large variety of ions including rare gases, transitionmetals, heavymetals (Au for example). Other par-
ticularities include energy range of 0.5-2MV and the intensity range from0.01 to 50 μA. The irradiation
can be performed under the wide range of temperature from RT to 1073 K [1].
Thecrystals to be irradiatedwere placedon a special sample holdermaking a 7◦ tilting anglewith respect
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Figure 2.1.1: Schematic representation of the JANNuS facility at Orsay [1]

to the sample surface to prevent any channelling of bombarding ions. The mean projected range of the
4MeVAu particles we used is estimated - based on SRIM ¹ calculations [2] - to beRP ∼ 530 nmwith a
range straggling ΔRP ∼ 140 nm [Figure 2.1.2]. Ion fluences ranged from 5×1012 to 2×1016cm−2; the
corresponding conversion factor for thedpa at the damagepeak is∼ 4.5×10−15dpa cm2 , as determined
by SRIM calculations using a threshold displacement energy of 40 eV for both Zr and O sublattices.
Therefore, the dpa ranged from∼ 0.02 to∼ 90.

2.1.2 Rutherford backscattering spectrometry

Rutherfordbackscattering spectrometry (RBS) is awidelyused technique for thenear surface layer anal-
ysis of solids. It is based on the elastic interaction between the target nucleus and the projectile. A target
is bombardedwith light elements such asHydrogen orHelium ions and the energy of the backscattered
projectiles is recorded with an energy sensitive detector. The energy of the projectile ranges from a few
hundreds of keV to, most frequently, a fewMeVwhich results in an analysed depth up to a fewmicrom-
eters.
The principle of RBS is demonstrated in the figure (2.1.3). An incident beam of energy Ec1 is directed
towards the material. The incident beam interacts with lattice atoms at the target surface which results
in the scattering of projectile in all directions. The ratio of the projectile energy before (E0) and after
collision (E1) is known as the kinematic factor (K).

E1 = E0 × K (2.1)

¹SRIM (Stopping and Range of Ions in Matter) [2] is a Monte-Carlo program that allows simulating ion/matter inter-
actions.
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Figure 2.1.2: Energy loss by elastic and inelastic collisions of 4 MeV Au ions in YSZ determined
using SRIM calculations.

where the Kinematic factor (K) is given by the equation below

K =
M2

1

(M1 +M2)2

cos θ ±

[(
M2

M1

)2

− sin2 θ

]1/2


2

(2.2)

In the above equation, when themass of the projectile is less than the target, plus sign is taken and if it is
greater,minus sign is used. From this equation the masses of the particles composing a material can be
known bymeasuring the energy of the backscattered particles and by the knowledge of both themasses
and energy of the projected particles. So this technique allows determining the elemental composition.
The number of particles backscattered from a target atom into a given solid angle for a given number
of incident particles is related to the backscattering cross section derived from the Coulomb potential.
According to the theory of Rutherford interaction, the cross section of the backscattering dσ/dΩ in a
solid angle dσ along the direction θ is given by [3]

dσ
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=
1

4πε0

(
Z1Z2e2

4E0

)2

× 4
sin2 θ

{[1 − (M2
1/M2

2) sin2 θ]1/2 + cos θ}2

[1 − (M2
1/M2

2) sin2 θ]1/2
(2.3)

whereZ1 andZ2 are atomic numbers of the projectile and the target, ε0 is the vacuumpermittivity and θ
is the scattering angle. From the equation, the cross section is inversely proportional to the square of the
energy of the incident particle i.e., higher the incident energy, smaller the cross section. It is possible to
estimate the atomic density ofM2 particles in the sample by counting the yield of the scattered particles
M1 detected at the angle θ by the detector.
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Figure 2.1.3: Rutherford backscattering geometry

Energy loss and depth scale

The backscattered atoms from deeper parts of the sample also suffers an energy loss while navigating
through the sample due to collisions with the sample atoms. Energy-loss per unit length values are tab-
ulated for a very wide projectile-target couple range, allowing to determine composition depth profiles.
Asmentioned above, the loss of energy during the collision process allows backscattering spectrometry
to detect differentmasses in the target. The energy loss dE/dx by the projectile as it traverses the sample
will allow the extraction of depth information from the sample.
In addition to energy losses during collision, incident particles will also lose energy as they travel into
the target before the collision and out of the target after the collision. In order to perform the depth pro-
filing of RBS spectra, we need to relate the energy of the backscattered ion to the depth in the sample at
which the backscattering takes place [4]. This relation depends on the energy loss of ion while travers-
ing the sample, the kinematic factor of the scattering and on the angle between incident beam and the
detector’s normal vector. The depth scaling is estimated with the assumption that the stopping powers
on the inward and outward paths are constant. Therefore, the energy of detected ion that backscatters
at depth x from the surface can be given as follows

E1(x) = KE0 − xS (2.4)

where E1(x) is the detected energy of ion that backscattered at depth x, E0 is the initial energy of the
incident beam and S is the energy loss factor. In this formula, S is calculated as follows:

S = K
(
dE
dx

)
in

1
cos θ1

+

(
dE
dx

)
out

1
cos θ2

(2.5)
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Figure 2.1.4: The graph of energy E1(x) plotted against the depth x to show that the energy
E1(x) can be linearly related to the depth x

Thus the depth at which the backscattering takes place will be

x =
KE0 − E1(x)

S
(2.6)

The assumption that dE/dx is constant along the inward and outward paths leads to a linear relation
between E1(x) and the depth, x, at which scattering occurs. One can therefore assign a linear depth
to the energy axis, as indicated in figure (2.1.4). It is worth mentioning that RBS/C simulation codes
exist (such as RUMP, SIMNRA)which allow fitting the experimental data to get the composition depth
profile of samples without using this surface approximation.

Channelling

Channelling is observed when the incident beam is aligned with a major symmetry axis of the crystal.
RBS with channelling technique applies only for single crystals or good quality epitaxial layers. The
advantage of this technique is that the lattice site target atoms are seen as rows of periodically repeated
atoms between which the ion channels. The part of the incident beam which avoids the collision with
surface atoms is excluded from collisions with all atoms deeper inside the sample. If the interatomic
distance is large with respect to the radius of the shadowed cone, the incident ions can penetrate deeper
without being backscattered (figure 2.1.5). This results in the reduction of detected number of backscat-
tered ions as most ions channel through the crystal. A very small fraction (about 1%) of backscattered
ions are recorded compared to the situation in which ion beam is randomly oriented.

Figure (2.1.6) shows the classical spectra recorded by RBS in channelling mode. The three different
spectra represent the backscattering in different conditions. In the first case (blue spectrum), the ion
beam is oriented along the crystallographic orientation of a perfect crystal. Since a perfect crystal has

Jayanth CHANNAGIRI |Thèse de doctorat | Université de Limoges | 4 Décembre 2015
55



CHAPTER 2. EXPERIMENTAL AND COMPUTATIONAL TECHNIQUES

Figure 2.1.5: The path of a Channelling particle inside a diamond-like crystal lattice [5]

no defects, the backscattering signal is extremely weak. Most of the incident ions just channel through
the crystal. The second one is measured for a random orientation (red spectrum) of the crystal with
respect to the incident beam. In this case, the backscattering signal is high (and maximum) since the
probability of backscattering of the incident ion is also maximal. While performing experiments, the
random spectrum is usually recorded by rotating the crystal by a random angle around the incident
beam. In the third case (green spectrum), the ionbeam isorientedalong the crystallographicorientation
of the crystal containing defects. Here, since some atoms are present in random positions of the crystal,
backscattering signal is observed but much less than for the random orientation (considering that the
material is not severely damaged). The obstruction to the incident ion beam at a given depth from the
surface of the crystal is related to the local concentration of the defects. By careful observation of the
spectrum, we can see a surface peak due to the backscattering of ions upon atoms located at the surface
of the crystal, a damage peak which results from direct backscattering upon atoms which are randomly
distributed within the lattice structure and a de-channelling signal (a kind of S-shaped background)
resulting from the small angle scattering of incident ions upon both lattice atoms and defects.

McChasy Code

Ion channelling is often used for detecting the structural defects located from the surface layer of a crys-
talline material to a depth of a few μm. To analyse the data, one of the efficient methods is performing
simulations usingMcChasy code developed byNowicki et. al. [6]. McChasy (abbreviation forMonte-
CarloCHAnnelling SYmulation) is a computational programdesigned for the calculation of ion-crystal
interaction in channellingmode. Theparameters declared in this program include the parameters about
the crystal, the geometrical details, the analysing beam specifications and the energy resolution. Using
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Figure 2.1.6: Conventional channelling spectrum observed for a crystal containing defects
(green). The random spectrum is marked in red and the channelling spectrum from a perfect crys-
tal is marked in blue.

McChasy, one can calculate the damage fraction and the distribution of defects versus depth in the crys-
tal. The program can take into account two types of defects : randomly displaced atoms (equivalent to
point defects at low concentration) and extended defects, namely dislocations. In the present work, we
only used displaced atoms. The analysis by theMcChasy program is performed according to the follow-
ing steps. Firstly, declaring parameters related to (i) the studied crystal, which includes the structure
and composition; (ii) and the measurement condition (e.g., analysing beam energy and nature). Sec-
ondly, the crystal is divided into thin layers of a few nanometres to a few hundreds nanometres. In each
layer, a given fraction of displaced atoms (fD) is defined as input for simulation. Simulation can then
be performed and the output is a channelling spectrum that contains information on the backscattering
events as a function of the probing particle energy.

2.1.3 X-ray Diffraction

Experimental set-up

X-ray diffraction was performed with two experimental set-ups. The first one, a high resolution four-
circle Seifert XRD3000 Diffractometer operated at 40 kV and 40 mA and equipped with a standard Cu
tube. The different rotations are represented in figure (2.1.7). The diffractometer is equipped with a
double-crystal monochromator (2×Ge220)which provides a parallel andmonochromatic incident X-
ray beam (CuKα1 radiation, λ = 0.15406 nm). A 0.07 mm detector slit were used to obtain a 2θ angular
resolution of 0.01◦. Crystals irradiated at room temperature were analysed with this diffractometer.
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Figure 2.1.7: Different rotations of a four-circle goniometer

The other equipment include a PANalytical X’Pert PRO MRD diffractometer which is also equipped
with a standard Cu tube. The schematic representation of the PANalytical X’Pert PRO MRD diffrac-
tometer is given in figure (2.1.8). An intense and monochromatic beam was obtained by using a multi-
layer mirror behind the tube followed by a four-crystal monochromator (4 × Ge(220)) in asymmetric
configuration. The resulting primary-beam divergence was 18 arcsec (0.005◦). A three-bounce crys-
tal analyzer ( 3×Ge(220)) was used to further limit the detector acceptance. The crystals irradiated at
temperatures 80K, 573K, 773K and 1073Kwere analysed using this diffractometer. Allmeasurements
have been carried out at room temperature. Symmetric θ − 2θ scans were recorded in the vicinity of
the (4 0 0) Bragg reflection, i.e. around 2θ = 73.575◦.

Symmetric geometry

The θ − 2θ scan is one of the most common scanning configuration. In this geometry, for a symmetric
reflection, the angle of both the incoming and the outgoing beam are equal to θ with respect to the
sample surface. The figure (2.1.9) represents the scattering plane consisting of the incident and exit
wave vectors k0 and k,Q is the scattering vector. For the symmetric θ − 2θ scan, the scattering vector
Q is normal to the sample surface and collinear to the reciprocal lattice vector h corresponding to the
(hkl) planes parallel to the sample surface. During the scan the angle of the incoming and exiting beam
are continuously varied, but they remain equal throughout the whole scan i.e., θin = θout. By doing so,
the reciprocal space is scanned along the normal component of the scattering vector.
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Figure 2.1.8: Four-circle PANalytical diffractometer [7]

Asymmetric geometry

The measurement of a rocking curve is performed such that the detector on the 2θ circle is fixed, while
the sample is tilted on the θ circle (”rocked”) in the vicinity of the Bragg angle θ. The θ circle and the
2θ circle are thus decoupled and the θ angle is called ω in the case of its independent variation. In this
geometry for a symmetric reflection, the scattering vector scans the reciprocal space along an arc of
circle, which, for sufficiently small deviations can be considered as parallel to the surface (See fig. 2.1.9).

Reciprocal space mapping

From the symmetric θ − 2θ scan, we saw that the scattering vector Q has only a nonzero component
in the direction of the substrate normal. This component is denoted byQz. However, during a rocking
curve scan, there is also a nonvanishing in-plane Qx component for all angular positions ω except for
one point where ω = 2θ/2 holds. We can visualize the different scanning techniques in the plane of
momentum transfer by the in-plane componentQx and the out-of-plane componentQz of the scattering
vector. The relation between the instrumental coordinates ω and 2θ andQx andQz coordinates can be
derived from the figure (2.1.9). It results from the inspection of the figure that

Qx = 4π/λ sin(θ) sin(ω− θ) (2.7)
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Figure 2.1.9: The schematic representation showing 2θ, θ/2θ, ω in the case of a symmetric reflec-
tion, the Ewald construction where k0 and k are the incident and the exit wave vectors, Q is the
corresponding scattering vector

Qz = 4π/λ sin(θ) cos(ω− θ) (2.8)

Reciprocal spacemapping is performed such that theBragg reflectionunder investigation is fullymapped
in a confined area inQ space. Thismeans that the reflection is not onlymonitored by one rocking curve
crossing it, but the whole area in the vicinity of the reflection is included in the measurement. As an
example, figure (2.1.10) displays the reciprocal space map (RSM) recorded in the vicinity of the (0 0
4) reflection of a Cs-implanted YSZ crystal [8]. The RSM from this irradiated crystal contains a strong
signal (marked as dashed corresponding to Qz ∼ 4.88 Å in the figure). This signal comes from the
substrate, i.e., unperturbed part of the sample. In addition to this strong signal, the signal arising in the
lower values of Qz corresponds to the irradiated (damaged) part of the sample. The different features
observed in this RSM are extensively discussed in the Chapter 4.

2.2 Computational Techniques

2.2.1 Introduction

Theprevious chapter gave an account of the theories of X-ray diffraction and the ion irradiation physics.
Physically, the dimensions of a typical single crystal is of the order of a few tens of μm thickness and a
few millimetres of length and width. This means that, a typical crystal contains several billions of unit
cells. The diffracted amplitude from a crystal, as given in equation (1.17), is

E(Q) =
∑
n

FneiQrn (2.9)
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Figure 2.1.10: Reciprocal space map recorded in the vicinity of the (004) reflection of Cs-
implanted YSZ crystal [8]

Consequently, to obtain the amplitude for billions of rn and for each value of scattering vectorQ, several
thousands of billions of function evaluation are required. Using a single-core computer - retaining the
unit-cell resolution - itwould take several days together to retrieve theoverall results. Interestingly, in the
case of equation (2.9), the sumover n can be carried out independently for allQ values. It can therefore
be anticipated that the evaluation of equation (2.9) would greatly benefit from parallel computing i.e.,
breaking a large computational problem into smaller ones and solving them concurrently.

2.2.2 Evolution of computing

In the history of computing hardware, the number of transistors in a dense integrated circuit had dou-
bled approximately every two years. This observation, referred to as Moore’s law, was presented by
Gordon E.Moore, co-founder of Intel, in his paper in 1965 [9] [10]. Though this law is an observation
and not a physical or a natural law, it has served as a projection and guidance for the semiconductor
industry. Accordingly, the size of the transistors is decreasing consistently in the last few decades as il-
lustrated in the graph (2.2.1) [11]. Currently, manufacturers are able to build transistors of feature size
of 14 nm. Although this trend has been followed for more than half a century, doubts about the ability
of the projection to remain valid in the future have been expressed [12].
Despite this constant increase in the transistor density, in the last decade, the clock frequency stagnates
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Figure 2.2.1: Feature size of transistors over the past few decades

Figure 2.2.2: The clock frequency of different processors from the two major companies in the
past 25 years. In the last decade, it has remained almost constant [11].
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Figure 2.2.3: The computing speed of different processors over the past few decades

at values around 3.7 GHz (figure 2.2.2). Clock speed refers to the frequency at which a single core of a
CPU is running, and is used as an indicator of the processor’s speed. The reason for this is the so-called
power wall [13]: because the power consumption of a CPU is proportional to the frequency cubed
[14], the power density was approaching that of a nuclear reactor core [15]. Unable to cool such chips
sufficiently, the trend of exponential frequency growth stopped at just below 4.0 GHz (Figure 2.2.2).
Toovercome the clock stagnation and increase thenumberof InstructionsPer Second (IPS), companies
started to include more than one processing cores inside a single computer. This helped in overcoming
the problemof clock speed and improve the performance further. Over the years, theCPUmanufactur-
ers started to release three-, four-, eight-core central processor units. The release ofmulticoreCPUshave
revolutionized the computing performance and allows parallel computing as well [16] [17]. With the
help of this, the computing speed (expressed in Million instructions per second) continued increasing
over years (Figure 2.2.3). However, this is mainly a commercial argument because most of the end-
user applications and programming languages make use of a single core at a time. In order to take full
advantage of this theoretical power, the programs have to be actually rewritten in order to address sev-
eral cores simultaneously. This is the purpose of multiprocessing. Another important limitation comes
from the fundamental design philosophy of a CPU, as illustrated in the figure (2.2.4). The design of a
CPU is optimized for sequential code performance. It makes use of sophisticated control logic to allow
instructions from a single thread of execution to execute in parallel. The time needed to process the
data is actually limited by the speed at which the data is transferred to theCPU.This latency is known as
von Neumann bottleneck. Interestingly, this problem is solved by Graphical Processing Units (GPUs)
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Figure 2.2.4: The design philosophy of a CPU and a GPU

which rely on a different architecture. The design philosophy of a GPU is shaped by the fast growing
video game industry, which exerts tremendous economic pressure for the ability to perform a massive
number of floating-point calculations per video frame in advanced games. This resulted in optimization
of data transfer rate of massive number of threads. The hardware takes advantage of a large number of
execution threads to work while waiting for long-latency memory accesses i.e., minimizing the control
logic required for each execution thread. With the GPU architecture, the peak performance is much
higher than CPUs (figure2.2.5). The price to pay to benefit from this huge computing power is that the
programs have to be completely rewritten so as to be executed on a GPU instead of a CPU.

Figure 2.2.5: The evolution of the peak performance in terms of GFlops for CPUs and GPUs over
time
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Figure 2.2.6: The number of publications on the title ”GPU” OR ”Graphical Processing Unit”
OR ”Graphic Processing Unit” obtained from the WebOfScience dated 12/06/2015 [32]

2.2.3 GPUs as Parallel Computers

Curiously, GPUs were never designed with high-performance computing in mind. They were built
mostly for the gaming industry. But nonetheless, they have evolved into powerful processors in less
than ten years. The development of both the software and hardware together have lead us to a new era
of parallel computing. In the scientific community, the usage of GPU has already been implemented in
many fields, like molecular dynamics [18] [19], bioinformatics [20], geoscience [21], quantum chem-
istry calculations [22] [23], medical imaging [24] [25] [26] [27], astronomy [28], fastMonte-Carlo in
proton therapy [29] etc. The number of scientific publications on GPU is increasing on a very fast rate
since 2003 (graph 2.2.6).
At around 1980, the company Silicon Graphics popularized the use of three-dimensional graphics in the
market. It was used in government and defence applications and scientific and technical visualization.
Later in 1992, Silicon graphics released theOpenGL librarywhich is a programming interface to its hard-
ware [30]. In a fewyears, the gaming industry startedbooming and companies such asNVIDIAandATI
Technologies began releasing graphics accelerators that were affordable enough to attract widespread
attention. For the first time, transform and lighting computations could be performed directly on the
graphics processor. From a parallel-computing standpoint, NVIDIA’s release of the GeForce 3 series in
2001 represents arguably themost important breakthrough inGPU technology [31]. For the first time,
developers had some control over the exact computations that would be performed on their GPUs.
Though the release of GPUs that possessed programmable pipelines attracted many researchers, there
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were numerous problems and complexities that were preventing the programmers from taking full ben-
efits from the GPU. In November 2006, NVIDIA unveiled the industry’s first DirectX 10 GPU, the
GeForce 8800 GTX. The GeForce 8800 GTX was also the first GPU to be built with NVIDIA’s Com-
pute UnifiedDevice Architecture (CUDA). In order to reach themaximum number of developers pos-
sible, NVIDIA took industry-standard C and added a relatively small number of keywords in order to
harness some of the special features of the CUDA architecture. Consequently, CUDA C became the
first language specifically designedby aGPUcompany to facilitate general-purpose computingonGPUs
(GPGPUs). In addition to creating a parallel-computing platform for the GPU, NVIDIA also provides
a specialized hardware driver to exploit the CUDA Architecture’s massive computational power.
Currently, GPUs are equipped with humongous number of CUDA cores in comparison with CPU
cores. As an example, the latest GPU NVIDIA GeFORCE GTX TITAN Z has 5760 CUDA cores in
comparison with GeForce 8 series (released in 2008) which had 32 CUDA cores only. The number
of CUDA cores in GPUs are increasing in a rapid manner because of which GPUs are able to perform
massively parallel calculations. Clearly, the memory capacity of each CUDA core is much smaller com-
pared to a single CPU core. However, with the help of parallelization, GPUs have the ability to handle
big data.

2.2.4 CUDA programming

General Purpose GPU (GPGPU) using CUDA has been used to accelerate non-graphical applications
in computational biology, cryptography andmany other fields [33] [34] [35]. InCUDAprogramming,
the computer is treated as a heterogeneous computer. This means that along with other essential com-
ponents, they have two different processors in them, the CPU and the GPU. The CUDA programming
model allows the programmers to utilize both processors with one program so that the full power of
the GPU can be harnessed. Though it is built on ANSI C with some extensions to express parallelism,
CUDA supports numerous programming languages. To understand the functioning of the GPU, we
shall assign the CPU as host and GPU as device. The CUDA compiler will compile the program, split it
into pieces that will run on the CPU and theGPU, and generate code for each. CUDA assumes that the
device, theGPU, is a co-processor to the host, theCPU. It also assumes that both the host and the device
have their own separate memories where they store data. Both the CPU and the GPU have their own
physical dedicated memory in the form of DRAM (Dynamical Random Access Memory), with CPU
as the primary memory unit and the GPU being the massively parallel processors equipped with large
number of arithmetic executionunits (figure 2.2.4). GPUs consist ofDRAMmuch lesser in comparison
with the CPUs. Currently, the best GPU for a desktop computer consists of 12GB ofRAMwhereas, we
can find computers having CPU RAM upto 128GB. So this allows the computation of huge amount of
data to be performed in a CPU and relatively less amount of data can be computed in the GPU. Now, in
this relationship between CPU and GPU, CPU is the primary device. It runs the main program, and it
sends directions to the GPU. It’s the part of the system that’s responsible for moving the data from the
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Figure 2.2.7: Visualization of Flynn’s taxonomy

CPU’s memory to the GPU’s memory and vice versa.

The algorithm for a typical program looks like this :

• CPU allocates storage on GPU

• CPU copies input data from CPU to GPU

• CPU launches kernel(s) on GPU to process the data

• CPU copies results back to the CPU from GPU

In CUDA, invoking programs on the GPU that compute things in parallel are called kernels. Two of
the above steps in the algorithm require moving data back and forth between the CPU and the GPU.
In general, the most efficient parallel computing method is to minimize data transfer between the CPU
and the GPU. CUDA or GPU computing probably isn’t the right choice if there are ample data transfer
and minor computation. It is not simply the speed at which a certain algorithm processes data that is
important, but how that data has been used prior to, and how it will be used after the kernel is run. GPU
kernels are fast, and in many cases kernels are completed in the tens of milliseconds timeframe. Given
that, the movement of data to and from the GPU becomes relevant, both because of the amount of
data that needs to bemoved, and because of the inherent bottleneck from the interconnect between the
CPU and GPU. Without acknowledging the time for these data transfers, comparisons do not provide
a true representation of the real speedup provided by a device. Universally, the most successful GPU
computing applications have complex computation and a high ratio of computation to communication.
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2.2.5 Flynn’s taxonomy

Computer architectures characterize the methodologies of the processors, how they work, communi-
cate, organize etc. Michael J. Flynn proposed a classification of computer architectures in 1966, which
is now known as Flynn’s taxonomy [36] [37] [38]. This classification is used as a tool to designmodern
processors and their functionalities [39] [40] [41]. Flynn classified the whole computer architecture
into four different categories, Single Instruction, Single Data stream(SISD), Single Instruction, Multi-
ple Data stream(SIMD), Multiple Instruction, Single Data stream (MISD) and Multiple Instruction,
Multiple Data stream(MIMD). Each of them can be visualized in the figure (2.2.7). This classification
mainly depends on number of concurrent instructions and the available data stream in the architecture.
A data stream is nothing but a sequence of objects or actions.

Single Instruction, Single Data stream(SISD)

The SISD class of processor architecture is a sequential computer which offers no parallelism in either
the instruction or data streams [42]. Single control unit fetches single instruction stream from mem-
ory and generates appropriate control signals to direct single processing system to operate single data
stream. A typical example is the uniprocessor CPUs of the 1950s, which were based on the original
von Neumann architecture. The rest of the architectures are built by combining many von Neumann
building blocks.

Single Instruction, Multiple Data stream(SIMD)

SIMD is a type of architecture which offers data parallelism. In this architecture, a computer exploits
multiple data streams against a single instruction stream to perform naturally parallelized operations.
This architecture is very useful for building mathematical models for various problems. It was first im-
plemented in vector computers during 1970 and 80s. Current GPUs are contemplated as an evolution
from SIMD architecture.

Multiple Instruction, Single Data stream(MISD)

MISD is an uncommon architecture in which multiple instructions operate on a single data stream.
Heterogeneous systems operate on the same data stream and hence theymust agree on the result. Since
the problems MISD computer can calculate are uncommon and very specific, there aren’t many actual
examples. One example include the space shuttle flight control computer.

Multiple Instruction, Multiple Data stream (MIMD)

MIMD class of parallel architecture consists of multiple processors with some form of interconnection.
Here,multiple processors simultaneously execute different instructions on different data. It has the abil-
ity to handle one different instruction for each data stream and can achieve any type of parallelism. This
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architecture is implemented in the current CPUs and in some GPUs.

TheMIMDcanbe further classified intoSPMD(singleprogrammultipledata) andMPMD(multiple
program multiple data).

SPMD : SPMD refers to the case in which a simple program is executed simultaneously by different
processors. SPMD is the most common style of parallel computing and can be built upon any com-
bination of the parallel programming models. SPMD programs usually have the necessary logic pro-
grammed into them to allow different tasks to branch or conditionally execute only those parts of the
program they are designed to execute. i.e., tasks do not necessarily have to execute the entire program -
perhaps only a portion of it. In CUDA, a kernel function specifies the code to be executed by all threads
during a parallel phase. Because all of these threads execute the same code, CUDA programming is an
instance of SPMD [43].

MPMD : Like SPMD, MPMD is also a high level programming model that can be built upon any
combination of the parallel programming models. Multiple program, which means, tasks may execute
different programs simultaneously. It is the most flexible architecture but MPMD applications are not
as common as SPMDapplications. They are best suited for certain types of problems, particularly those
that lend themselves better to functional decomposition than domain decomposition.

2.2.6 Parallel computing speedup

Speedup is a unit to measure the relative performance improvement of a particular task. It is one of the
important aspect in parallel computing, tomeasure howmuch faster a parallel programexecutes in com-
parison to the serial program. Speedup can be defined for two different types of values: throughput and
latency. Latency is the amount of time to complete a task and ismeasured in the units of time. Through-
put is tasks completed per unit time. Traditionally CPUs optimize for latency as they try to minimize
the time elapsed for one particular task. GPUs on the other hand are optimized for throughput. For
latency values, speedup for a problem of size S is given by the expression :

Speedup =
Ts(S, 1)
T(S,N)

(2.10)

where Ts(S, 1) is the time of the best sequential algorithm (i.e., Ts(S, 1) ≤ T(S, 1)) and T(S,N) is
the time of the parallel algorithm withN processors, both solving the same problem. Speedup is upper
bounded when S is fixed.
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Figure 2.2.8: Speedup behaviour using Amdahl’s law and Gustafson’s law [42].

Amdahl’s law

The idea of speedup was first given by Amdahl’s law[44][45]. According to Amdahl’s law, for paral-
lelization, the maximum speedup that can be achieved is written as:

S(N) =
1

(1 − P) + P
N

(2.11)

where P is the fraction of a program that can be made parallel and (1-P) that cannot be parallelized
(remains serial) and N is the number of processors. When N tends to infinity, the maximum speedup
tends to 1/(1 − P).

Gustafson’s law

Gustafson’s law [46] is another useful measure for theoretical performance analysis. It provides a coun-
terpoint toAmdahl’s law as it uses the fixed-timemodel wherework per processor is kept constant when
increasing P andN. In Gustafson’s law, the execution time of a parallel program is decomposed into se-
quential time s and parallel time c:

T(p) = s+ c (2.12)

So according to Gustafson’s law, the speedup becomes

S(N) = N− α(N− 1) (2.13)

whereN is the number of processors and α is the non-parallelizable fraction of any parallel process given
by s/(s+ c). Gustafson’s law helps in exploiting the shortcomings of Amdahl’s law, which does not fully
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exploit the computing power which becomes available as the number of machines increases. Amdahl’s
law only applies to cases where the problem size is fixed. Gustafson’s Law proposes the possibility to
solve a larger problem in the same amount of time. It suggests that programmers tend to set the size of
problems to use the available equipment to solve problems within a practical fixed time. Hence, if an
equipment with more parallel option is available, larger problems can be solved in the same time. The
idea is that if the problem size is allowed to grow monotonically withN, then the sequential fraction of
the workload would not dominate in the end.

2.2.7 Work station andGPU specifications

All the simulations in this work were performed on a Dell Precision T5610 workstation and a NVIDIA
QuadroK4000GPU.Workstationsoffer higher performance thanmainstreampersonal computerswith
respect to CPU, graphics, memory capacity and multitasking capabilities. Our workstation has a total
RAM of 64 GB and consists of two Intel Xeon E5-2609 CPUs which correspond to 8 cores in total and
performs at a clock frequency of 2.5GHz. NVIDIAQuadroGPUs are designed for workstations which
are used ideally for technical or scientific applications. This table gives an overall technical specifications
of the NVIDIA Quadro K4000 GPU:

Table 2.2.1: NVIDIA Quadro K4000 GPU technical specifications

GPU Memory 3 GB GDDR5
Memory Interface 192-bit
Memory Bandwidth 134.0 GB/s
CUDA Cores 768
Maximum Power Consumption 80 W
Graphics APIs Shader Model 5.0, OpenGL 4.4, DirectX11
Compute APIs CUDA, DirectCompute, OpenCL

Figure 2.2.9: NVIDIA Quadro K4000 GPU
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2.2.8 Python programming language

Python is a powerful programming language considering portability, flexibility, syntax, style and ex-
tendibility [47]. All the programs written during this thesis are written in Python. Python is attractive
for scientists mainly because of these following reasons :

• Python is easier to read and to program than other programming languages. It is very well de-
signed and it is easier than other languages to transform the ideas into code.

• Open-source software and freely available, whereas languages, such asMatlab (which can be used
to perform scientific computing) is a closed-source commercial product. The consequence of
which, Python’s ever increasing libraries - built by users to perform scientific and mathematical
operations- makes Python more powerful. Additionally, a large community is dedicated in the
development of packages, bug fixes and user-support. It also includes an adequate online help
and detailed documentation.

• Portability : Implementation on all standard platforms, e.g., Linux, Unix, Windows, Mac OS X.

The basic operations used in scientific programming include arrays, matrices, integration, differential
equation solvers, statistics andmuchmore. Python, bydefault, doesnothave anyof these functionalities
built in, except for some basic mathematical operations that can only deal with a variable and not an
array or matrix. Three packages in particular are the powerhouses of scientific Python: NumPy, SciPy
andmatplotlib.

NumPy

NumPy isoneof the fundamentalPythonpackages for scientific computing. Documentationanddown-
load are available athttp://www.numpy.org/ [48]. It is basedonNumeric, oneof the earlier Python
array packages. NumPy adds the capabilities ofN-dimensional arrays, element-by-element operations,
large library of high-level mathematical functions to operate on these arrays including mathematical,
logical, shape manipulation, sorting, selecting, I/O, discrete Fourier transforms, basic linear algebra,
basic statistical operations, and much more; and the ability to wrap C/C++/Fortran code. At the core
of the NumPy package, is the ndarray object, which allows us to do the vector programming. NumPy
arrays are by far more efficient that the lists in Python. Numpy supports array slicing, with which arrays
can be modified, without any extra computational cost.

SciPy

Numpy is focused on the ndarray and associated vector operations as well as some advanced mathe-
matical functions. Scipy is another open source Python library which extends the possibility of Numpy
in order to perform operations such as optimization, linear algebra, integration, interpolation, special
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functions, FFT, signal and image processing, ODE solvers and other tasks common in science and en-
gineering. SciPy is built on the Numpy array framework and takes scientific programming to a whole
new level by supplying advanced mathematical functions. Documentation and download are available
at http://www.scipy.org/ [49].

Matplotlib

matplotlib is a library for making 2D plots of arrays in Python. Althoughmatplotlib is written primarily
in pure Python, it makes heavy use of NumPy and other extension code to provide good performance
even for large arrays. Matplotlibmakes plotting simple, fast and convenient for interactive visualization
of the Python programs.

2.2.9 Implementation : Multiprocessing

As explained in the introduction, CPUs with multiple cores has almost become obligatory in most of
the modern computers. Nowadays we can see multicore processors even on mobile phones. However,
for a single program, these multicores usually won’t run together at the same time. In order to achieve
full usage of all the available cores, we rely on the multiprocessingmodule of Python.
In the scientific community, researchers often come across a problemwherein which they have to apply
a specific formula on a huge amount of independent data. In parallel computing, this kind of problem is
referred to as embarrassingly parallel problems, where we need very little or no effort to split the problem
into a number of parallel tasks. multiprocessingmodule tackles this problem by taking advantage
of the multiple cores present inside the computer by spawning different processes.
In the following, the overview of multiprocessingmethodology and its functioning are presented.
multiprocessing consists of different classes assigned to perform different tasks. Let us consider a
simple scientific example of the type embarrassingly parallel in order to compute a sine function.

import multiprocessing as mp
import random
from numpy import *
from scipy import math, linspace
from numpy import zeros
def func(x,out):

res = (sin(x)/x)**2
return out.put(res)

Nprocs = 8 #Define the number of processors #mp.cpu_count() for maximum
N = 100000 #size of the array
x = linspace(-2*pi, 2*pi, N)
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res = zeros(((size(x)/Nprocs), Nprocs), dtype = 'float')
out = mp.Queue()
jobs =[]
for i in range(Nprocs-1):

p = mp.Process(target=func, args=(x[i*N/Nprocs:(i+1)*N/Nprocs:], out))
jobs.append(p)
p.start()

for i in range(Nprocs-1):
res[:,i] = out.get()

p.join()

final_result = zeros((size(x)/Nprocs), dtype = 'float')

for i in range(Nprocs):
final_result = out.get()

p.join()

for i in range(Nprocs-1):
if i == -1:

final_result = res[:, i]
else:

final_result = concatenate((final_result, res[:, i]))

The above problem calculates sin2(x)/x2 for N different values of x by using Nprocs number of pro-
cessors. mp.cpu_count() will give the output of the number of processors present in the computer.
Most of themodern computers contain at least 4 processors. For instance, instead of performing a com-
putation on 10000 values using one processor, we split the calculation between 4 processors and run
simultaneously using multiprocessing. This is going to accelerate the computation substantially.
In the above program, 2 different classes ofmultiprocessing are used, namely, multiprocessing.
Process and multiprocessing.Queue. The function to calculate the sin2(x)/x2 is defined in the
first part of the program. In the second part, we have initiated a Process object with the assigned
function with arguments asN and out respectively. The Process class will not initiate until it reaches
the step p.start(). The process will then run and return its result. Finally, the process completes via
p.join(). Without the p.join(), the child process will be idle and not terminate, becoming a zombie
which we must later kill manually.
Processes share nothing and they only communicate between different processes by using interprocess
communication channel. Toaccomplish a communication,weusemultiprocessing.Queue. Queue
objects are, like the name says, a thread/process safe, First In First Out(FIFO) data structure queue. It
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is used to establish a connection between different processes. They can store any pickle-able (serial-
ized) Python object and the usage is easy. Queues are especially useful when passed as a parameter
to a Process target function to enable the Process to intake or retrieve data. The above program is
tested for a different number of processors and is plotted in figure (2.2.10 a). It shows a straightforward
speedup as the array size increases. Since this is just a simple function, we can see the speedup of ∼ 2
for 2 processors, ∼ 3.5 for 4 processors, and∼ 6 for 8 processors compared to a single processor. The
slight decrease in speedup for 8 processors comes from the fact that the computation is so weak, as the
number of floating point operations are very few. So the program consumes more time to create the
process and gather the data than to perform the actual computation. multiprocessing delivers a
better speedup for more complex operations.

multiprocessing.Pool

multiprocessing.Pool() is another more convenient approach from the Multiprocessing module
for simple parallel tasks. The job of this class is to manage a fixed number of workers and distribute the
work between workers independently. The output return values from different jobs are then collected
and returned as a list. Themain advantage of using this class is that it is easy to implement and we don’t
have to worry about managing the queues, processes etc. The pool arguments include the number of
processes and a function to run when starting the task process (invoked once per child). There are four
methods in this module:

• Pool.apply

• Pool.map

• Pool.apply_async

• Pool.map_async

Here only Pool.map is discussed since the differences between the different methods are subtle. The
Pool.apply and Pool.map methods are basically equivalents to Python’s in-built apply and map

functions. Given below is the example to calculate sin2(x)/x2 using Pool.map.

import multiprocessing as mp
from multiprocessing import Pool
Nprocs = mp.cpu_count()
def func(x):

return (math.sin(x))*(math.sin(x))/(x*x)

pool = mp.Pool(processes=Nprocs)
results = pool.map(func, range(1,10))
print(results)
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Pool.map breaks the iteration into different parts which is submitted to the process pool as separate
tasks. So it takes advantage of all the processes in the pool. Pool.map returns the result in an order
corresponding to the order of the arguments.
ThoughPool.map looks relatively simpler compared tomultiprocessing.Process, it provides lim-
ited control over the data. Using multiprocessing.Process, we can have absolute control over the
data which is sent to different processors.

Figure 2.2.10: (a) Multiprocessing Speedup plotted for different number of processors vs total
array size (b) Speedup obtained by GPU with respect to a single core processor

2.2.10 Implementation : GPUComputing

GPU computing is another way of accelerating the program by using graphics cards as general-purpose
GPUs. The GPU parallelism is advantageous provided that

• Computational requirements are large : There should be sufficient amount of operations in the
calculation. Ample acceleration can be obtained for a fairly complex computations.

• Substantial Parallelism : Operation of same function on a large amount of independent data.

• Less Memory transfer : The number of memory transfers has to be minimal, as the amount of
time taken for memory transfer highly impact the resulting speedup.

GPU computing is performed using PyCUDA, a Python wrapper to NVIDIA’s CUDA [50]. The most
common functions such as sin, cos, exp, log, square root etc, are highly optimized for GPUs. Here we
give a glimpse on the basic code needed to initiate CUDA and use the same sample example which was
used in multiprocessing.
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import numpy
from pycuda import cumath

In order to send the data and retrieve fromGPU,we need to import gpuarraymodule and alsoCUDA
driver API root and context creation function.

import pycuda.driver as cuda
from pycuda.tools import make_default_context
import pycuda.gpuarray as gpuarray
import pycuda.autoinit

Subsequently, CUDAmust be initialized before starting any CUDA functions. By default, cumathwill
use existing context, but there are also many other possibilities. Stream creation is optional and if we
don’t provide any stream, PyCUDA will create one on its own. The function definition in this case is
very similar to that of multiprocessing except that PyCUDA uses cumath instead of the SciPy math
function.

N = 10000
x = linspace(0, 2*pi, N+1)
def gpu_func(x):

x_gpu = gpuarray.to_gpu(x) #Array transferred to GPU
eqn = (pycuda.cumath.sin(x_gpu))*(pycuda.cumath.sin(x_gpu))/x_gpu*x_gpu
return eqn

Last step is releasing CUDA context :

context.pop()

The above program was run on the NVIDIA Quadro K4000 GPU, and for the array size similar to that
of the previous multiprocessing example. The graph (2.2.10 b) shows a speedup of∼ 100 for the array
size of 108. It is evident that GPU parallelism is efficient only for large size arrays. The methodology is
very similar even in the case of PyOpenCL and can be found in themanual [51]. PyOpenCL is a Python
wrapper to OpenCL, which is similar to CUDA but can be used for NVIDIA, as well as for GPUs from
other companies, mainly AMD.

2.3 Conclusion

The main focus of this chapter was to present all the experimental techniques and computational tools
whichwill beused in the following chapters for the comprehensive studyof cubic zirconiaunder ion irra-
diation. Ion beam accelerators from the laboratories of France and Brazil were used to irradiate the YSZ
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sample. The irradiated samples were studied under X-ray diffraction and RBS/C techniques. The XRD
θ−2θ scanswill be analysed in theChapter 3 and the reciprocal spacemaps in theChapter 4. In the sec-
ond part of this chapter, computational techniques are required to build amodel to calculate the diffuse
X-ray scattering. In order to overcome the massive amount of computational time and memory for the
calculation, we have programmed using heterogeneous parallel computing. GPU parallel computing,
which is relatively new in the field of materials science is well-documented. The model is built using
Python programming language with multiprocessing module for CPU parallel computing and CUDA
programming for GPU computations. With the help of a simple example, it is demonstrated that paral-
lel computing is a powerful approach to accelerate embarrassingly parallel calculations. The next chapter
focuses on the results obtained by using all the experimental techniques presented in this chapter.
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3
Strain and damage build-up in Au-irradiated zirconia

3.1 Introduction

In this chapter, Au-irradiated yttria-stabilized zirconia (YSZ) is investigated under various condi-
tions and with different techniques. As previously detailed in the first chapter, YSZ is predicted to be
used as an inert matrix for the transmutation of radiotoxic actinides. Furthermore, YSZ has an advan-
tage of being easily available and non-radioactive and also its isostructural property with urania (UO2),
thoria (ThO2) and plutonia(PuO2) makes the material interesting for the study of its properties under
irradiation conditions. Ion irradiation is used as a tool to simulate different irradiation conditions. The
strain and damage build-ups are determined with the help of X-ray diffraction. The determination of
atomic displacements from the XRD data is limited by the so-called phase problem. In the first part of
the chapter, the simulation procedure involved in overcoming the phase problem and the extraction of
the strain and damage profiles from the X-ray data is presented. In the second part, the results obtained
from the simulation of X-ray diffraction curves are elucidated. The results from the RBS/C method are
detailed in the final section of the chapter.

3.2 Simulation procedure

Thereexists severalmethods inorder to simulate theXRDcurves to extract thedepthdependentprofiles
of the ion-irradiated materials. But the determination of these profiles from XRD data is hindered by
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the so-called phase problem. Previously on the first chapter, we have seen that the atomic displacements
affect the phase of the diffracted amplitude E (equation 1.23). But in an actual XRD experiment, only
the intensity EE∗ can be measured. Consequently, the phase, hence the information regarding atomic
displacements is partly lost in the diffraction experiment.
Over the years different theoretical and experimental approaches have been proposed and utilized to
retrieve the phase information [1] [2] [3] [4]. One of such methods is the Gerchberg and Saxton
(GS) iterative procedure [4] [5] [6]. GS method performs an iterative Fourier transformation back
and forth between the object and Fourier domains and inserts the measured data in each domain [7].
The algorithm is given below. Firstly, a random set of phases are considered. Later, in the iteration loop

Figure 3.2.1: Illustration of the Gerchberg - Saxton algorithm.

it switches between real and reciprocal space using a fast Fourier transform (FFT) and the inverse FFT.
The amplitudes are updated at the end of each loop. In the real space, the amplitude E1(z) is submitted
to physically plausible constraints (positivity, support, etc) and in the reciprocal space, the amplitude
|E2(qz)| is changed to the experimentally measured value. After a number of iterations, the algorithm
converges to a value of the phase that satisfies both constraints in real and reciprocal space [8]. Another
method of phase retrieval of the X-ray wave diffracted by a single crystal under Bragg condition is by
using logarithmic dispersion method [3] [9]. But these methods are difficult to apply in our materials
mainly because the GS iterative method is based on the Fourier transform and it therefore implicitly
assumes the kinematical theory of diffraction. This method is very useful for nano materials where the
kinematical theory holds [10] [11]. But in the case of irradiated materials, the diffraction profile con-
sists of multiple peaks, including the strong diffraction from the substrate which has to be treated with
the dynamical theory.
Another alternative method is based on fitting the Takagi-Taupin equations (equation 1.44) where the
displacement is described by a specificmodel. Themodel is built by dividing the crystal layer into differ-
ent lamellas with constant strain ez and Debye-Waller (DW) [12] [13]. There exists a simple analytical
solution for each lamella and the Takagi-Taupin equations [14] [15] can be solved recursively in this
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approximation [16] [17]. The structure factor in each layer is constant but is multiplied by a static DW
factor to take into account the effect of lattice disorder consecutive to implantation [13]. This approach
implies that a large number of parameters have to be refined. For instance, if the crystal is divided into
100 lamellas, there exists minimum 200 parameters to refine. This brings in the need of applying con-
straints on the lamellas. One way to constrain is by assuming that the strain profile follows an arbitrary
functional form, i.e. a polynomial or a gaussian. Here, we rely on the method developed by Boulle et.al
which uses cubic B-spline functions to model the strain e(z) and damage profiles, DW(z) [18] [19]
[20].
The effects of atomic displacements can be phenomenologically divided into two categories (i) non-
random displacements, which correspond to lattice strains e(z), and (ii) random displacements which
can be characterized by the root-mean-squared atomic displacements ⟨u(z)2⟩1/2. Lattice strain is writ-
ten as

e(z) =
a(z)− aYSZ

aYSZ
(3.1)

where a(z) is the lattice parameter at depth z and aYSZ is the lattice parameter of virgin YSZ. Lattice
strains correspond to a change in the lattice parameters and therefore only give rise to a shift of the
diffraction peaks emanating from the strained region.
In ion-irradiated crystals, a significant fraction of the atomsmay be displaced from lattice positions. The
statistical distribution of displacements uj away from lattice site j is described by a function ρ(uj). Such
a distribution results in a mean structure factor. From (equation 1.16)

⟨FH⟩ =
∫

d3uρ(uj)
∑
j

fjexp[−iQ(rj + uj)] (3.2)

where fj is the atomic scattering factor for site j, located at rj in undamaged crystal. If ρ is assumed to be
a spherically symmetric Gaussian distribution for all sites, the mean structure factor becomes

⟨FH⟩ = exp
(
−1

2
Q2⟨u(z)2⟩

)
F0
H (3.3)

where F0
H is the structure factor from the undamaged part of the crystal. From the above equation, the

DW factor is defined as
DW(z) = exp

(
−1

2
Q2⟨u(z)2⟩

)
(3.4)

where Q is the magnitude of the scattering vector Q = 4π sin θ/λ. A perfect (defect-free) crystal is
characterized by aDW=1, whereas a highly defective, or an amorphousmaterial, will have aDW=0. In
the above equation (3.2), ρ is assumed to beGaussian and this could only hold good in two cases. Either
thedisplacements are actually gaussianorotherwise, it canbe explained in the frameworkof central limit
theorem. The theorem states that the probability distribution of the average of the independent random
variables with finite variance approaches a Gaussian distribution. This means that the displacement of
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an atom at site j results from the sum of all displacements in the whole crystal. If this is random and has
finite variables, it assumes a gaussian distribution. It has to be noted that in the case of displacement
cascades occurring in irradiated materials, very large displacements from the average atomic position
can be encountered, so that the finite variance conditionmight be unjustified. The central limit theorem
fails to account for XRD profiles exhibiting for instance, power law type tails. Hence removing the
finite variance condition leads to the so-called generalized central limit theoremwhich states that the sum
of identically distributed random variables converges to the Lévy-stable distribution [21] [22]. This
distribution accounts for a wide range of shapes usually encountered in practice. Symmetrical Lévy-
stable distribution allows the DW factor to be written in a simple form as [23]

DW(z) = exp
(
−1

2
|Q|γσγu

)
(3.5)

where γ is the tail index, that determines the shape of the displacement distribution function, and σu is
the characteristic width of the distribution. It can be noted that γ = 2 corresponds to a Gaussian, and
γ = 1 to a Lorentzian distribution. In the following, the functions e(z) andDW(z) are modelled with
cubic B-splines. It should be mentioned that thermal vibrations also contribute to lower the diffracted
amplitude through the term given by equation (3.5) (except that the average ⟨...⟩ is a time average). In
order to disentangle both contributions, the Bragg peak of the unirradiated part of the crystal is used as
an intensity reference, so that in the following simulations the sole static disorder is refined.

3.3 Cubic B-splines

The strain and damage profiles are described with the help of cubic B-spline (basis spline) function.
Spline functions are a piecewise-defined polynomial functions. Cubic B-spline consists of a polynomial
of the order 3 and is the most commonly used splines.
Given a set of knots xi(i = 1, 2, ...N), a spline function of degree m, Sm(x), is such that Sm(x) is a
polynomial of degreem in each xi, xi+1 interval, and hasm− 1 continuous derivatives over the whole x
range [24]. In the B-spline representation, any spline function can be written as [25]

Sm(x) =
N∑
i=1

wiBi,m(x) (3.6)

where wi is the weight of the ith B-spline of degreem,Bi,m(x). Any spline function is therefore entirely
determined by a set ofN discrete weights. The basis functions are defined as successive convolutions of
step functions[26]

Bi,m(x) = Bi,0(x) ∗ Bi,0(x) ∗ ... ∗ Bi,0(x)︸ ︷︷ ︸
m+1 times

(3.7)
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Figure 3.3.1: Illustration of strain profile (thick black line) calculated with six nonzero basis func-
tions (in color). The weight w of each basis function is taken to be equal to 0.8. The weight of
the last three basis functions (dotted curves) is fixed to zero in order to ensure a smooth transition
from the implanted region to the virgin region of the crystal.

with base cases

Bi,0(x) =

{
1 if 0 ≤ x ≤ 1
0 otherwise

(3.8)

For the case of cubic B-spline (m = 3), the basis functions are

B0,3(x) =



1
6x

3 if x ∈ [0, 1]
1
6(−3x3 + 12x2 − 12x+ 4) if x ∈ [1, 2]
1
6(3x

3 − 24x2 + 60x− 44) if x ∈ [2, 3]
1
6(4 − x)3 if x ∈ [3, 4]
0 otherwise

(3.9)

and
Bi,m(x) = B0,m(x− i) (3.10)

Therefore, with the set of weights wi, we can generate complete strain and damage profiles by means
of equation (3.6). The degree of detail entirely depends on the number of knots. With less number of
knots, the resulting strain profile is very smooth and might wipe out small details. On the other hand,
if we have a large number of knots, the ability to render tiny features of e(z) is high. But this leads to the
possibility of the profile exhibiting unphysical oscillations during the simulation. Sowe need to find the
balance in the number of knots in order to ensure that the strain profile is smooth enough and without
any wild oscillations.
Moreover, during the simulation, in order to ensure the smooth transition from the irradiated region to
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the virgin crystal, the weights of the last three B-splines are fixed to zero. Hence ifN knots are used, the
strain profile is actually divided into N − 3 equally sized regions. A representation of a strain profile
defined by nine basis functions is given in figure (3.3.1). In this case, the crystal is divided into 6 equally
sized regions and the last three weights are fixed to zero. All weights were taken to be equal to 0.5 in
figure (3.3.1), so that, in the implanted region (ignoring the transition zone), the strain is constant and
is equal to 0.8%.
These basis functions have restricted support; we hence have local control over the overall curve. This
property is also very appropriate for implementation in a non-linear least-square routine, as the wi are
almost uncorrelated. Finally, the main interest of these functions lies in their extremely high versatility
as it is virtually possible to describe any shape, provided that the number of knots are sufficient. In
practice, however, very few knots are necessary. During the simulations, we have used around 7 to 10
knots to describe the profiles. Overall, the properties of smoothness, minimum curvature and local
control makes the cubic B-spline functions very well suited to model the lattice displacement profile in
single crystals.

3.4 Generalized simulated annealing

Generalized simulated annealing (GSA) is a search algorithm for the global minimization of a given
function. The basic aspect of the simulated annealing method is analogous to metallurgy, wherein an-
nealing a molten metal causes it to reach its crystalline state which is the global minimum in terms of
energy. The simulated annealing algorithm was developed to simulate the annealing process with the
objective of finding the global minimum of the given function and was described by Kirkpatrick et. al.
[27] which holds good for classical systems. During the simulation, the objective function is treated as
the energy function of molten metal and artificially, a temperature function is introduced and cooled
gradually. It can be best illustrated with the help of figure (3.4.1). Here the goal is to reach the global
minimum, which is at point 3. With a local search algorithm starting from S, we would reach point 1 or
2, and which is a local minimum. But it will be a problem if we have to get it over the hump after point 2
to find the globalminimum at point 3. Using simulated annealing, it is possible to reach the globalmini-
mum. The algorithm follows the quasi-equilibriumBolzmann-Gibbs statistics using a Gaussian visiting
distribution, which we refer to as Classical Simulated Annealing(CSA) or Boltzmann machine.
To fit the experimental data with a calculated model, we use the following error function, which mea-
sures the difference between the experimental and the calculated curves [19] :

E =
N∑
i=1

[log(Icali )− log(Iobsi )]2/N (3.11)

where Icali and Iobsi are the calculated and observed intensities and N is the number of data points. The
values of the error function for all possible values of the parameters of the model form a hypersurface
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Figure 3.4.1: Illustration of the problem of finding the global minima.

with severalmaxima andminima. The aimof an optimization algorithm is to find the deepestminimum,
which corresponds to the best possible agreement between the model and the experimental data.
In CSA, the algorithm performs the minimization by randomly exploring the hypersurface using a

Gaussian visiting distribution. If xt is a N-dimensional vector that contains all parameters to be opti-
mized, then the geometry for two consecutive steps is given by xt = xt−1 + Δx, where Δx is a vector of
Gaussian random variables and t is the computing time(expressed in Monte Carlo steps, MCS). If the
parameter jump is downhill (the error function is lowered, ΔE < 0) the new configuration is accepted
and constitutes the starting point for the next jump. If the jump is uphill (the error function is increased,
ΔE > 0 the jumpmight be accepted according to an acceptance probability, which, in the case of CSA,
is the Boltzmann-Gibbs acceptance probability. This gives rise to theMetropolis criterion for the uphill
jump acceptance [28] :

r ≤ exp[−ΔE/T(t)] (3.12)

where T is an artificial temperature and r is a uniform random number lying between 0 and 1. The
possibility of uphill moves allows the algorithm to detrap from local minima. With increasing time, the
temperature is decreased so that the uphill jump probability decreases and the system is hopefully in
the close vicinity of the global minimum [27] [29]. Geman andGeman[30] showed that for a classical
case, a necessary and sufficient condition for having the probability of reaching a global minimum is
that the temperature decreases logarithmically with time. This means that, though CSA converges to
a global minimum, the convergence is fairly slow [20] [31]. Much effort has therefore been directed
towards increasing the convergence speed without increasing the probability of being trapped in a local
minimum. Along this line an efficient algorithm, the GSA algorithm, has been proposed by Tsallis and
Stariolo [29].

In the framework of GSA, generalized thermostatistics [32] is used instead of the Boltzmann-Gibbs
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statistics, so that the Gaussian visiting distribution is replaced with

gqv(Δx) =
(
qv − 1
π

)D/2 Γ[1/(qv − 1) + (D− 1)/2]
Γ[1/(qv − 1)− 1/2]

× [T(t)]−D/(3−qv)

{1 + (qv − 1)(Δx)2/[T(t)]2/(3−qv)}1/(qv−1)+(D−1)/2

(3.13)

whereD is the number of fitting parameters (the dimension of the vector x), Γ is the Gamma function
and qv ∈ (1, 3) defines the shape of the distribution: for qv → 1 we obtain the Gaussian distribution,
qv = 2 corresponds to the Lorentzian distribution and for qv > 2we obtain ’super-Lorentzian’ distribu-
tions exhibiting tails decreasing slower than 1/Δx. With such tails, the parameters occasionally perform
very long jumps, which ensures a more efficient detrapping as compared to the Gaussian distribution
and hence a faster convergence. The GSA algorithm implies the generation of random numbers Δx ef-
fectively obeying equation (3.13), i.e. Tsallis random numbers (instead of Gaussian random numbers).
In this work we make use of the Tsallis random number generator proposed by Schanze (2006) [33]
which produces random numbers obeying exactly equation (3.13).

Δx = y/(su1/2) (3.14)

where y is a D-dimensional vector of Gaussian random variables, u is a random variable obeying the
γ(1, p) distribution, and the parameters p and s are given by

p =
3 − qv

2(qv − 1)
and, s =

[2(qv − 1)]1/2

T1/(3−qv)
(3.15)

To implement equations (3.14) and (3.15), we use the default Gaussian and gamma random number
generators from the SciPy library. At each computing step, a new random vector Δx is generated (using
3.14) and each parameter xi(i ∈ [1,D]) is modified according to

xi,t = xi,t−1 + Δxi (3.16)

Within the framework of GSA, the temperature cooling schedule is given by [29]

T(t) = T(0)
2qv−1 − 1

(1 + t)qv−1 − 1
(3.17)

The initial temperature T(0) is chosen so that the jump for each parameter remains roughly within the
range of acceptable values for each parameter. Each time xi exceeds the range of acceptable values, a
new Δxi is generated using equation (3.14) and (3.15). Moreover, we have found that the efficiency of
the algorithm is increased if the temperature is decreased stepwise, each step lasting 100 or even 1000
MCS. This allows the parameter space to be sufficiently explored for each temperature.
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In GSA, a downhill jump is always accepted similar to CSA. An uphill jump is accepted only if the gen-
eralized Metropolis criterion is met

r ≤ [1 + (qa − 1)ΔE/T(t)]1/(1−qa) (3.18)

where qa ∈ (−∞, 1) is the acceptance parameter and r is a uniform random number lying between 0
and 1. For qa < 1 the uphill probability is set to 0 when 1 + (qa − 1)ΔE/T(t) < 0 to ensure that the
probability lies in the range [0, 1]. Here qv = qa = 1 corresponds to CSA and qv = 2qa = 2 (i.e. a
Lorentzian visiting distribution combined with the classical Metropolis criterion) corresponds to the
so-called fast simulated annealing algorithm [34]. It has been shown by earlier studies that convergence
is faster for qa < 1 [35].
A significant improvement of the GSA algorithm has been implemented by Xiang et.al. (1997)[31] in
which they suggest to use a decreasing qa instead of a constant qa

qa(t) = qa(0)− λt (3.19)

where λ is a constant (0.85 in the present case). With this modification, for large computing times,
the uphill acceptance probability is almost zero [equation (3.18)] so that GSA behaves as a steepest-
descent-type algorithm.
In brief, the GSA algorithm can be summarized as follows [20]:

1. Given a set of parameters [qv, qa(0) andT(0)], generate a random vector of parameters x0. Com-
pute the corresponding error function E0 [equation (3.11)].

2. Using equations (3.14) and (3.15), generate a random jumpof parameters Δx, compute xt [equa-
tion (3.16)] and the corresponding error function Et [equation (3.11)].

3. If the jump is downhill (Et ≥ Et−1), the new configuration is accepted only if the generalized
Metropolis criterion is satisfied [equation (3.18)]. Otherwise, the configuration is rejected (i.e.,
keep the previous configuration xt−1).

4. Decrease T [equation (3.17)] and qa [equation (3.19)] and return to step 2 until the maximum
number of iterations is reached, t = tmax. The algorithm returns the parameters xt corresponding
to the lowest error function encountered, Et,min.

3.5 Results

3.5.1 X-ray diffraction

Yttria-stabilized zirconia was studied in detail by using XRD and we have extracted the strain and the
damage profileswith the help of the simulation procedure discussed above. Irradiation of YSZwas done
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Figure 3.5.1: θ − 2θ scans recorded in the vicinity of the (400) reflection for virgin and YSZ crys-
tals irradiated at room temperature for increasing Au-ion fluences. The curves are shifted vertically
for clarity.

under five different temperatures, namely, 80, 300, 573, 773 and 1073K. For each temperature, samples
were irradiated with 4 MeV Au2+ ions with fluences ranging from 1012 to 1016cm−2. First, we consider
the case of room temperature. The θ − 2θ scans recorded in the vicinity of the (400) reflection for vir-
gin and YSZ crystals irradiated at increasing Au-ion fluences are given in the figure (3.5.1). The XRD
curves for all the fluences exhibit an intense narrowpeak at 2θ = 73.57◦ which corresponds to the unir-
radiated part of the samples. The appearance of this peak was expected since the thickness probed by
X-rays in this configuration (4μmwith the 1/e attenuation-length criterion) is greater than the damaged
thickness∼1μm. The position of this peak will be used to determine the irradiation induced strain free
lattice parameter of YSZ. The presence of a complex additional signal at smaller 2θ values indicates the
existence of a dilatation gradient associated to the energy-deposition profile of Au2+ ions.
As the ionfluence increases, the signal from thedamage region shifts towards lower angles, indicating an
increase in the tensile strain in the direction normal to the surface of the samples. Additionally, decrease
in the Bragg intensity can be clearly observed. The simulations of the XRD data were performed with
the model described above and are shown in the figure (3.5.2). The simulation condition for the strain
and the Debye-Waller profiles consists of six non-zero B-splines each. Amaximum temperature was set
in the initial conditions and the simulations were performed by finding the global minimum using gen-
eral simulated annealing on a standard 1000 cycles. At the end of 1000 iterations with the progressive
decrease in the temperature function, the program returned the parameters corresponding to the lowest
error function encountered. It is evident from the figure (3.5.2) that the simulation results are close to
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Figure 3.5.2: θ − 2θ scans (black circles) and corresponding simulated curves (coloured lines)
recorded in the vicinity of the (400) reflection for virgin and YSZ crystals irradiated at room tem-
perature for increasing Au-ion fluences. The curves are shifted vertically for clarity.

perfect and all the details of the fringe structure of the diffraction profiles are very well rendered. These
simulations enable us to extract the strain and the damage profiles and an excellent agreement with the
experimental data strongly suggests that the resultant profiles are valid.
Figure (3.5.3) shows the strain and the Debye-Waller profiles obtained as a result of simulations for

XRD curves irradiated at room temperature. First, we discuss the strain profiles which are presented in
fig(3.5.3 a). As the ion fluence increases, it can be observed that the maximum strain level in the irra-
diated region increases. For the lowest fluence, it starts with 0.1% and it reaches values as high as 0.9%
for the highest fluence. This is in agreement with the qualitative observation of the XRD data. Addi-
tionally, it can be observed that the width of the strained region increases with fluence. For the lowest
fluence, the width of the strained region is around 0.75 μm whereas for the highest fluence, it is up to
1.5 μm. Another interesting feature is that the depth of the maximum strain is shifted towards higher
values. Since the statistical properties of the atomic displacements within the displacement cascades
induced by irradiation is not precisely known, we shall not discuss the ⟨u(z)⟩ (or σu) and restrict our-
selves to the analysis of the DW term. The Debye-Waller profiles are presented in fig (3.5.3 b). Similar
to what is observed for the strain, the maximum damage level (i.e. minimum DW) in the irradiated re-
gion increases with fluence. In addition, the width of the damaged region increases with the increase in
fluence. Interestingly, for high fluences, the position of the DW minimum coincides with the position
of themaximum strain. In addition, for the last two fluences, i.e., 1.5× 1015 and 5× 1015cm−2, the DW
values are found to be very low (∼ 0) which means that the crystal in these regions is highly defective
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Figure 3.5.3: Strain (a) and the Debye-Waller profile (b) obtained after the simulation of the
XRD curves displayed in (3.5.2) for 300 K.

(at least, as seen by XRD on the (400) reflection). Hence the corresponding strain values in this region
cannot be reliably determined (as represented by dotted lines in figure 3.5.3). This behaviour will be
further explained with the help of strain build-ups for all temperatures in the discussion section.
In the XRD curves (3.5.2), the shift in the signal from the damage region towards lower angles with the
increase in ion fluence was previously analysed byMoll et. al. [36]. It has been shown that this also cor-
responds to an increase of the defect density and the formation of interstitial defects during irradiation
might be at the origin of this lattice expansion [36]. The qualitative analysis indicated that as the fluence
increases, more defects are created and correspondingly, the strain level increases. At a given strain level,
the width of the strain profile increases with fluence. As it reaches higher fluence i.e. 1.5 × 1015cm−2,
the fringe pattern begins to vanish and the scattered intensity decreases. This can be attributed to the
increase of random atomic displacements. Finally, for the highest fluence, i.e. 5 × 1015cm−2, the scat-
tered intensity decreases drastically indicating a strong increase of the random atomic displacements.
Figure (3.5.4) displays the evolution of themaximum strain and damage as a function of the ion fluence.
This figure is obtained by selecting themaximumphysical strain (εmaxN ) and theminimumDW(DWmin)
values in the profiles presented in figure (3.5.3). Thekinetics exhibit a two-step behaviour. The slow rate
of increase in the evolution of strain and damage up to a critical fluence(i.e. 1× 1015cm−2) is recorded.
This is followed by a dramatic increase beyond this fluence. As explained in chapter 1, previous studies
[36] [37] [38] revealed a strain relaxation in the second step, which is due to formation of extended
defects. Here, since we have full strain profiles, we monitored the maximum strain for all fluences, but
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Figure 3.5.4: Variation of the maximum strain and damage levels as a function of the ion fluence
irradiated at 300 K.

this later shifted towards the interface with the pristine region. The explanation of point defects rear-
rangement to form extended defects holds good for this case too, confirmed by DW close to zero.
θ − 2θ scans (black circles) and the corresponding simulated curves (coloured lines) recorded in the
vicinity of the (400) reflection for virgin and YSZ crystals irradiated at 80 K for increasing Au-ion flu-
ences are given in figure (3.5.5). The simulations for 80Kwere particularly challengingwhich is evident
from the numerous fringes in the XRD curves. But with the efficient simulation program, we were able
to tackle it and obtain nearly perfect fits. Starting from the lower fluence, theXRDcurves exhibit fringes
and the intensity of the damaged region moves towards lower angles. Then, the fringe pattern vanishes
for the fluence 5 × 1015cm−2 and the scattered intensity dramatically decreases, indicating a strong in-
crease in random atomic displacements. Simulations were successful even for the highest fluence for
which no fringe pattern is recorded. The corresponding strain and damage profiles are given in figure
(3.5.6). For low fluences, the strain and damage profiles show a similar behaviour as that of room tem-
perature. With the increase of ion fluence, the maximum strain level in the irradiated region and the
width of the damage region increases. For the lowest fluence, the width of the strained region is around
0.8 μm whereas for the highest fluence, it is upto 1.75 μm. Another interesting feature is that the depth
of the maximum strain is shifted towards higher values. For the last fluence, for the depth upto∼ 1μm,
the strain profile exhibit unrealistic oscillations (shown as dotted lines). This behaviour can be under-

Jayanth CHANNAGIRI |Thèse de doctorat | Université de Limoges | 4 Décembre 2015
95



CHAPTER 3. STRAIN AND DAMAGE BUILD-UP IN AU-IRRADIATED ZIRCONIA

Figure 3.5.5: θ − 2θ scans (black circles) and the corresponding simulated curves (coloured lines)
recorded in the vicinity of the (400) reflection for virgin and YSZ crystals irradiated at 80 K for
increasing Au-ion fluences. The curves are shifted vertically for clarity.

stood by the examination of the DW profiles displayed in fig (3.5.6b). Upon increasing fluence, as
expected from the qualitative observation of the curves, we clearly observe an increase in the level of
disorder (decrease of DW). Similarly to what is observed for the strain, the width of the damaged re-
gion increases with increasing fluence. Interestingly, for the highest fluence, the DW is close to 0 over a
wide range of depth (∼ 1 μm). This finding indicates that the YSZ crystal in these regions is so defective
that its diffracted Bragg intensity is close to 0, i.e. almost no X-rays are emitted from these regions in the
symmetrical θ − 2θ configuration. As a consequence, no physical strain value related to these regions
can be obtained by XRD in this configuration. This simple observation explains the occurrence of an
unphysical behaviour of the strain in these regions. The observed oscillations are due to the fact that
the strain profile is bounded by the B-spline model that prevents the strain to diverge or exhibit abrupt
variations during the fitting procedure.
Now we continue by discussing the case of high temperatures. Figures (3.5.7), (3.5.9) and (3.5.11)

show the θ − 2θ scans and the corresponding simulated curves recorded in the vicinity of the (400)
reflection for virgin and YSZ crystals irradiated at 573, 773 and 1073 K respectively. For all the cases,
simulations are close to perfect. For the highest fluences, the agreement is less satisfactory, whichmainly
stems from the fact that the intensity emanating from the irradiated region is extremely weak and fea-
tureless, which significantly complicates the fitting. The strain and DW profiles obtained from the sim-
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Figure 3.5.6: Strain (a) and Debye-Waller profiles (b) obtained after the simulation of the XRD
curves displayed in (3.5.5) for 80 K.

ulations are shown in the figures (3.5.8), (3.5.10) and (3.5.12). Let us first discuss the strain profiles.
Upon increasing fluence, for all temperatures, it can be observed that the maximum strain level in the
irradiated region increases, in perfect agreement with the qualitative observation of the XRD data. In
addition, it can also be observed that the width of the damaged region increases and globally the depth
of the maximum strain is shifted towards higher values. For the two highest temperatures (i) between
the depth range of 0.12 to 0.39μm for the fluence 1015 and between 0.12 to 1.17μm for the fluence
5 × 1015 for 773 K and (ii) between the depth range of 0.2 to 0.7μm for the fluence 5 × 1014 and be-
tween 0.14 to 1.1μm for the fluence 1015 for 1073 K, the strain profiles exhibit an unrealistic oscillating
shape (shown as dotted lines), as already explained for the case of 80 K and 300 K irradiations. Upon
increasing fluence, as expected from the qualitative observation of the curves, we clearly observe an in-
crease in the level of disorder (decrease ofDW). Similarly towhat is observed for the strain, thewidth of
the damaged region increases with increasing fluence, and simulated damaged thickness, are similar for
all temperatures. For the highest fluence, the DW is close to 0 (say < 0.05) over a wide range of depth
(∼ 1 μm). This finding indicates that the YSZ crystal in these regions is severely defective.
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Figure 3.5.7: θ − 2θ scans (black circles) and corresponding simulated curves (coloured lines)
recorded in the vicinity of the (400) reflection for virgin and YSZ crystals irradiated at 573 K for
increasing Au-ion fluences. The curves are shifted vertically for clarity.

Figure 3.5.8: Strain (a) and Debye-Waller profiles (b) obtained after the simulation of the XRD
curves displayed in (3.5.7) for 573 K.
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Figure 3.5.9: θ − 2θ scans (black circles) and corresponding simulated curves (coloured lines)
recorded in the vicinity of the (400) reflection for virgin and YSZ crystals irradiated at 773 K for
increasing Au-ion fluences. The curves are shifted vertically for clarity.

Figure 3.5.10: Strain (a) and Debye-Waller profiles (b) obtained after the simulation of the XRD
curves displayed in (3.5.9) for 773 K
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Figure 3.5.11: θ − 2θ scans (black circles) and corresponding simulated curves (coloured lines)
recorded in the vicinity of the (400) reflection for virgin and YSZ crystals irradiated at 1073 K for
increasing Au-ion fluences. The curves are shifted vertically for clarity.

Figure 3.5.12: Strain (a) and the Debye-Waller profiles (b) obtained after the simulation of the
XRD curves displayed in (3.5.11) for 1073 K

Jayanth CHANNAGIRI |Thèse de doctorat | Université de Limoges | 4 Décembre 2015
100



CHAPTER 3. STRAIN AND DAMAGE BUILD-UP IN AU-IRRADIATED ZIRCONIA

Figure 3.5.13: RBS spectra recorded in random (stars) and ⟨100⟩ - aligned (open symbols) direc-
tions on YSZ crystals irradiated with 4-MeV Au ions at the 80 K temperature and indicated flu-
ences (in cm−2). Energy of the analyzing He beam is 3.07 MeV. Solid lines are fits to experimental
data with the McChasy code.

3.5.2 RBS/C

Cubic zirconia was further analyzed with the help of Rutherford backscattering spectroscopy in the
channelling mode (RBS/C). Figure (3.5.13) displays RBS/C spectra recorded on a YSZ single crystal
irradiated at the temperature of 80 K in aligned and random directions. Results from this temperature
are representative of the whole results obtained for all temperatures. They will be discussed in detail in
the following. These spectra present the number of backscattered particles as a function of their energy
as detected with the incident beam oriented along the crystallographic direction ⟨100⟩ (i.e., by rotating
the crystal about the crystallographic axis ⟨100⟩) or in a randomdirection. In the different experimental
conditions used for these experiments, energy resolution is on the order of 15 keV, which corresponds
to a depth resolution in YSZ on the order of 10 nm. The spectra obtained in the random orientation on
virgin crystals exhibit amuch higher yield than the channelling orientation and spectra registered in the
axial orientation exhibit low backscattering yields due to the channelling effect.
The spectra registered in random orientation exhibits a plateau below 2600 keV which corresponds to
the backscattering of analysing particles from the Zr atoms of the sample, and a peak close to 1000 keV
due to the backscattering of analyzing particles from the O atoms. The appearance of this peak is the
consequence of the elastic resonant reaction at 3.038 MeV of 4He(16O,16 O)4He which enhances the
backscattering on O sublattice target. The spectrum registered in the ⟨100⟩-axial direction on a virgin
crystal shows the same features with a much lower backscattering yield for both the Zr and O signals
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Figure 3.5.14: Damage fraction (fD) as a function of depth extracted from the fits to experimen-
tal RBS/C data for YSZ crystals irradiated at 80 K temperature under the indicated fluences (in
cm−2)

due to the channelling effect.
The spectrum registered in the ⟨100⟩-axial direction on irradiated crystals exhibit an increase with in-
creasing ionfluenceof both theZr andO yields due to the creationof radiationdamage. Adechannelling
bump is clearly observed around 2100 keV, indicating that the defects are predominantly located at the
depth corresponding to this energy. This bump is gradually spread toward the high and low energies as
the fluence increases. It should be borne in mind that the energy scale corresponds to a scale in reverse
depth in thematerial. Thus, the energy of the backscattered ions corresponds to events occurring in the
sample surface and the lowest energy represents the deeper regions of the sample.
RBS/C spectra in figure (3.5.13) were fitted (solid lines) by using McChasy computer code [39] [40]
[41], which is based on Monte Carlo statistical approach [42](section 2.1.2). Calculations rely on the
basic assumption that Zr and O atoms are randomly displaced from original lattice sites during irradi-
ation. Figure (3.5.14) shows the variation of the fraction of displaced atoms (fD) as a function of the
depth into the sample extracted fromMcChasy simulations. These data correspond to the Zr sublattice,
since the amount of damage created in the O sublattice may only be measured at the depth where the
resonance occurs [43] [44]. For various fluences, fD exhibits a peak around 500 nm, with an increase in
width and amplitude for increasing ion fluence up to 5 × 1015cm−2.

RBS/C experiments for YSZ sample were performed for other temperatures too i.e., 300, 573, 773
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Figure 3.5.15: RBS spectra recorded in random (stars) and ⟨100⟩ - aligned (open symbols) direc-
tions on YSZ crystals irradiated with 4-MeV Au ions at the 573 K temperature and indicated flu-
ences (in cm−2). Energy of the analyzing He beam is 3.07 MeV. Solid lines are fits to experimental
data with the McChasy code.

and 1073 K. The results from the other temperatures show a similar behaviour. The results from 573
K and 1073 K are displayed in the figures (3.5.15) and (3.5.17) as illustrations of the whole sets of
data. RBS/C analysis of YSZ under room temperature and 773 K has been previously carried out by
Moll et. al. [36] [37] [45]. Main conclusions drawn from all these results can be summed up as fol-
lows. Firstly, irrespective of the irradiation temperature, the damage profiles have a similar shape, with
a thickness comprised between 1 and 1.2 μm and a peak located around 500 nm (consistent with XRD
results). Secondly, fD is very small (∼ 0.1) at low ion fluence (2 × 1014cm−2) and does not exceed
0.5 at high fluence (3− 5× 1015cm−2). A comparable evolution of the spectra with increasing fluence
is observed for the different temperatures, i.e., the backscattering yield increases with fluence (up to
3− 5×1015cm−2) without reaching the random level. However, this apparent similarity exhibits a ma-
jor difference that is readily noticed when comparing the spectra corresponding to crystals irradiated at
the same fluence : rising the temperature leads to a significant increase of the backscattering yield. For
instance, at 1015cm−2, fD equals 0.1 at 80 K, 0.3 at 573 K and 0.4 at 1073 K, which is a clear indication
that the disordering build-up is accelerated with increasing temperature.
If we compare the results of the disordering build-up fD with the damage profiles obtained by XRD, we
notice a similar trend. For instance, the minimum DW for the fluence 1015cm−2 is 0.5 for 80 K, 0.1 for
573 K and 0.05 for 1073 K.
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Figure 3.5.16: Damage fraction (fD) as a function of depth extracted from the fits to experimen-
tal RBS/C data for YSZ crystals irradiated at 573 K temperature under the indicated fluences (in
cm−2)

Figure 3.5.17: RBS spectra recorded in random (stars) and ⟨100⟩ - aligned (open symbols) direc-
tions on YSZ crystals irradiated with 4-MeV Au ions at the 1073 K temperature and indicated flu-
ences (in cm−2). Energy of the analyzing He beam is 3.07 MeV. Solid lines are fits to experimental
data with the McChasy code.
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Figure 3.5.18: Damage fraction (fD) as a function of depth extracted from the fits to experimen-
tal RBS/C data for YSZ crystals irradiated at 1073 K temperature under the indicated fluences (in
cm−2)

3.6 Discussion

3.6.1 RBS/CKinetics

Theevolution of the damage level at the damage peak obtained byRBS/C is presented in Figure (3.6.1).
The experimental data are fitted using the multi-step damage accumulation model (MSDA). The fits of
RBS/Cdatawith thismodel are represented by solid lines in figure (3.6.1). The evolution of the damage
fraction with the ion fluence is reproduced using theMSDAmodel with three steps [n = 3 in equation
(1.2)]. For all the temperatures, the first step represents the slow increase of the damage fraction fD
up to a certain fluence. The first interesting behaviour is observed at the threshold fluence, where the
transition occurs from damage step 1 to step 2. The transition occurs at lower fluences for higher tem-
peratures. For the case of 80 K and 300 K, the transition occurs at the ion fluence of∼ 1.2× 1015cm−2

whereas for the 1073 K, the transition is at∼ 0.5 × 1014cm−2. The values of fluences for the onset of
step 2 are listed in table (3.6.1).
Secondly, the maximum damage at the end of second step is found to be lowered with increasing tem-
perature. This behaviour is true for all temperatures except for 80 K where the maximum damage is
found to be about the same as 300Kwithin the error limits. Overall, no temperature-enhanceddynamic
annealing [46] is observed in YSZ and a samemulti-step disordering process occurs in thismaterial irre-
spective of the irradiation temperature. The damage fraction fD remains low irrespective of the fluences
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Figure 3.6.1: Disorder kinetics plotted from the data obtained by performing RBS/C for YSZ
crystals irradiated with 4 MeV Au2+ ions at different temperatures indicated in the figure. Solid
lines represent the data fits using the MSDA model

for all temperatures. This is not the case in other materials, for instance, SiC [47] or SrTiO3 [48]. In
the case of SrTiO3, dynamic annealing is observed for irradiation at 773 K [48] and for Ag irradiated
4H-SiC, it is around 600 K [47]. These materials readily undergo amorphization or sometimes exhibit
a very low damage level under irradiation above a threshold temperature[49] .

80 K 300 K 573 K 773 K 1073 K

RBS/C 1.2 × 1015 1.2 × 1015 0.55 × 1015 0.45 × 1015 0.15 × 1015

XRD 1015 1015 0.5 × 1015 0.5 × 1015 0.2 × 1015

Table 3.6.1: Threshold fluences (in cm−2) for the onset of the second step of the damage build-
up in ion irradiated YSZ crystals. Values obtained from RBS/C measurements are derived from
the fitting of experimental data with the MSDA model[40][41] and values from the XRD technique
were graphically determined.
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Figure 3.6.2: Variation of maximum damage as a function of ion fluence as determined by XRD

3.6.2 Debye-Waller Kinetics

Figure (3.6.2) displays the evolution of the maximum disorder (1 − DWmin) as a function of the ion
fluence determined by XRD for all temperatures. This figure is obtained by selecting theminimumDW
values extracted from the damage profiles [as in fig.(3.5.4)]. TheminimumDW is plotted as 1−DWmin

versus fluence instead of justDWmin in order to compare it with the damage fraction determined by RB-
S/C. The kinetics exhibit a two-step behaviour irrespective of the temperature, as explained in section
(3.5.1). Indeed, there is a slow increase indamageup to a critical fluence, followedbyadramatic increase
beyond this fluence, similar to what has been observed using RBS/C (figure 3.6.1). However, the abso-
lute values of the damage are markedly different: a full damage (DW = 0) is obtained by XRD, whereas
the damage fraction obtained byRBS/C is always lower than 1. It indicates that the crystals appear to be
severely defective in the XRD technique compared to the RBS/C.This difference can be ascribed to dif-
ferences in the sensitivity of both techniques. XRD results from the constructive interferences between
the waves scattered by all atoms and is hence very sensitive to minute atomic displacements. On the
other hand, it is expected thatmuch larger displacements are required to induce backscattering/dechan-
nelling in RBS. It should also be borne inmind that XRD in the symmetric θ− 2θ configuration probes
out-of-plane displacements, whereas RBS/C performed normal to the surface probes in-plane lattice
displacements. Therefore, anisotropic strain fields, such as that observed in irradiated single crystals,
might induce different responses depending on the direction analysed.
In addition, two other interesting features should be noted. First, below the threshold fluence, in-

creasing the temperature results in a partial but noticeable healing of the material (i.e. the damage is
less pronounced) which can be ascribed to an enhanced annihilation rate of defects as a result of an en-
hancedmobility. Secondly, the transition fluence is shifted towards lower values at higher temperatures
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Figure 3.6.3: Variation of maximum strain as a function of ion fluence for different temperatures.

(from 1015 to 2 − 4 × 1014cm−2), similar to the behaviour observed by RBS/C.

3.6.3 Strain Kinetics

Figure (3.6.3) displays the evolution of the maximum strain as a function of the ion fluence and of the
irradiated temperature. These figures are obtained by selecting the maximum physical strain from the
XRD curves presented in the previous section. It can be noted here that the maximum strain location
progresses with fluence from damage peak to the interface.
The strain build-ups presented in figure (3.6.3) can be separated into two groups: 80 K and 300 K on
one hand and 573 K, 773 K and 1073 K on the other hand. For the former group (at low temperature),
strain levels are high with values ∼0.4% in the first step and ∼0.9% in the second step. For the latter
group (high temperature), strain levels aremuch lower with values ranging from∼0.1% to∼0.5%. This
difference in the strain level as a function of the irradiation temperature appears very similar to that re-
cently reported by Yang et. al. [50] who monitored the strain in YSZ irradiated with ions of different
velocities. They found that the strain level in the first step decreased with increasing velocity, an effect
whichwas tentatively attributed to an ionization-induced enhanced defect-mobility due to a larger elec-
tronic energy loss. This interpretation could hold for the present results, with thermal energy playing
the role of electronic energy. At low temperature, transition from the first step to the second one takes
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place at ∼ 1015cm−2 while at high temperature it occurs at ∼ 5 × 1014cm−2. There is no progressive
shift as observed for the damage (RBS/C) and disorder (XRD) kinetics probably because the strain is
not monitored at the same depth as a function of the ion fluence. These results indicate that the strain
relaxation is not themain driving force for the formation of the dislocation loops, i.e., for the occurrence
of the second step of the damage build-up.

Figure 3.6.4: TEM bright-field micrographs recorded on YSZ crystals with 4 MeV Au2+ ions
at 300 K (top) and 1073 K (bottom) and at different places (fluences) of the damage build-up
plotted in figure (3.6.1) (a) -1015cm−2 and (b) −5 × 1013cm−2 correspond to the first step; (c)
−1.5 × 1015cm−2 and (d) −4 × 1014cm−2 are characteristic of the beginning of the second step; (e)
−2 × 1015cm−2 and (f) −7 × 1014cm−2 illustrate microstructure observed at the end of the second
step.

3.6.4 Damage evolution

Figure (3.6.4) displays TEM images recorded on crystals irradiated at room temperature and 1073 K at
different steps of the damage build-up: Figure (3.6.4a) and (3.6.4b) reflect the first step, figures (3.6.4c)
and (3.6.4d) correspond to the beginning of second step and figures (3.6.4e) and (3.6.4f) are character-
istic of the end of the second step. Images for room temperature irradiation show the formation of small
defect clusters in the first step of the irradiation process (3.6.4a), followed by the creation of dislocation
loops (3.6.4c) and finally a network of tangled dislocations is observed (3.6.4e). Identical defects and
microstructures are observed for irradiation at 1073 K, as clearly evidenced in figures (3.6.4b), (3.6.4d)
and (3.6.4f) that correspond to the first step, the beginning and end of the second step, respectively. It
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can thus be reasonably assumed that these results also hold for the intermediate temperatures.
The first transition of the damage accumulation process is shown to be associated with the transforma-
tionof blackdots intoblack/black lobes that eventually formdislocation lines. Yasuda et. al.[51] studied
this microstructure change mechanism and concluded, based on earlier works from Baufeld et. al.[52],
that defects created in the first stage of the irradiation process are seeds for dislocation loops. More pre-
cisely, the following mechanism was proposed: (i) interstitial point defect agglomerate and (ii) form
Frank loops with Burgers vectors b = a

3⟨111⟩ (i.e., dislocations bounding a stacking fault); (iii) these
loops grow and transform into perfect (unfaulted) dislocation loops via the spontaneous nucleation of
a Shockley partial dislocation according to the following equation a

6⟨112̄⟩ +
a
3⟨111⟩ → a

2⟨110⟩; (iv)
finally, growth of these perfect loops leads to the formation of a network of dislocation lines. It is worth
mentioning that the mechanism for the transformation of partial into perfect dislocation loops has also
been reported in irradiated ceria (See ref [53] and the references therein). Both Baufeld et. al. [52] and
Yasuda et. al.[51] postulated the existence of a critical defect size above which the actual defect is not
stable anymore and turn into a new, stable one. This assumption has been supported by a theoretical
model developed by Ryazanov et. al. [54] taking into account the charge state of the dislocation loops
to explain their instability (hence their transformation into dislocation lines) above a critical size. The
critical size was found to be on the order of a micrometer when the defect density is low and smaller
when the loop density increases (i.e., when the mean distance between loops decreases). Such a hy-
pothesis of a critical size could perfectly explain the difference in the threshold fluence for the onset of
step 2 observed in YSZ in the present work. Indeed, the shift of the transition fluence to lower values
with increasing temperature would mean that the critical size is reached more rapidly. This is possible
by assuming that increasing the temperature induces a higher defect mobility leading to an enhanced
defect-clustering process. In addition, such an increased defect-clustering rate could also account for
the decrease of the defect density explaining why (XRD) disorder and strain levels decrease with tem-
perature. It is worth noting that this effect is already operational at 573 K, a temperature which seems
rather low but is consistent with experimental observations of Baufeld et. al. of an accelerated defect
growth above 573K [52]. This result confirms the highmobility of the irradiation point defects in YSZ.

3.7 Conclusion

This chapter was chiefly aimed at retrieving strain and damage profiles from Yttria-stabilized zirconia
crystals irradiated with 4 MeV Au2+ ions. The samples were irradiated for five different temperatures,
namely, 80, 300, 573, 773 and 1073K and for awide range of fluences i.e., from5×1012 to 2×1016cm−2.
Furthermore, the samples were characterized by various techniques like RBS/C, TEM and XRD in or-
der to get an all-inclusive understanding of the behaviour of this ceramic under ion irradiation.
Firstly, combining the advanced XRD techniques with our own simulation model, we were able to ex-
tract the strain and damage profiles. The diffracted intensity was computed using the dynamical theory
of diffraction formalism. The simulation procedure relies on generalized simulated annealing algorithm
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for finding the global minimum of the fitting problem. Additionally, the strain and damage profiles
were modelled using cubic B-spline functions. The outcome results indicate upon increasing fluence,
the level of both strain and damage increases. Moreover, the width of the damaged region increases.
For higher fluences, very high damage level results in abstruse behaviour of strain in the most defective
regions. However, the strain can still be retrieved at the damage/pristine interfaces where it keeps on
increasing for high values; this is a new result as compared to previous studies. We were able to obtain
these important results thanks to XRD simulations.
Secondly, the radiation behaviour of ion-irradiated solids is generally investigated by determining the
damage accumulationbuild-up, which is the variationof a givendisorder parameterwith the ionfluence.
Thedamagebuild-ups obtained in irradiatedYSZ revealed a similarmultistepmechanism irrespective of
the temperature wherein each step is characterized by specific disorder and strain levels corresponding
to a well-definedmicrostructure. In the case of strain profiles too, we observe a two-stepmechanism. In
the heavily damaged regions (DW< 0.05), a strain relaxation involving plastic deformation takes place.
Thus whilst the damage level increases, the elastic strain is partially relieved. With the present simula-
tions, it is possible to retrieve the elastic strain in regions of crystals where plastic relaxation did not yet
occur, generally at the damaged/pristine interfaces. Apart from the Bragg peak due to the unperturbed
crystal, the curves obtained on irradiated crystals at high fluences display broad pseudo-peaks originat-
ing fromheavily damaged regions (1 -DW∼ 1)whose position is not related to the actual level of strain
in the irradiated region. The simulations show that the strain keeps on increasing at high fluence in the
regions surrounding the damage peak. For this reason, the strain actually continues to increase in the
second step of the damage build-up. This result holds for the whole temperature range. Increasing the
temperature induces an enhanced defect clustering, that both lowers the strain and damage in the first
step of the damage build-up and shifts the threshold fluence towards lower values. The damage fraction
fD values are very low (∼ 0.1) at low fluence and is∼ 0.5 for high fluence. The comparison of the evolu-
tion of damage fraction fD with the maximum disorder (1−DWmax) shows a similar trend wherein the
transition fluence between the steps are shifted towards lower values at higher temperatures. However,
a full damage (DW= 0) is obtained by XRDwhereas the damage fraction by RBS/C is always less than
1.
Dynamic (i.e., inside collision cascades) annealing is very efficient in YSZ but this self-healing process
is definitely not enhanced with increasing irradiation temperature; in fact, only a slight decrease in the
final disorder level is observed over the broad temperature range. On the other hand, an increase of
the irradiation temperature provides a larger mobility to radiation defects which presumably leads to
an enhanced defect clustering. This mechanism triggers the observed microstructural transformations
through the existence of a critical size above which the defect nature changes. Consequently, transi-
tions in the damage accumulation process occur earlier in fluence with increasing temperature. It is
worth mentioning that temperature as low as 573 K is sufficient to accelerate the disordering process in
irradiated YSZ.
Finally, XRD techniques prove to be extremely useful in the study of irradiated materials. We were able
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to obtain all these important information by applying advanced XRD techniques into the simulation
model. These results will be extremely useful in nuclear industries when considering YSZ as an inert
matrix fuel since temperatures higher than 573 K will be reached in fast neutron reactors.
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4
Modelling of Diffuse X-ray scattering

4.1 Introduction

Using X-ray diffraction, we were able to obtain some valuable information such as the strain and
the damage profiles in irradiated YSZ crystals. However, further information such as the actual defects
created inside the crystal, the behaviour of defects with the increase of fluence etc, cannot be retrieved
using solely the coherent X-ray diffraction data. Hence, in this chapter, we go a step further to anal-
yse the diffuse X-ray scattering (DXS) of the irradiated materials and model the reciprocal space maps
(RSMs) corresponding to different defect configurations. This simulation can be broadly divided into
two steps (i) the calculation of the displacement field from the defects and (ii) the calculation of the
diffracted intensity.
For homogeneous and isotropic systems containing simple defects (eg., spherical defects), there exists
efficient analytical solutions[1] [2] [3] [4] [5] [6]. Real irradiated crystals, however, are complex sys-
tems containing inhomogeneous defect distribution with defects of different size, shape and type etc.
Numerical calculations are often required in order to evaluate such systems. Previous attempts were
successful only for relatively small crystals using atomistic simulations [7] [8] [9]. Here we develop an
approach able to describe the DXS from large crystals (containing up to 109 unit cells). The computa-
tion of RSM from such large crystals, retaining the unit-cell resolution, requires huge amount of time
for each calculation. Important efforts were devoted to optimize and accelerate the calculations.
The chapter is organized as follows: In the first part of this chapter, a simulation procedure is presented
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which allows the fast calculationof theRSMs. Wehavemadeuse of several tools such as vector program-
ming and heterogeneous parallel computing which includes CPU multi-processing and GPU parallel
computing. In the second part, simulations and the comparison of experimental data with our model
are presented.

4.2 Theoretical background

Let us consider that we have a defect inside a crystal[10]. The amplitude scattered from an ensemble of
unit cells with structure factor F(Q) (equation 1.24) is given by:

E(Q) =
∑
j

Fj(Q)exp[iQ · (rj + uj)] (4.1)

where rj is the position of the jth unit cell in the ideal structure and uj is its displacement from the
ideal structure. In the small displacements approximation, Q · u ≃ H · u (where H is the reciprocal
lattice vector of the reflection considered). Hence the amplitude can be written in terms of the Fourier
transform as

E(Q) = F0(Q)FT[V(rj)G(rj)] (4.2)

whereV(r) crystal shape function, which is previously defined in Section (1.10). G(r) is the correlation
function,

G(r) = ρ̄(r)exp[iH · u(r)] (4.3)

where the relative scattering density is written

ρ̄ = 1 + ΔF(r)/F0 (4.4)

This relative scattering density allows us to take into account the fact that the structure factor of a unit
cell containing a defect, Fdefect, may differ from the ideal structure factor, i.e. Fdefect = F0 + ΔF. For
instance, in the case of porous regions (i.e. vacancy clusters), ρ̄ = 0. If the displacement field u(r) is
known, then the intensity can be straightforwardly computed from equations (4.2)-(4.4) and |E(Q)|2.
In an actual experiment, the intensity recorded on the detector results from the incoherent superposi-
tion of the intensities diffracted by different regions of the crystal. The usual notation where the z-axis
is chosen perpendicular to the crystal surface and x-axis is contained in the crystal plane is used in the
following. Besides, in laboratory experiments the beam is often only poorly collimated in the direction
normal to the scattering plane (the plane defined by the incident and diffracted beam), resulting in axial
divergences of the order of a few degrees, so that the diffracted intensity can be (infinitely) integrated
overQy

⟨I(Qx,Qz)⟩ =
∫

dQyI(Q) (4.5)
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where Qy is the component of the scattering vector normal to the scattering plane [Fig. 4.3.1a]. Using
the above equations, the intensity, I(Q) = E(Q) · E∗(Q), can be written as :

I(Q) = |F0|2
∑
p,p′

∑
q,q′

∑
r,r′

G(xp, yq, zr)G∗(xp′ , yq′ , zr′)exp[iQx(xp − xp′)]

×exp[iQy(yq − yq′)]exp[iQz(zr − zr′)]
(4.6)

Equation (4.5) can hence be rewritten

⟨I(Q)⟩ = |F0|2
∑
p,p′

∑
q,q′

∑
r,r′

G(xp, yq, zr)G∗(xp′ , yq′ , zr′)exp[iQx(xp − xp′)]

×exp[iQz(zr − zr′)]
∫

dQyexp[iQy(yq − yq′)]
(4.7)

The integral term in equation (4.7) is the delta function δ(yq, yq′) and is hence equal to one for yq = yq′
(and equal to zero elsewhere, Fig. 4.3.1) The averaged intensity finally becomes

⟨I(Qx,Qz)⟩ =
∑
q

|F0|2
∑
p,p′

∑
r,r′

G(xp, yq, zr)G∗(xp′ , yq′ , zr′)exp[iQx(xp − xp′)]

×exp[iQz(zr − zr′)]
(4.8)

The previous equation can be written in condensed form as

⟨I(Qx,Qz)⟩ =
∑
q

|F0|2|FT[Vq(x, z)Gq(x, z)]|2 (4.9)

where the two-dimensional correlation functionGq(x, z) is

Gq(x, z) = ρ̄(x, z)exp[iH · uq(x, z)] (4.10)

uq being the displacement field within qth plane of the crystal. Equation (4.9) shows that in the diffrac-
tion experiment the crystal can be viewed as divided into unit-cell-thick (x, z) planes, parallel to the
scattering plane, that diffract incoherently with each other. The intensity diffracted from each (x, z)
plane is given by the squared modulus of the amplitude scattered from each plane, and the intensities
are summed to form the total scattered intensity.

4.3 Simulation procedure

The simulation procedure for the numerical evaluation of DXS can be broadly divided into two steps.
Firstly, a defective crystal structure is generated using a Monte Carlo simulation procedure. To achieve
this, vector programming and multiprocessing are utilized to manage large arrays. For the second step,
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reciprocal spacemaps are computedbymaking use ofGPUs in order to achieve the fastest computations
possible. Even though the main goal is to achieve the numerical evaluation of DXS, optimization of
the performance plays a major role. The whole program is presented in the Appendix 4.5. Below, the
methodology and the optimization of each step is detailed.

4.3.1 The displacement field

In the framework of linear elasticity, the displacement at a given point r in the crystal results from the
superposition of the displacement fields of all defects in the crystal (equation 1.32) [11]

u(r) =
∑
α,j

cα,juα,j(r− rj) (4.11)

where cα,j is the probability of having a defect of type α at the jth lattice site, and uα(r) is the correspond-
ing displacement field. From the previous chapter, it is clear that irradiation gives rise to point defects
which in the first stages, migrates to form mostly spherical point-defect clusters. Hence here the focus
is on spherical defects, although this approach is by no means restricted to spherical defects and can be
used for any type of defect of any shape, as long as the corresponding displacement field can be com-
puted.
In the framework of the elasticity theory of an isotropic medium, the displacement field associated to a
spherical defect with radius Rα can be written as [12] [13] [14]:

uα(Δr) =

{
AΔr/R3

α if |Δr| ≤ Ra

AΔr/Δr3 if |Δr| > Ra
(4.12)

where A = εR3
α(1 + ν)/[3(1 − ν)] (ε is the lattice mismatch between the defect and the ideal crystal

and ν is the Poisson’s ratio of the crystal).
Theevaluationof equation (4.11) is performednumerically using aMonteCarlo summationprocedure.
For this purpose, a three-dimensionalNumPy array containingN unit-cells is generated, and defect co-
ordinates rj are randomly chosen within this array. The displacement field corresponding to each defect
uα is computed with equation (4.12) and added to the total displacement field u. This procedure is re-
peated until the maximum number of defects N⟨cα⟩ is reached. In this approach, provision is made to
tune the defect locations in order to match the actual defect structure of the samples investigated. This
means that the defect distribution is not restricted to a random distribution. The main advantage by
doing so is that spatially correlated defects, defect interactions (with a variable attraction or repelling
zone), concentration gradients, etc., can be straightforwardly implemented in this approach.
Theobvious drawbackof the approach is the time andmemoryneeded to compute equation (4.11). For
instance, a crystal withN= 109 unit-cells and displacement values coded over 64 bits (double-precision
floating-point numbers) requires≈ 8 GBmemory. Since two copies of the displacement field has to be
stored in thememory during the computation (corresponding to the totalu and the currentuα displace-
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ment field) the totalmemory needed to compute equation (4.11) reaches 16GB.There are two options
to compute this on a desktop computer i.e., computation using CPU or GPU. Computation using GPU
is interesting, since the speedup is much higher compared to the CPU. But, our current GPU has a
memory of 3GB and even the best andmost recent GPU available to date are limited to 12GBmemory
which unfortunately prohibits their use for this calculation. Additionally, it is worth emphasizing that,
given the large amount of data to transfer to the GPU as compared the very small computational cost
of equation (4.11) (one array addition per computed uα), the acceleration would certainly not be very
favorable. Moreover, the computation pathway cannot be determined in advance since the selection
of random coordinates inside the three-dimensionalNumPy array heavily relies on conditional instruc-
tions (if, then, else), for instance to produce non-random defect distributions, which is not ideal for the
implementation on the GPU [15]. Equation (4.11) has hence been computed using the CPU.
Inorder to keep thememory footprint as lowas possible and tomaximize the computing speed the eval-

Figure 4.3.1: (a) Schematic view of the diffraction geometry. K0 and Kh are the incident and
diffracted wavevectors, respectively. Dx and Dz are the dimensions of the crystal along the x and z
directions, respectively. (b) Schematic representation of the template-slicing approach. The tem-
plate is indicated by rectangle (A) and the extracted view by rectangle(B).

uation of equation (4.12) has been implemented inC language and integrated in the python code using
the weave module of the SciPy library. The scipy.weave package provides tools to include C/C++
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Figure 4.3.2: Speedup gain using the template-slicing approach versus the direct evaluation of
equation (4.12) in the computation of the displacement field

code within the Python code. This offers another level of optimization in our program. Despite this,
for N = 109 unit-cells, the computation still requires a few seconds, which is prohibitive, especially if
several thousands of defects have to be generated. To circumvent this issue, we make use of a specific
feature of theNumPy arrays known as “slicing” [16]: once an array is created it is possible to extract any
sub-part (a “view”) of the arraywith no need to copy to thememory and at no computational cost (gen-
erating a view is performed in a few tens of microseconds). We hence generate a template displacement
field for a crystal with twice the dimensions of the actual crystal in all directions, containing a defect in
its center. A two-dimensional schematic is given in Fig. 4.3.1(b). From this template, any displacement
field corresponding to the actual crystal, canbe extractedusinguα(Δr) = utemplate(D−rj+Δr), whereD
= (Dx,Dy,Dz)T is the size of the array. Equation (4.11) is then computed using the vectorized addition
of theNumPy arrays. It should be noted, that this approach assumes that the displacement field around
the defect is identical for all defects, independent of their location within the crystal. In particular this
excludes the influence of free surfaces. In the case of sufficiently large crystals this effect is probably not
dominant, but this approach could clearly not be used in the case of nanostructures.

The speedup obtained for the computation of the displacement field with this approach [as com-
pared to the direct computation of equation (4.12)] is displayed in Fig. (4.3.2) for increasing crystal
size, with a fixed defect density ⟨cα⟩ = 10−5 defects/unit-cell. For arrays with less than 106 unit-cells
there is no real gain in using the template-slicing approach; this finding likely stems from the fact that
the time needed to create the template compensates the gain obtained by generating a view of it. For
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Figure 4.3.3: Speedup obtained with the use of an increased number of CPUs in parallel, in the
computation of equation (4.11).

larger arrays, the speedup steadily increases, reaching a value of∼ 15 forN = 109 unit-cells.
As explained in detail in section (2.2.4), data transfers from the memory to the CPU requires consid-
erable amount of time and it can be solved by computing using GPU, provided that the amount of
GPU memory is sufficient [17]. In the present case, we propose to side-step this problem using multi-
processing, i.e. the calculation of the displacement field is distributed over the different cores of the
processor. The parallelization can be performed in several ways; here we have chosen to parallelize over
the dimensions of the crystal, so that each process computes the displacement field in a sub-region of
the crystal. At the end of the calculation the different sub-regions are combined to form the entire dis-
placement field. Themain advantage of this approach, besides the obvious increased computing power,
is that each process deals with a smaller array, hence resulting in increased transfer speed frommemory
to CPU. The corresponding speedup for increasing crystal size is displayed in Fig. (4.3.3).

For crystal sizes smaller than N = 107 unit-cells, the speed-up increases steadily and, as expected,
the computing speed obtained with 8 processors is, respectively, 2 and 4 times faster than the speed ob-
tained with 4 and 2 processors. Above 107 unit-cells, whereas the slope of the curve corresponding to 2
processors remains unchanged, the speedup obtained with 8 processors considerably increases (even-
tually saturating at a value of 22.5 forN>5×108 unit-cells, vs. 3.1 for 2 processors). This behaviour can
probably be attributed to the fact that for those larger arrays, the speedup is limited by the time needed
to transfer the data, an effect which is less pronounced when dealing with smaller arrays, hence the in-
creased speedup when using multiple processors. It should be noted that, for this last benchmark, the
timemeasurements (including the reference timewith only one processor) include the template-slicing
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Figure 4.3.4: Speedup obtained with the GPU-based computing versus the conventional CPU
approach.

modification detailed above. The total speedup therefore correspond to the product of both curves; in
the best case we reach a total speedup of 22.5×15 = 337.5.

4.3.2 The scattered intensity

We now focus on the evaluation of the scattered intensity. Equation (4.9) shows that it is actually the
sum of (the squared modulus of) two-dimensional Fourier transforms, that can be evaluated indepen-
dently. We here propose to compute the Fourier transform on the GPU using a fast Fourier transform
(FFT) algorithm. The computational cost of FFT algorithms scales asNlog(N) (N points in real space,
N points in reciprocal space spanning a complete reciprocal unit-cell), versusN2 for a direct evaluation
of the sum, which make FFTs particularly relevant for the large crystal sizes considered in this work.
Therefore, even if only a small fraction of the computed RSM is required, it is still considerably inter-
esting to use an FFT algorithm. With an input array of size D′

i in a given direction, the FFT returns
an array with spacing 1/D′

i in the associated direction. The size of the input array has therefore to be
adjusted according to the desired reciprocal space resolution. A rule of thumb is that if the crystal size
is Di in a given direction, then the tiniest (finite size) interference feature will exhibit a period of 1/Di.
Basic oversampling considerations requires an oversampling factor of two (the Nyquist rate). Here, in
order to correctly describe an interference fringe without impairing the computation time, we chose an
oversampling rate of 4, so that we obtain the condition D′

i = 4 × Di (with i = x, z). In the y-direction
the summation is incoherent so that we can take D′

y = Dy. In equation (4.9) the shape and size of the
crystal are described by the termVq(x, z). In the presentworkwe restricted the study to parallelepipedic
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shapes such that Vq(x, z) = V(x)V(z) and we wrote

V(i) =
1
2

[
1 − erf

(
i− Di√

2σ i

)]
(4.13)

where i = x, z. Equation (4.13) allows, if needed, to account for fluctuations of the crystal size. For
simplicity, the size distribution is assumed to be Gaussian, with standard deviation σ i. When σ i → 0,
equation (4.13) is a top-hat function (= 1 if 0 ≤ x ≤ Di, 0 otherwise) and its FFT is equal to a sinc
function with well defined interference fringes with period 1/Di.
Equations (4.9) and (4.10) are directly evaluated on the GPU after the two-dimensional view uq(x, z)
has been extracted from the three-dimensional displacement field u(r) computed in the previous sec-
tion, and this operation is repeated for all values of q, i.e. all (x, z) planes in the crystal. The speedup

Figure 4.3.5: Computed h scans with increasing number of lattice planes in the y direction, indi-
cated on the right (the numbers in brackets indicate the relative r.m.s deviation of the intensity,
σI/I). Gray dots: without convolution; black lines: with convolution. The following defect char-
acteristics were assumed: random distribution of spherical R1 = 5 nm) defects with concentration
⟨c1⟩ = 10−5 defects per unit cell and lattice mismatch ε = 5%. The curves are shifted vertically for
clarity

obtained using the GPU instead of a classical CPU evaluation is displayed in Fig. (4.3.4). As expected,
the speedup is mainly relevant for large array sizes, with a maximum efficiency (speedup = 45) around
N = 106 unit-cells.
As mentioned earlier, the integration along the y direction leads to an incoherent addition of the inten-
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sities scattered from the different (x, z) planes. The choice of the crystal dimension in this direction
hence does not affect the shape the scattered intensity and can be used to adjust the computing times.
It must, however, be borne in mind that higher values of Dy will improve the signal/noise ratio of the
computed RSMs. Indeed, the FFT of a single (x, z) plane exhibits a complex fringes pattern (a speckle
pattern) corresponding to the scattering from a given defect configuration. The summation over differ-
ent planes along y smears out these patterns and produces the configuration-averaged signal, as mea-
sured experimentally. This situation is illustrated in Fig. (4.3.5) where h-scans [We here make use of
the continuous Miller indices defined by Qx = πh,Qy = 2πk/b and Qz = 2πl/c for an orthogonal
unit-cell] computed at Δl = −0.12 corresponding to figure (4.4.1) are plotted. It can be readily ob-
served that increasing the number of lattice planes in the y direction allows to reduce the level of noise
in the computed curves, while the overall shape of the curves remain unchanged. This can be quanti-
fied by computing the root-mean-squared (rms) deviation of the scattered intensity σI. In this example,
the maximum rms deviation (relative to the diffracted intensity, σI/I) ranges from 25% when only 10
lattice planes are used, to 0.2% for 1000 lattice planes. A smooth curve (with rms deviation of 0.4%) is
obtained for 500 lattice planes.
The quality of the computed curves can be dramatically increased, while reducing the computing times,
by convolving the computed curves with a blurring function. Experimentally, this corresponds to the
resolution function of the diffractometer (which reflects the coherence properties of the beam), and
which can be obtained either by the measurement of a perfect reference crystal, or calculated by taking
into account the different elements in the beam path [18]. Eventually, this procedure should allow to
quantitatively compare (fit) the computed curveswith experimental data. For themoment, quantitative
fitting of data is not considered and the resolution function is simply assumed to be a two-dimensional
Gaussianwith a full-width at half-maximumof 2×10−4 Å in both directions of reciprocal space (which
correspond to an isotropic spatial coherence length of 3 µm). Fig. (4.3.5) shows that this procedure
allows to obtain relatively smooth data from ∼ 100 lattice planes (i.e. 5 times less than without con-
volution). Additionally, this procedure allows to clearly resolve tiny features in the curves, such as the
narrow coherent Bragg peak located at Δh = 0, in situations where they are completely masked by the
noise when no convolution is used.

4.4 Applications to irradiated single crystals

4.4.1 Randomly distributed spherical defects

As a first example, randomly distributed spherical defects in a large crystal is examined. We considered
a crystal with 1000×1000×1000 unit-cells with a 5Å lattice parameter and ν =0.3. Thedefect radius is
R1 =5nmwith a 5% latticemismatchwith the crystal and the defect concentration is ⟨c⟩=10−5 (i.e., 104

defects). The result for the 004 reflection is displayed in Fig. (4.4.1). We obtain the well-known result,
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corresponding to the DXS from isolated defects, where the RSM exhibits two asymmetrical lobes and
fringes on each side of a nodal plane located at Δl= 0 [12] . An increase in the defect concentration only
modifies to diffuse / coherent intensity ratio and not the shape of the DXSwhich solely depends on the
defect radius and lattice mismatch. The secondary maximum located at Δl ≈ −0.12 in figure (4.4.1)
corresponds to the diffraction from the core of the defect. The RSM also exhibits two narrow streaks
running along the h and l directions. These streaks correspond to the coherent scattering peak (visible
in the center of the map) and are due to the finite crystal size. Such streaks are in general not observed
in the scattering from single crystals as the dimensions of actual coherent domains are larger than the
dimensions considered here (500 nm in each direction). The calculation lasted 26 minutes using our
optimized approach (11minutes to generate the displacement field, 15 minutes to compute the RSM),
versus 83 hours using a non-parallel approach, i.e. a speedup of∼ 191.

Figure 4.4.1: RSM of the 004 reflection of a crystal with 1000 × 1000 × 1000 unit-cells containing
randomly distributed spherical defects with radius R1 = 5nm and a lattice mismatch of ε = 5%.
The logarithm of the intensity is plotted and each contour line corresponds to a 100.5 variation.
The intensity is truncated at Imax/10 (white region in the center) to highlight the DXS.

Jayanth CHANNAGIRI |Thèse de doctorat | Université de Limoges | 4 Décembre 2015
128



CHAPTER 4. MODELLING OF DIFFUSE X-RAY SCATTERING

4.4.2 Inhomogeneous defect distribution : Varying defect size

In this section, a slightly more complex system is taken into account. We consider a crystal of size
500 × 500 × 500 unit cells with inhomogeneous defect distribution and with varying defect sizes.
These defects were created with the concentration ⟨c⟩ = 0.01 defects/unit-cell, ν = 0.3 and the lattice
mismatch ε = 5%. Defects are randomly created in the crystal according to an arbitrary density func-
tion corresponding to the probability to observe a defect at given depth below the surface [Fig.4.4.2(a)].
The shape of the density function has been chosen so as to be similar to disorder profiles determined by
ion channeling and X-ray diffraction [19] in actual irradiated crystal. A section of the computed two-
dimensional strain field is shown in fig. [4.4.2(b)]. It can be seen that the defects produce tensile strain
(white regions) in the 0-200 unit-cells range below the surface. For depth larger than 200 unit-cells, no
tensile strain can be detected.
The computation was performed by multiprocessing using 8 processors for the displacement field cal-
culation and GPU for intensity distribution. The calculations lasted approximately 4 hours to create

Figure 4.4.2: (a) Density function corresponding to the probability of finding a defect at a given
depth below the surface (b) 100 × 500 unit cell section of a computed two-dimensional strain field.
The defects are distributed according to the above density function and have radius R1 = 5Å and
mismatch ε = 5%. White : tensile strain; black : compressive strain

1.25× 106 defects. The 004 reciprocal space maps for defects of radius (a) R1 = 5 Å (Fig. 4.4.3a); (b)
R1 = 15Å (Fig. 4.4.3b); (c) R1 = 25Å (Fig. 4.4.3c) are illustrated. From the RSM for the first case,
we can mainly observe two interesting features. Firstly, it exhibits an elongated streak parallel to the l
direction, with the Bragg peak at Δl = 0. This originates from the virgin part of the crystal. A secondary
maximum at Δl = −0.04 is a result of the strained part of the crystal. This signal is typical in irradiated
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materials exhibiting dilatation gradient in the direction perpendicular to the surface and has been stud-
ied in the previous chapter (Figure 4.4.3 d). The simulation result shows that a dilatation gradient can
be produced in irradiated crystals with heterogeneous distribution of unit-cell-sized defects.
In the second case, with the increase of defect size, the intensity decreases and surprisingly, the strain

Figure 4.4.3: Calculated diffuse intensities for a 004 reflection of a crystal with 500 × 500 × 500
unit-cells containing randomly distributed spherical defects with defects of radius (a) R1 = 5Å; (b)
R1 = 15Å; (c) R1 = 25Å. In all maps, the logarithm of the intensity is plotted and each contour
line corresponds to a 100.5 variation. (d) l - scans extracted at Δh = 0 which shows the damage-
induced streak. The red, green and blue lines correspond to scans extracted from (a), (b) and (c),
respectively. The curves are shifted by ×10 variation for clarity.

is lowered. This implies that small defects are very effective in producing homogeneous strain and con-
trarily to bigger defects. On the other hand, bigger defects are effective in distorting the crystal lattice
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heterogeneously. This gives rise to the Debye-Waller factor which is responsible for the lowering of the
intensity and the appearance of diffuse scattering. This can be clearly observed in the final case for the
defect size of R1 = 25Å. The result shows an intense diffuse X-ray scattering and the damage-induced
streak reduces to a very weak peak on the lower l side of the Bragg peak. It is striking to observe the
similarity with the results obtained from the actual experiments. In the previous chapter, a relationship
between the strain and the DW factor was presented and here it is effectively demonstrated in terms of
defects.

4.4.3 Inhomogeneous defect distribution : Varying misfit

Similar to the above example, the behaviour of a crystal with inhomogeneous defect distribution was
investigated for different lattice mismatches. Figure (4.4.4) shows the RSMs for a crystal with 500 ×
500 × 500 unit-cells with lattice mismatches of (a) ε = 2.5%, (b) ε = 5% and (c) ε = 7.5%. Small
defects of radius R2 = 5Åwere created with the concentration ⟨c⟩ = 0.01 defects/unit-cell, ν = 0.3. The
computation was performed by multiprocessing using 8 processors for the displacement field calcula-
tion and GPU for intensity distribution.
In the first case, we observe an elongated streak parallel to the l direction, with the Bragg peak emanating
from the virgin part of the crystal at Δl = 0 and a secondarymaximum located at Δl = −0.07. Vertical
l scans extracted at Δh= 0 is displayed in fig. (4.4.4). Note that for higher latticemismatch, the intensity
is shifted towards lower l values as a consequence of the increased lattice mismatch, but the position of
the secondary peak is not directly related to defect misfit.

4.4.4 Inhomogeneous defect distribution : Varying defect concentration

Figure (4.4.5)displays the results of theRSMs for a004 reflectionof a crystal containing500×500×500
unit-cells with varying defect concentrations (a) ⟨c⟩ = 0.01, (b) ⟨c⟩ = 0.075 and (c) ⟨c⟩ = 0.005. The
results follow a similar trend as in the previous two cases. It exhibits an elongated streak parallel to the
l direction, with the Bragg peak at Δl = 0. A secondary maximum at Δl = −0.08 is a result of the
strained part of the crystal. With these simulations, it is evident that the observed strain is proportional
to the concentration of defects. With the increase in concentration, the amount of strain increases,
which can be clearly noted in figure (4.4.5 d).

In summary, inhomogeneousdefect distributionwas investigated indetailwith the variationof defect
size, defect concentration and the misfit. The relationship between the strain and the DW factor was
explained in terms of defects. It is possible to create a dilatation gradient as observed in irradiated crystal
with a inhomogeneous distribution of unit-cell-sized defects. Furthermore, it was observed that small
defects are very effective in producing homogeneous strain and bigger defects are effective in distorting
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Figure 4.4.4: Calculated diffuse intensities for a 004 reflection of a 500 × 500 × 500 crystal con-
taining randomly distributed spherical defects with a lattice mismatch of (a) ε = 2.5%, (b) ε = 5%
and (c) ε = 7.5%. The logarithm of the intensity is plotted; each contour line corresponds to a
100.5 variation. (d) l - scans extracted at Δh = 0 which shows the damage-induced streak. The
red, green and blue lines correspond to scans extracted from (a), (b) and (c), respectively. The
curves are shifted by ×10 variation for clarity.
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Figure 4.4.5: Calculated diffuse intensities for a 004 reflection of a crystal containing 500 × 500 ×
500 unit-cells with varying defect concentrations such as (a) ⟨c⟩ = 0.01 , (b) ⟨c⟩ = 0.075 and (c)
⟨c⟩ = 0.005. The logarithm of the intensity is plotted; each contour line corresponds to a 100.5

variation. (d) l - scans extracted at Δh = 0 which shows the damage-induced streak. The red,
green and blue lines correspond to scans extracted from (a), (b) and (c), respectively. The curves
are shifted by ×10 variation for clarity.

heterogeneously the crystal latticewhich gives rise to theDebye-Waller factor. Itwas also shown that the
observed strain from peak position is not related directly to the misfit. It is a complex mixture between
the defect size, concentration and the lattice mismatch. Equipped by these results, we take a step ahead
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to simulate the RSMs of Yttria-stabilized zirconia.

4.4.5 Simulation of RSMs of YSZ

In this section, simulationof the behaviour of real crystals under irradiation is tentatively performed. We
consider the example of yttria-stabilized zirconia (YSZ) single crystals, whosebehaviour under different
irradiation conditions was discussed in the previous chapter. To summarize, the damage build-up upon
increasing ion fluence takes place by amulti-step process, with each step occurring in order to lower the
system’s free energy. In the first step, point-defects, mainly Frenkel pairs, are formed in a sub-surface
region whose extension varies from 100 nm to a few hundreds of nanometers, depending on the nature
and energy of the incident ions (the defect distribution in the damaged region being non-uniform). In
the next steps, these point defects coalesce to form larger (a few nanometers) point-defect clusters. The
defect mobility can be increased by performing irradiation at high temperature which results in a shift
of the different steps towards lower fluences, i.e. the increased defect mobility favors defect clustering
at lower fluences.
The microstructure of the irradiated of YSZ single crystals is modelled using the simulation procedure
detailed in the section (4.3). The computation was performed for a crystal of size 500 × 500 × 500
unit cells containing non uniform and bimodal distribution of defects. These defects were created with
the defect concentration ⟨c⟩ = 0.01 defects/unit-cell, ν = 0.3 and the lattice mismatch ε = 5%. The
computation required about 4 hours for the first case but significantly reduced for big defects. The cor-
responding 004RSM is shown in Fig. (4.4.6) and selected scans in Fig. [4.4.6 (d, e)]. TheRSMdisplays
an elongated streak parallel to the l direction, with the Bragg peak (emanating from the virgin part of
the crystal) located at Δl = 0 and a secondary maximum located at Δl = −0.04. This signal is typical
of irradiatedmaterials exhibiting a dilatation gradient in the direction perpendicular to the surface [20]
as shown previously. In addition, it can be seen that the DXS is extremely weak and drops rapidly down
to values 105 times lower than the coherent signal , i.e. the intensity is mainly concentrated within the
damage-induced streak. It can also be noticed that, in addition to the vertical streak, a horizontal streak
(at Δl = 0) is also observed. This corresponds to the crystal truncation rods and is due to the finite
dimensions of the crystal used in the calculation. This latter streak is in general not observed in the scat-
tering from single crystals as the dimensions of actual coherent domains are larger than the dimensions
considered here (500 unit-cells).
In a second step, a structure where 25% of the initial defects were allowed to coalesce to form larger
defects with R2 = 5 nm is generated. The corresponding RSM is given in Fig.4.4.6 (b). The intensity of
the damage-induced streak is lowered and, concomitantly the DXS intensity considerably increases (as
revealed by the spreading of the intensity in the h direction). This feature shows that, whereas smaller
defects are efficient in producing homogeneous strain within the damaged region of the crystal, the
larger defects mostly give rise to heterogeneous strain as shown in the previous section. Finally, in the
last step, only large defects remain, and the trend observed previously is continued, Fig. 4.4.6 (c). The
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Figure 4.4.6: Computed 004 RSMs with a non-uniform and bimodal distribution of defects: (a)
only small defects (R1 = 5Å); (b) small and large defects (R1 = 5Å and R2 = 5nm); (c) only large
defects(R2 = 5nm). In all maps, the logarithm of the intensity is plotted; each contour line corre-
sponds to a 100.5 variation. The intensity is truncated at Imax/10 (white region in the center) to
highlight the diffuse X-ray scattering. (d) l - scans extracted at Δh = 0 evidencing the damage-
induced streak. (e) h - scans extracted at Δl = -0.03 evidencing the DXS intensity. The black,
blue and red lines correspond to scans extracted from (a), (b) and (c), respectively. Each gradua-
tion corresponds to a ×10 variation.
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Figure 4.4.7: Reciprocal space maps recorded in the vicinity of the (400) Bragg reflection for YSZ
crystals irradiated with 4 MeV Au2+ ions at the fluence of 1015cm−2 and at temperatures (a) 80 K
(b) 573 K and (c) 1073 K.

damage-induced streak is now reduced to a weak peak on the lower l side of the main Bragg peak, and
the DXS forms an intense, elliptically shaped halo around the Bragg peak. These features are in remark-
able qualitative agreement with the tendency observed in YSZ. Reciprocal space maps recorded in the
vicinity of the (400) Bragg reflection for YSZ crystals irradiated with 4MeVAu2+ ions at the fluence of
1015cm−2 with increasing temperatures is given in figure (4.4.7). RSM for the sample irradiated at 80
K is characteristic of the first step of the damage build-up, 573 K corresponds to the beginning of the
second step and the last map for the crystal irradiated at 1073 K. This corresponds to the damage accu-
mulation process in which the points defects are created in the first stage which later coalesce to form
defect clusters. It should be noted that the extensions of the RSMs are quantitatively different since the
conditions considered in our model might not be exactly as in the real case. For example, the informa-
tion regarding the defect size is only approximately known in the real crystals. Additionally, very less is
known about the inner structure of the defect clusters, so that the defect mismatch and the scattering
density are unknown. More studies are required to refine these aspects.

4.4.6 Spatially correlated defects

An interesting feature in the irradiation of materials is the spontaneous formation of ordered nanos-
tructures, which is mainly observed in face-centered cubic and body-centered cubic metals. These
nanostructures include, among others, self-organized three-dimensional superstructure of voids (va-
cancy clusters), gas bubbles or dislocations loops with varying degree of disorder[21] . In this section
we investigate the effects of spatially correlated defects, in the case of long-range order (LRO) and short-
range order (SRO) spatial correlations andwith a varying degree of disorder. For simplicitywe assumed
a cubic ordering, but any type of array can be straightforwardly implemented. Additionally in order not
to overly complicate the RSMs we only consider the effect of ordering of defects of the same size and
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don’t take into account the previous depth gradient. It must emphasized, however, that any constraint

Figure 4.4.8: Probability density function in the case of low (a) and high (b) positional disorder,
for LRO (continuous lines) and SRO (dotted lines).

on the defects positions or defect sizes can be easily implementedwithout any additional computational
cost. For the sake of modeling spatial correlation we use the following probability density function

p(x) =
∑
n

g(x)× δ(x− nΛ) (4.14)

which corresponds to the probability of finding a defect at a distance x from another defect, Λ being
the period of the array. The function g(x) describes the positional probability density function at each
node of the superstructure. In the case of LRO it was assumed to be a Gaussian with a fixed standard
deviation, σ0, whereas in the case of SRO, the standard deviation was assumed to vary in a random-walk
type fashion, σn = n1/2 [22]. The corresponding density functions, with Λ = 20 unit-cells, are plotted
in fig. (4.4.8) in the case of a low (σ0 = Λ / 12) and a high (σ0 = Λ / 4) positional disorder. Increasing
the standard deviation widens the peaks of the probability density function resulting in an increased
disordering (i.e. the probability of finding a defects never drops down to 0). In the case of SRO, this
eventually leads to correlations restricted to the first neighbour.
The computed RSMs (with defect radius R1 = 2.5 nm, i.e., 5 unit-cells, and ε = 5%) corresponding to
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each case are displayed in Fig.(4.4.9) and (4.4.10). We first discuss the case of LRO (Fig. 4.4.9). In the

Figure 4.4.9: Computed 004 RSMs in the case of spherical defects with LRO spatial correlations:
(a) low positional disorder (σ0 = Λ /12); (b) high positional disorder (σ0 = Λ /4). In all maps
the logarithm of the intensity is plotted; each contour line corresponds to a 100.5 variation. The
intensity is truncated at Imax / 10 (white region in the center) to highlight the DXS. (d) l - scans
extracted at Δh = 0 evidencing the superstructure peaks. (e) h - scans extracted at Δl = -0.05
evidencing the DXS intensity and the superstructure peaks. The black and red lines correspond to
scans extracted from (a) and (b), respectively. Each graduation corresponds to a ×10 variation.

case of low positional disorder (Fig. 4.4.9 a), the DXS is elliptically shaped with clearly visible super-
structure peaks occurring for Δh, Δl = n / Λ = n× 0.05 (n being an integer). The superstructure peaks
occur along the coherent CTR (Fig. 4.4.9 c) but also in the DXS (Fig. 4.4.9 d). The intensity of the su-
perstructure peaks is modulated by Debye-Waller – like factor, exp(−2π2n2σ2

0), so that for low disorder
superstructure peaks are visible up to high orders n. On the contrary, as shown in Fig. (4.4.9 b) and
in the scans Fig (4.4.9 c) and (4.4.9 d), for increased disorder only the first order peaks are visible, and
the diffuse scattering has a structured shape corresponding to the DXS from isolated defects, where the
RSM exhibits two asymmetrical lobes and fringes on each side of a nodal plane located at Δl = 0 [12].
The broad secondary maximum located at Δl ≈ -0.12 corresponds to the diffraction from the core of
the defects. The peak shift is due to the strain inside the defect which gives rise to the observed shift of
-l× ε × (1 + ν)/[3(1 − ν)] = -0.124 (with ν = 0.3).

The case of SRO is displayed in Fig. (4.4.10). It can be readily observed that SRO leads to much less
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pronounced superstructure features. This can be explained by the fact that, in the case of a randomwalk
model, the width of the superstructure peaks scale as n2σ2

0 [22] , so that high order peaks are smeared
out, even for relatively small values of σ0. Therefore, for SRO, the low disorder case is similar to the
high disorder case of LRO, in particular regarding the overall shape of the DXS. A closer inspection,
however, reveals that the width of the first order peak is higher in the case of SRO than in LRO, in
agreement with the previous statement. For higher disorder, although first neighbor correlations are
present, no particular features can be detected in the RSMwhich correspond to the RSM from isolated
point defects.

Figure 4.4.10: Computed 004 RSMs in the case of spherical defects with SRO spatial correla-
tions: (a) low positional disorder (σ0 = Λ /12); (b) high positional disorder (σ0 = Λ /4). In all
maps the logarithm of the intensity is plotted; each contour line corresponds to a 100.5 variation.
The intensity is truncated at Imax / 10 (white region in the center) to highlight the DXS. (d) l -
scans extracted at Δh = 0 evidencing the superstructure peaks. (e) h - scans extracted at Δl =
-0.05 evidencing the DXS intensity and the superstructure peaks. The black and red lines corre-
spond to scans extracted from (a) and (b), respectively. Each graduation corresponds to a ×10
variation.

4.5 Conclusion

In this chapter, a computational method for the evaluation of the displacement field induced by de-
fects in irradiated materials and the corresponding XRD reciprocal space maps are presented. The total
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displacement field of the damaged crystals is calculatedusing aMonteCarlomethodwhere thedisplace-
ment fields of individual defects are summed up. This step combines vector programming and multi-
processing to speedup the calculation. The RSMs are obtained from the incoherent sum of Fourier
transforms of two-dimensional slices of the correlation function. This part is computed on the GPU
making use of optimized FFT algorithms. Themodel was tested by simulating different defect distribu-
tions. Inhomogeneous defect distributions with the variation of defect size, misfit and the defect con-
centration was presented. It was noted that small defects are very effective in producing homogeneous
strain and on the other hand, bigger defects are effective in distorting the crystal lattice heterogeneously
which gives rise to the DW factor. In the last part, we showed the success of this approach bymodelling
the DXS of irradiated zirconia single crystals containing a non-uniform defect depth-distribution and
undergoing defect clustering. The proposed approach allows to qualitatively reproduce the main fea-
tures observed in actual RSMs recorded from such crystals.
This approach is clearly not limited to the study of irradiated crystals and can be used for a broad range
of systems, as long as the displacement field of the defects can be computed. Indeed, for very high defect
concentrations, the relevance of the use of the displacement field from individual defects to compute the
total displacement field can probably be questioned. Additionally, for high defect concentrations the
computation times of the displacement field become prohibitively long, even with the improvements
presented in this work, so that an alternate method is preferable.
On the contrary, the GPU-accelerated approach to compute the RSMs from the displacement field is
solely dependent on the crystal size, and its efficiency is independent of the complexity of the displace-
ment field. It can hence be straightforwardly combined with any computational method that allows to
compute the displacement field. Moreover, the fast-growing computing power of the GPUs will cer-
tainly allow to study crystals with increased dimensions in the very near future.
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In this Appendix, the whole program written using the Python multiprocessing and GPU parallel pro-
gramming is presented.

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Python program for the study of Diffuse X-ray scattering in irradiated

materials.
# Program_DXS.py
# (c) 2015 Jayanth Channagiri, Alexandre Boulle, Aurélien Debelle
# Copyright SPCTS - UMR CNRS 7315
# Université de Limoges

#*******************Importing required Python packages****************
import sys
import matplotlib.pyplot as plt
from numpy import *
from scipy import special
from scipy.signal import fftconvolve
import random
import multiprocessing as mp
#**************Importing required Python packages for GPU*************
import pycuda.gpuarray as gpuarray
import pycuda.cumath
from pyfft.cuda import Plan
import pycuda.driver as cuda
from pycuda.tools import make_default_context
import pycuda.gpuarray as gpuarray

#********************Initiating the NVIDIA GPU************************
cuda.init()
context = make_default_context()
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stream = cuda.Stream()

#**************** Defect relative structure factor *******************
def rel_SF(u):

out = ones(shape(u))
uder = (u[:,1::] - u[:,:-1:])/d0
e_max = misfit * (1+nu) / ((1-nu)*3.)
F_vacancy = 1
out[uder>= e_max-0.0001] = F_vacancy
return out

#************* Defects displacement functions using Weave*************
# Spherical cluster with coulombian displacement
def u_coulomb_weave(xt, zt, yt, x0, z0, y0, misfit, R0):

q = shape(xt)[0]
r = shape(zt)[1]
s = shape(yt)[2]
u = zeros((q, r, s), dtype = 'float')
A = misfit * (R0**3) * (1+nu) / ((1-nu)*3.)
code = """

float R;
int i, j,k,d0;
d0 = 5;
for (i= 0; i<q;i++)
{

for (j=0;j<r;j++)
{

for (k=0;k<s;k++)
{

R = sqrt(((i*d0)-x0)*((i*d0)-x0) + ((k*d0)-y0)*((k*d0)-y0)+
((j*d0)-z0)*((j*d0)-z0));

if(R>=R0)
{

U3(i, j, k) = (A* ((j*d0) - z0)) / (R*R*R + 1e-9);
}
else
{

U3(i, j, k) = (A* ((j*d0) - z0)) / (R0*R0*R0 + 1e-9);
}

}
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}
}
"""

weave.inline(code, ['u', 'q', 'r','s', 'x0', 'y0','z0', 'A', 'R0'])
return u

#******Disordered crystal generation function performed using GPU*****
# correlation function
def generate_G_gpu(u_cal, a , order):

return pycuda.cumath.exp(2*pi*1j*(order/a)*u_cal)

#******************* strain gradient functions *********************
def f_strain_spline3_smooth(alt, sp,th):

w_strain_free = sp[:]
w_strain = array([0.0,0.0,0.0])
w_strain = append(w_strain,w_strain_free)
N_abscisses = len(w_strain) - 3.
zz = alt * N_abscisses / th
index = 0
strain = ones(len(zz))
for i in zz:

strain[index] = cubicSpline(i,w_strain) / 100.
index = index + 1

return strain

def create_u_straingradient(x, z, y, sp, sizex, sigx1, sigx2, sizez, sigz1,
sigz2, sizey, sigy1, sigy2):
maxsizez = (sizez + 3 * (sigz1 + sigz2))/d0
uz = f_strain_spline3_smooth(z[0,:maxsizez:,0], sp,sizez)*d0
return uz[:maxsizez:].cumsum().reshape(1, maxsizez, 1)

#****************Template displacement field generation**************
# Template displacement field is generated for a crystal of twice the size

the dimensions of the actual crystal in all directions containing a
defect in its center. From this template, any displacement field
corresponding to the actual crystal is extracted.

def create_u_template(c_def, misfit, R0, R0c, sizex, sigx1, sigx2, sizez,
sigz1, sigz2, sizey, sigy1, sigy2):
maxsizex = int((sizex + 3 * (sigx1 + sigx2))/d0)
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maxsizez = int((sizez + 3 * (sigz1 + sigz2))/d0)
maxsizey = int((sizey + 3 * (sigy1 + sigy2))/d0)
maxsizey = maxsizey/Nprocs
xt, zt, yt = arange(0, (maxsizex*2)*d0, x_step), arange(0, (maxsizez*2)*d0,

z_step), arange(0, (maxsizey*2)*d0, y_step)
xt = xt.reshape(len(xt),1, 1)
zt = zt.reshape(1,len(zt), 1)
yt = yt.reshape(1, 1, len(yt))
uc = u_coulomb(xt, zt, yt, maxsizex*d0, maxsizez*d0, maxsizey*d0, misfit,

R0, R0c)
return uc

#**************Displacement field calculation for non-uniform bimodal
distribution of defects using multiprocessing*****************

def create_u_defects_2_defects_grad(x, z, y, c_def, f_size2, sp, misfit, R0,
R02, R0c, sizex, sigx1, sigx2, sizez, sigz1, sigz2, sizey, sigy1, sigy2):
maxsizex = int((sizex + 3 * (sigx1 + sigx2))/d0)
maxsizez = int((sizez + 3 * (sigz1 + sigz2))/d0)
maxsizey = int((sizey + 3 * (sigy1 + sigy2))/d0)
print maxsizex
maxsizey = maxsizey/Nprocs
c_profile = f_strain_spline3_smooth(z[0,:,0], sp, sizez)
c_profile = c_profile / c_profile.max()
u_template1 = create_u_template(c_def, misfit, R0, R0c, sizex, sigx1,

sigx2, sizez, sigz1, sigz2, sizey, sigy1, sigy2)
print shape(u_template1)
u_template2 = create_u_template(c_def, misfit, R02, R0c, sizex, sigx1,

sigx2, sizez, sigz1, sigz2, sizey, sigy1, sigy2)
Ndef = int(c_def*(maxsizex*maxsizez*maxsizey))
print Ndef, "defects before coalescence"

N2 = int((Ndef*f_size2)*(R0/R02)**3)
Ndef = N2 + Ndef*(1. - f_size2)
def_ratio = 1. - N2/Ndef
print Ndef*(1. - f_size2), "small defects", N2, "large defects"
print def_ratio

def defect_loop_random(Ndef, out):
u_total = zeros((int(maxsizex), int(maxsizez), int(maxsizey)), dtype =

'float')
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#listx, listz, listy = array([0.]), array([0.]), array([0.])

n = 1
while n <= Ndef:

x0, z0, y0 = array([d0 * int(random.uniform(0, maxsizex))]),
array([d0*int(random.uniform(maxsizez*0.5, maxsizez))]),
array([d0*int(random.uniform(0, maxsizey))])

if random.uniform(0,1) < c_profile[int(z0[:]/d0)]:
sys.stdout.write('%i ' %(Ndef-n))
sys.stdout.flush()
if random.uniform(0,1) <= def_ratio:

u_total += u_template1[maxsizex-x0[0]/d0:2*maxsizex-x0[0]/d0:,
maxsizez-z0[0]/d0:2*maxsizez-z0[0]/d0:,maxsizey-y0[0]/d0:2*maxsizey-y0[0]/d0:
]

n +=1
else:

u_total += u_template2[maxsizex-x0[0]/d0:2*maxsizex-x0[0]/d0:,
maxsizez-z0[0]/d0:2*maxsizez-z0[0]/d0:,maxsizey-y0[0]/d0:2*maxsizey-y0[0]/d0:
]

n +=1
print (str(int(Ndef)) + "cycles / processor")
out.put(u_total)

out = mp.Queue()
jobs = []

out = mp.Queue()
jobs = []
for i in range(Nprocs):

p = mp.Process(target = defect_loop_random, args=(Ndef, out))
jobs.append(p)
p.start()

res = zeros((int(maxsizex), int(maxsizez), int(maxsizey), int(Nprocs)),
dtype = 'float')

for i in range(Nprocs):
res[:,:,:,i] = out.get()

p.join()

for i in range(Nprocs):
if i == 0:
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final_result = res[:,:,:,i]
else:

final_result = concatenate((final_result, res[:,:,:,i]), axis = 2)

print ""
print "Size of template (in MB)", (u_template1.nbytes +

u_template2.nbytes)/(1000.**2)
print shape(final_result)
return final_result

#*************************Displacement field calculation for spatially
correlated defects using multiprocessing (Only long range order is
presented here)*****************

def lro_corr(alt, period, sigma, size):
n = 0.
corr_f = 0
while n <= int(size/period):

corr_f = corr_f + exp(-0.5 * ((alt - n*period)/sigma)**2)
n += 1.

return corr_f

def create_u_defects_lro(x, z, y, c_def, misfit, R0, R0c, sizex, sigx1, sigx2,
sizez, sigz1, sigz2, sizey, sigy1, sigy2):
maxsizex = int((sizex + 3 * (sigx1 + sigx2))/d0)
maxsizez = int((sizez + 3 * (sigz1 + sigz2))/d0)
maxsizey = int((sizey + 3 * (sigy1 + sigy2))/d0)
maxsizey = maxsizey/Nprocs
u_template = create_u_template(c_def, misfit, R0, R0c, sizex, sigx1, sigx2,

sizez, sigz1, sigz2, sizey, sigy1, sigy2)
Ndef = int(c_def*(maxsizex*maxsizez*maxsizey))
def defect_loop_random(Ndef, out):

u_total = zeros((int(maxsizex), int(maxsizez), int(maxsizey)), dtype =
'float')

listx, listz, listy = array([0.]), array([0.]), array([0.])

n = 1
while n <= Ndef:
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x0, z0, y0 = array([d0 * int(random.uniform(0, maxsizex))]),
array([d0*int(random.uniform(0, maxsizez))]),
array([d0*int(random.uniform(0, maxsizey))])

prob = 0.#1.-int_type

distance = sqrt((x0 - listx)**2 + (z0 - listz)**2 + (y0 - listy)**2)
listx, listz, listy = concatenate((listx, x0)), concatenate([listz,

z0]), concatenate([listy, y0])
prob = lro_corr(x0, int_R, sigma_corr, maxsizex*d0) * lro_corr(z0,

int_R, sigma_corr, maxsizez*d0) * lro_corr(y0, int_R, sigma_corr,
maxsizey*d0)

if random.uniform(0,1) <= prob:
sys.stdout.write('.')
sys.stdout.flush()
u_total += u_template[maxsizex-x0[0]/d0:2*maxsizex-x0[0]/d0:,

maxsizez-z0[0]/d0:2*maxsizez-z0[0]/d0:,maxsizey-y0[0]/d0:2*maxsizey-y0[0]/d0:
]

n +=1
out.put(u_total)

out = mp.Queue()
jobs = []

out = mp.Queue()
jobs = []
for i in range(Nprocs):

p = mp.Process(target = defect_loop_random, args=(Ndef, out))
jobs.append(p)
p.start()

res = zeros((int(maxsizex), int(maxsizez), int(maxsizey), int(Nprocs)),
dtype = 'float')

for i in range(Nprocs):
res[:,:,:,i] = out.get()

p.join()

for i in range(Nprocs):
if i == 0:

final_result = res[:,:,:,i]
else:
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final_result = concatenate((final_result, res[:,:,:,i]), axis = 2)

print ""
print "Size of template (in MB)", u_template.nbytes/(1000.**2)
print shape(final_result)
return final_result

#************************* substrate functions **********************
def substrateE(qx, qz, x,z, sizex, sizez):

qx = 2*pi*qx
qz = 2*pi*qz
sub_sizex = sizex
sub_sizez = 60000.
sx = sub_sizex / 3.
sz = sub_sizez / 3.
Ez = (-1j/(qz))*(exp(1j*qz*sub_sizez)*exp(-0.5*(qz*sz)**2) - 1.) *

exp(1j*qz*sizez)
Ex = (-1j/(qx))*(exp(1j*qx*sub_sizex)*exp(-0.5*(qx*sx)**2) - 1.)
return Ez*Ex

#*********************** Morphological functions ********************
# right side (smooth) step function
def support_2(x, thickness, sig1, sig2):

t = x / (sqrt(2)*sig2)
tt = (thickness + 3*sig1) /(sqrt(2)*sig2)
z = (1 - special.erf((t-tt)))/2
return z

# left side (smooth) step function
def support_1(x, sig1):

t = x / (sqrt(2)*sig1)
z = (1+special.erf((t-(3/sqrt(2)))))/2
return z

# smooth top-hat function
def generate_1dsupport(x, thickness, sig1, sig2):

return support_2(x, thickness, sig1, sig2)* support_1(x, sig1)

#2D top-hat function
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def generate_2dsupport(x, sizex, sigx1, sigx2, z, sizez, sigz1, sigz2):
return generate_1dsupport(x, sizex, sigx1, sigx2) *

generate_1dsupport(z, sizez, sigz1, sigz2)

#3D top-hat function
def generate_3dsupport(x, sizex, sigx1, sigx2, z, sizez, sigz1, sigz2, y,

sizey, sigy1, sigy2):
ysupport = ones(sizey)
return generate_1dsupport(x, sizex, sigx1, sigx2) * generate_1dsupport(z,

sizez, sigz1, sigz2) * ysupport

#*********Monte Carlo evaluation of the diffracted intensity **********
def intensity_MC_gpu(u_cal, support_2d, substrate):

intensity = zeros((shape(qx)[0], shape(qz)[1]), dtype='float')
n = 1
while n<= int(sizey/d0):

print "MC step #", n
box0[:maxsizex:, :maxsizez:] = u_cal[:,:, n-1]
box0_gpu = gpuarray.to_gpu(box0)
sys.stdout.write('Computing correlation function... ')
corr_fct = generate_G_gpu(box0_gpu, d0, order)
sys.stdout.write('Computing intensity... ')
support_2d_gpu = zeros((int(x_range/d0), int(z_range/d0)), dtype='float')
support_2d_gpu[:] = support_2d[:,:,0]
support_2d_gpu = gpuarray.to_gpu(support_2d_gpu)
data_gpu = support_2d_gpu*corr_fct
data_gpu = data_gpu.astype(complex64)
plan = Plan((int(x_range/d0), int(z_range/d0)), stream = stream)
t0 = time()
plan.execute(data_gpu)
ampl_temp = data_gpu.get()
time_fft += time() - t0
ampl_temp = abs(fft.fftshift(ampl_temp)) * normalisation +

substrate[:,:,0]
int_temp = abs(ampl_temp)**2
intensity += int_temp
n += 1

intensity /= int(sizey/d0)
return intensity
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#*******************Parameters considered*****************************

Nprocs = 4#mp.cpu_count()
choice_GPU = 1
scale_substrate = 0.
choice_convolution = 1 # yes = 1 ; no = 0

# Crystal size
d0 = 5.
sizex, sizez, sizey = 500.*d0, 500.*d0, 125.*d0*Nprocs #Crystal size (in

Angstroms)

# Box size (for FFT)
sigx1, sigx2, sigz1, sigz2, sigy1, sigy2 = 0.001, 0.001 , 0.001 , 0.001 , 0.,

0. #Smooting parameters
x_range, z_range, y_range = 2048.*d0, 2048.*d0, sizey #Box size (in Angstroms)

# Material's and defect parameters
nu = 0.3 # Poisson's ratio
strain_p = array([ 0,0,0,0, 0, 0.5, 1, 0.5, 0.])
conc_p = array([ 0,0,0,0 , 0, 0.5, 1, 0.5, 0.])

misfit = 0.05 # cluster-matrix misfit
R0 = 5. # Defect size
R02 = 15. # Defect size (defect #2)
R0c = 50*R0

c_def = 0.01 # Defect concentration
f_size2 = 1. #number fraction of defects which coalesced

int_type = 1. # defect interaction type (0: repelling, 1: attraction)
int_R = 2*R0 # defect interaction range

# Experiment's parameters
order = 4. # Reflection order
wl = 1.5406
fwhmx = 0.0003
fwhmz = 0.0003
phi = -arcsin(wl/(2*(d0/order)))
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# Computation of the array sizes and step sizes
maxsizex = (sizex + 3 * (sigx1 + sigx2))/d0
maxsizez = (sizez + 3 * (sigz1 + sigz2))/d0
maxsizey = (sizey + 3 * (sigy1 + sigy2))/d0
Ndef = int(c_def*(maxsizex*maxsizez*maxsizey))

x_step, z_step, y_step = d0, d0, d0
normalisation = (x_step*z_step)

qx_step, qz_step, qy_step = 1. / x_range, 1. / z_range, 1./y_range
qx_range, qz_range, qy_range = 1. / x_step, 1. / z_step, 1./y_step

# Generate xyz and qxyz arrays
x, z, y = arange(0, x_range, x_step), arange(0, z_range, z_step), arange(0,

y_range, y_step)
qx, qz, qy = arange(-qx_range/2, qx_range/2, qx_step), arange(-qz_range/2,

qz_range/2, qz_step), arange(-qy_range/2, qy_range/2, qy_step)

x, z, y = x.reshape(len(x),1, 1), z.reshape(1,len(z), 1), y.reshape(1, 1,
len(y))

qx, qz, qy = qx.reshape(len(qx),1, 1), qz.reshape(1,len(qz), 1), qy.reshape(1,
1, len(qy))

#*****************Calling out all the functions************************
# Strain gradient (1D)
u_calg = create_u_straingradient(x, z, y, strain_p, sizex, sigx1, sigx2,

sizez, sigz1, sigz2, sizey, sigy1, sigy2)

# Crystal generation (3D)
u_cal = create_u_defects_2_defects_grad(x, z, y, c_def, f_size2, conc_p,

misfit, R0, R02, R0c, sizex, sigx1, sigx2, sizez, sigz1, sigz2, sizey,
sigy1, sigy2)

# Support function (2D)
support_2d = generate_2dsupport(x, sizex, sigx1, sigx2, z, sizez, sigz1, sigz2)

#Substrate amplitude (2D)
substrate = substrateE(qx, qz, x, z, sizex, sizez)*scale_substrate

# Create array with zeros for padding
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box0 = zeros((shape(x)[0], shape(z)[1]), dtype = 'float')

# Intensity computation : Main MC Loop / integration over qy
intensity = intensity_MC_gpu(u_cal, support_2d, substrate)

# Convolution with 2D resolution function
resol2D = f_2dgaussian(qx, qz, fwhmx, fwhmz, phi)
if choice_convolution == 1:

intensity = fftconvolve(intensity, resol2D[:,:,0], mode = 'same')

#******************************All PLOTS*****************************
plt.figure(1)
plt.imshow(rel_SF(u_cal[:,:, (sizey/(2*d0))]).T,

extent=(0,maxsizex*d0,0,maxsizez*d0), origin='lower').set_cmap('jet')

plt.figure(2)
plt.imshow(log10(intensity).T,

extent=(qx.min()*d0,qx.max()*d0,qz.min()*d0,qz.max()*d0), origin='lower')

plt.figure(3)
plt.subplot(3,1,1)
plt.xlim(0, sizez)
average_strain = (100*(u_cal[:,1::,:] -

u_cal[:,:-1:,:]).sum(axis=0)).sum(axis=1)/(d0*(sizex/d0)*(sizey/d0))
spline_strain = 100*(u_calg[0,1::,0] - u_calg[0,:-1:,0])/d0
plt.plot(z[0,:maxsizez-1:,0], average_strain)
plt.plot(z[0,:maxsizez-1:,0], spline_strain)

plt.subplot(3,1,2)
plt.xlim((qz[0,:]*d0).min(), (qz[0,:]*d0).max())
cut = 0.02
plt.semilogy(qz[0,:]*d0, intensity[shape(qx)[0]/2, :], qz[0,:]*d0,

intensity[shape(qx)[0]/2 + (cut/(d0*qx_step)), :])

plt.subplot(3,1,3)
plt.xlim((qx[:,0]*d0).min(), (qx[:,0]*d0).max())
cut = -0.04
plt.semilogy(qx[:,0]*d0, intensity[:, shape(qz)[1]/2], qx[:,0]*d0,
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intensity[:,shape(qz)[1]/2 + (cut/(d0*qz_step))])

plt.figure(4)
plt.imshow((u_cal[:,1::, (sizey/(2*d0))].T - u_cal[:,:-1:,

(sizey/(2*d0))].T)/d0, extent=(0,maxsizex*d0,0,maxsizez*d0),
origin='lower').set_cmap('jet')

plt.show()
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This investigation was conducted as part of a collaborative work of Science des Procédés Céramiques
et de Traitements de Surface (SPCTS) laboratory, Limoges with the Centre de Sciences Nucléaires et
de Sciences de la Matière (CSNSM), Orsay and financially supported by région Limousin. This thesis
was initiated with the aim of better understanding of the behaviour of materials (mainly YSZ) under
ion irradiation. The material YSZ, known for its high radiation resistance, is considered as a potential
candidate to be used as an inert matrix fuel in the nuclear industry. Moreover, zirconia shares the same
structure as urania, thoria and plutonia, without being radioactive, which makes the material particu-
larly interesting and easier to handle.

YSZ was irradiated under various temperatures and in a broad ion fluence range. The interaction of
ions with solids, and in this case with the YSZ target, leads to the creation of crystalline defects that
induces a displacement of the Bragg peaks, a lowering of their intensity and hence the concomitant ap-
pearance of diffuse scattering in the vicinity of the peaks. In the first part of this work, the focus was put
on extracting the strain and the damage depth profiles from the XRD data. The determination of these
profiles is hindered by the well-known phase problem and we were able to overcome this issue by using
a specific simulation based on the dynamical theory of diffraction combined with cubic B-spline func-
tions to model the shape of the strain/disorder profiles; a generalized simulated annealing algorithm
was implemented to find the best possible solution in the parameters space. The results gave an insight
into the variation of strain and damage levels with the increase in temperature and fluence. Information
extracted from XRD was compared with results obtained from complementary RBS/C experiments,
and fully interpreted in the light of TEM analyses. Main results can be summerized as follows: increas-
ing irradiation temperature only leads to a slight decrease of the final disorder, but significantly enhance
defect clustering due to a higher mobility of the defects.

The second part of the work was focused on computing realistic two-dimensional diffuse scattering
intensity distributions so as to be able to analyze the diffuse scattering from large (e.g. up to 109 unit
cells) irradiated materials. A crude approach of this task would encounters serious issues related to the
memory and the computing time required to handle such large crystals. Important efforts were there-
fore put in optimizing the algorithms and the computing tasks. We made use of heterogeneous parallel

156



General Conclusion

computingwhereinwhich the total displacement field is generated by the superposition of the displace-
ment fields of randomly generated individual defects by usingCPUmulti-processing. Subsequently, the
associated configuration-averaged reciprocal spacemaps are calculated usingmassively parallel comput-
ing on graphical processing units. This implementation allowed us to computeRSMs from large crystals
with a speedup of up to 190 times as compared to the conventional single-processed computation on a
desktop workstation. The efficiency of the method was illustrated with selected examples, particularly,
ion irradiated YSZ which exhibits a complex defect structure. We were able to demonstrate that small
defects (i.e. unit-cell sized) are very efficient in producing homogeneous elastic strain, therefore lead-
ing to the elongated streak towards the low-Q direction observed in the RSMs and θ − 2θ scans. We
further proved that defect coalescence was responsible for (i) a decrease of the apparent elastic strain,
(ii) a lowering of the coherent intensity and (iii) an appearance of diffuse scattering.

It is worthmentioning that theGPU-accelerated approach to compute the RSMs is solely dependent
on the crystal size, and its efficiency is independent of the complexity of the displacement field. It can
hence be straightforwardly combined with any computational method that allows to compute the dis-
placement field.

The work presented here have some very exciting future perspectives:

• Extremely fast growing GPU technology would help us analyze crystals of bigger dimensions in
the near future, and may also allow us to compute three dimensional RSMs.

• Instead of computing the displacement field using our Monte Carlo algorithm, it could be ob-
tained from atomistic simulations. This would allow to analyze even more complex situation,
although the size limitation in atomistic method still is an important issue.

• Another alternative way to compute the displacement fields would be to use finite element mod-
elling (FEM). This approach is broadly used in the case of nanostructure for instance. In our
case, it would be an interesting challenge to compute the displacement field from unit-cell sized
defects in large scale FEM simulations.

• The approach presented here is by no means restricted to the analysis of the irradiated materials
and can be used for a broad range of systems, as long as the displacement field of the defects can
be computed. For example, diffuse X-ray scattering studies of dislocations in thin films. The im-
provements of this method would allow quantifying the size (from point defects to large defect
clusters) and density of the defects in irradiated materials, with a non-destructive, easily accessi-
ble experimental technique.
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Strain and defects in irradiated materials – A study using X-ray diffraction and diffuse 
scattering 

Ion beams are commonly used in the framework of nuclear materials in order to reproduce, in a 
controlled way, the different sources of irradiation that these materials are submitted to. The interaction 
of ions with the material induces the formation of crystalline defects along the path of these ions, 
associated with high strains in the irradiated region. One of the main issues of the electro-nuclear 
industry is the encapsulation of the long-term nuclear waste. Yttria stabilized zirconia (YSZ) is one of 
the materials that can be used as an inert matrix for the transmutation of actinides and therefore, 
understanding its behaviour under different conditions of irradiation is of utmost importance. 
This thesis is divided into two distinct parts. In the first part of this work, we have used advanced X-ray 
diffraction (XRD) techniques in order to characterize the strain and the damage levels within the 
irradiated region of the crystals. The strain and the damage profiles were modelled using B-splines 
functions and the XRD data were simulated using the dynamical theory of diffraction combined with a 
generalized simulated annealing algorithm. This approach was used to study YSZ single crystals 
irradiated with Au2+ ions in a wide range of temperatures and fluences. The results were compared with 
the RBS/C results obtained for same samples.  
The second part of the thesis is devoted to the development of a specific model for calculating the two-
dimensional XRD intensity from irradiated single crystals with realistic dimensions and defect 
distributions. In order to achieve this goal, we have implemented high-performance parallel computing 
(both multi-processing and GPU-based) to accelerate the calculations. The approach was used to 
successfully model the reciprocal space maps of the YSZ single crystals which exhibit a complex defect 
structure. 

Keywords : X-ray diffraction, ion irradiation, modelling, zirconia, simulations, diffuse X-ray 
scattering, strain, defects, parallel computing 

Défauts et déformations au sein de matériaux irradiés – Étude par diffraction et diffusion 
des rayons X 

Les faisceaux d'ions, sont communément utilisés dans le cadre de l'étude des matériaux du nucléaire 
dans le but de reproduire, dans une certaine mesure, les différentes sources d'irradiations auxquelles 
sont soumis ces matériaux. L’interaction des ions avec la matière induit la formation de défauts cristallins 
le long du trajet de ces ions, associée à d'importantes déformations au sein de la zone irradiée. L'un 
des principaux enjeux de l'industrie électro-nucléaire consiste en l'encapsulation, à long terme, des 
déchets nucléaires. La zircone yttriée (YSZ) est un des matériaux qui pourrait être utilisé comme matrice 
inerte pour la transmutation des actinides. Par conséquent, la compréhension du comportement d’YSZ 
sous différentes conditions d'irradiations est d'une importance capitale. 
Cette thèse est décomposée en deux parties distinctes. Dans la première partie de ce travail, nous 
avons utilisé plusieurs techniques avancées de diffraction des rayons X (DRX) dans le but de 
caractériser les défauts et déformations au sein de la zone irradiée des cristaux étudiés. Les profils de 
déformations et de défauts ont été modélisés par des fonctions B-splines cubiques et les données DRX 
ont été simulées en utilisant la théorie dynamique de la diffraction couplée à un algorithme de recuit 
simulé généralisé. Cette démarche a été appliquée au cas des monocristaux d'YSZ irradiés par des 
ions Au2+ dans une large gamme de températures et de fluences. Les résultats ont été comparés avec 
ceux de la spectroscopie de rétrodiffusion de Rutherford en mode canalisé (RBS/C) obtenus pour les 
mêmes échantillons. 
La deuxième partie est consacrée au développement d'un modèle spécifique pour calculer la distribution 
bidimensionnelle d'intensité diffractée par des monocristaux irradiés de grandes dimensions et 
présentant des distributions de défauts réalistes. Pour atteindre cet objectif, nous avons mis en œuvre 
une approche de calcul parallèle haute performance (basée à la fois sur l'utilisation de processeurs 
multi-cœurs et de processeurs graphiques) afin de réduire les durées de calcul. Cette approche a été 
utilisée pour modéliser les cartographies X de l'espace réciproque de monocristaux d’YSZ présentant 
des défauts de structure complexe. 

Mots-clés : Diffraction des rayons X, irradiation aux ions, modélisation, zircone, simulation, 
diffusion diffuse des rayons X, déformation, défaut, calcul parallèle 


