
Préparée à

Université de Limoges et

Vietnam National University

Soutenue le 26/3/2021 par

Xuan Thanh DO

Encadrée par

Duong Hieu PHAN
Université de Limoges et

Telecom Paris, Institut

Polytechnique de Paris

Minh Ha LE
Vietnam National University et

Vietnam Institute for Advanced

Study in Mathematics

Rapporteurs

Carlos Aguilar Melchor
ISAE SUPAERO, Université de

Toulouse

Céline Chevalier
Université Panthéon-Assas

Paris 2

Examinateurs

David Pointcheval
CNRS, École Normale Supérieure

Olivier Blazy
Université de Limoges

Thèse de doctorat
de l’Université de Limoges

École doctorale 610 - Spécialité Mathématiques

Constructions de Schémas
Cryptographiques Multi-utilisateurs

Constructions de Schémas Cryptographiques
Multi-utilisateurs

Xuan Thanh Do

Supervised by Duong Hieu Phan and Minh Ha Le

ii

Abstract

This thesis considers a number of challenging aspects in multi-user cryptosystems
such as traitor tracing, broadcast encryption, trace & revoke, and functional en-
cryption. While a broadcast encryption scheme ensures the confidentiality of digital
content against unauthorized users in the system, traitor tracing is an important
tool to prevent authorized users from sharing decryption keys outside because if so,
the tracer, with the help of the traitor tracing algorithm, will identify which user
has disclosed information.

In the first part, we focus on privacy in broadcast encryption schemes. We propose
an anonymous broadcast encryption scheme in the bounded model (AnoBEB) whose
security is based on the k ≠ LWE assumption, which is a variant of the learning with
errors (LWE) assumption. Our construction enjoys optimal e�ciency (as e�cient as
LWE encryption) in the case where the number of users is bounded.

In the second part, we integrate the proposed AnoBEB system with a robust
identifiable parent property code (IPP) into a traceable scheme. Moreover, we achieve
a very strong functionality scheme, also covering revocation and thus yielding the
first trace & revoke scheme from a traceability code. Our construction becomes the
most e�cient trace&revoke scheme for standard black-box tracing in the bounded
collusion model.

The third part deals with traitor tracing algorithms for functional encryption.
We introduce a new primitive, which is called traceable functional encryption. We
then formalize the notion of security and provide a concrete construction for traceable
inner product functional encryption (traceable IPFE). The proposed construction
relies on pairings. It enjoys a high e�ciency and achieves black-box confirmation.

Finally, we recall the notion of revocable functional encryption. We provide
several pairing-based constructions for inner product functional encryption with
short ciphertexts or decryption keys. We will then extend this notion to the fine-
grained revocable functional encryption and propose a candidate construction for
fine-grained revocable inner product functional encryption.

iii

iv

Résumé

Cette thèse considère des aspects principaux dans les cryptosystèmes multi-
utilisateurs tels que la di�usion de données chi�rées, la révocation, le traçage des
traîtres et le chi�rement fonctionnel. Alors qu’un schéma de di�usion de données
chi�rées garantit la confidentialité du contenu numérique contre les utilisateurs non
autorisés du système, le traçage des traîtres est un outil important pour empêcher
les utilisateurs autorisés de partager les clés de déchi�rement à l’extérieur.

Dans la première partie, nous revisitons la privacy dans les schémas de di�usion
de données chi�rées. Nous proposons un schéma anonyme (AnoBEB) dont la sécurité
est basée sur l’hypothèse k≠LWE, qui est une variante de l’hypothèse d’apprentissage
avec erreurs (LWE). Notre construction bénéficie d’une e�cacité optimale (aussi
e�cace que le chi�rement LWE) dans le cas où le nombre d’utilisateurs est borné.

Dans la deuxième partie, nous intégrons le système AnoBEB proposé avec un code
traçable IPP robuste dans un schéma de traçage de traîtres. De plus, nous obtenons
également une propriété de révocation et produisons ainsi le premier schéma de
trace&revoke à partir d’un code traçable. Notre construction devient le schéma de
trace&revoke le plus e�cace pour le traçage en boîte noire dans le modèle de collusion
bornée.

La troisième partie traite des algorithmes de traçage des traîtres pour le chi�rement
fonctionnel. Nous introduisons dans un premier temps une nouvelle primitive, appelée
traceable functional encryption (TFE). Nous formalisons ensuite la notion de sécurité
et fournissons une construction concrète du TFE dans le cas du produit scalaire
(traceable IPFE). La construction proposée repose sur des couplages sur des courbes
elliptiques, est très e�cace et obtient le niveau de traçabilité dit de black-box
confirmation.

Enfin, nous rappelons la notion de revocable functional encryption. Nous four-
nissons plusieurs constructions basées sur les couplages pour le chi�rement fonctionnel
dans le cas du produit scalaire avec des textes chi�rés courts ou des clés de déchi�re-
ment courts. Nous étendrons ensuite cette notion au fine-grained revocable functional
encryption et proposerons une construction candidate pour fine-grained revocable
inner product functional encryption.

v

Acknowledgements

First and foremost, I would like to express my immense gratitude to my advisor,
Duong Hieu Phan. In my view, he is a passionate, enthusiastic, energetic person in
research work and a crypto expert. These are the main reasons why I am determined
to pursue a doctoral degree in Cryptography. He is also an active and strong
advocate to promote the development of Vietnamese cryptography. Asiacrypt 2016
international conference that he organized in Hanoi to help students, the Vietnamese
crypto community have a chance to hear the best results and meet the world’s leading
experts. He has either directly taught or invited experts to teach crypto courses to
Vietnamese students. A lot of talented students are helped by him, went to France
to study. I was fortunate to be brought to Limoges and directly supervised by him. I
truly thank him for his e�orts. Although he is very busy with his scientific activities,
he devoted as much time as possible to my study and research theme: patiently
teaches me the basics of cryptography, proofs, and techniques until I get it, allowed
me to attend conferences and courses to gain more new knowledge, and provided
insightful discussions about the research theme. He always encourages me to ask
questions and is ready to answer any questions I have about crypto. I really enjoyed
the topic he gave me as I found that it is important and really meaningful. When I
got stuck, he helped me get through. He often advised me to have good living habits
in daily life: not to stay up late and to do sport to stay healthy. I thank him for all
the wonderful things he did for me.

I also sincerely thank my co-advisor, Minh Ha Le, for his kindness and support.
He is always willing to help when I needed.

I am very grateful to the reviewers, Carlos Aguilar Melchor and Céline Chevalier,
who agreed to review my manuscript. I am also very grateful to David Pointcheval
and Oliver Blazy for accepting as examiners in my thesis committee.

I am glad to have had the opportunity to work with David Pointcheval and
Moti Yung. I would like to say thank you to them. I really learned a lot from the
discussions with them.

I would like to thank the administrative and technical sta� at XLIM: Nicolas
Annie, Sabrina Brugier, Débora Thomas and Henri Massias, as well as Thuy Phung,
Hong Duc Chu at VNU.

Thank you to all members of the Cryptis team and the Falculty of Mathematics,
Mechanics and Informatics (VNU), especially the lecturers who directly taught me
during my PhD studies.

I am also grateful to my Vietnamese friends: Huy Vu, Truong Mac, Chi Do, Minh
Nhon, Nang Thieu, Ngoc Nguyen, Hoang Duc, Thoi, Nga, Lan. We used to play

vi

football, ping pong, drink beer, cook together, and play rummy, board games for the
holidays. I would like to thank Jérémy, my o�ce mate, and was always excited to tell
me about his papers and explain the critical points of these papers, Chloé, Charline,
who were enthusiastically helping me when I first arrived in Limoges, picked me up
at Limoges Station, showed me around and introduced some of the places in the
city center, and sometimes we walked the park and had dinner together, Hamza,
who is very close to Vietnamese students. We used to play ping pong together every
weekend. With all of you, I had the best time in Limoges.

Last but not least, my deepest love goes to my family, who have always supported
and understood me. They have always accompanied me throughout my studies.

vii

viii

Contents

1 Introduction 1
1.1 Broadcast Encryption . 4

1.1.1 Notion . 4
1.1.2 State of The Art in Broadcast Encryption 5

1.2 Traitor Tracing . 7
1.2.1 Notion . 7
1.2.2 State of The Art in Traitor Tracing 10

1.3 Motivation for Our Works and Contributions 14

2 Preliminaries 17
2.1 Notations . 18
2.2 Standard Assumptions . 19

2.2.1 Prime order group assumptions 19
2.2.2 Pairing group assumptions . 19
2.2.3 Hardness assumption of k ≠ LWE 21

3 Anonymous Broadcast Encryption for Bounded Universe 24
3.1 Definitions . 25

3.1.1 Broadcast Encryption . 25
3.1.2 Anonymous Broadcast Encryption 26

3.2 A Construction based on the Learning with Errors Assumption 27
3.3 E�ciency of AnoBEB . 33

4 Trace & Revoke Scheme from AnoBEB 34
4.1 Definitions . 35

4.1.1 Intuition . 35
4.1.2 Trace & Revoke Systems . 35
4.1.3 Robust Identifying Parent Property codes 37

4.2 Construction . 39
4.2.1 Trace & Revoke scheme from AnoBEB and robust IPP code . . . 40
4.2.2 Correctness and Security . 46

5 Traceable Inner Product Functional Encryption 50
5.1 Traceable Functional Encryption . 51

5.1.1 Definition . 51
5.1.2 Security . 53

ix

5.2 Construction for Inner-Product Case . 54
5.3 Security Analysis . 56

5.3.1 Semantic Security . 56
5.3.2 Security of Tracing Algorithm 60

6 Revocable Inner Product Functional Encryption 69
6.1 Revocable Functional Encryption . 70

6.1.1 Motivation . 70
6.1.2 Definition . 70
6.1.3 Security . 71

6.2 Revocable Functional Encryption for Inner Product with Constant-size
Secret Keys . 72
6.2.1 Construction based on q-type Assumption 72
6.2.2 Construction based on BDDH and DLIN Assumptions 76

6.3 Revocable Functional Encryption for Inner Product with Constant-size
Ciphertext . 82
6.3.1 Construction based on q-type Assumption 82
6.3.2 Construction based on BDDH and DLIN Assumptions 87

6.4 Towards Fine-grained Revocable Functional Encryption for Inner Product 95

7 Conclusion & Disscussion 100

x

1 Introduction

Modern Cryptography
Nowadays, with the widespread popularity of the internet, step by step, social

activities are now done online on the internet. As a result, the need to secure
cyberspace information is legitimate and growing. This demand exists in security,
national defense, and state management systems. Not only that, but this need also
appears in many socio-economic activities such as finance, banking, commerce, etc.,
and even in people’s daily activities (electronic mail, payment, credit, etc.). Due to
its vital significance, the field of information security lures the attention of many
experts in Cryptography and Mathematics all over the world. The primary purpose
of cryptography is to protect the security of communication over public and insecure
channels. The content of the conversation has to be encrypted so that adversaries can
learn no any information. Besides ensuring the confidentiality of the conversation’s
content, cryptography is also used for many other purposes, such as authentication,
integrity, non-repudiation.

Before the 1970s, all cryptographic communications are based on symmetric
cryptography techniques. In a symmetric cryptosystem, each pair of parties have
to agree on a shared secret key which is used for both encryption and decryption.
During communication, the sender uses the encryption algorithm Enc(k, m), where
m is the message to be encrypted, and k is the secret key, to obtain a ciphertext c
corresponding to plaintext m. This encrypted message is transmitted to a recipient.
The recipient recovers the message using the decryption algorithm Dec(k, c).

In contrast to the symmetric cryptography, asymmetric cryptosystems (also
known as public-key encryption) refer to the use of di�erent keys for encryption
and decryption. The decryption key is known only to a decryptor (recipient); it is
called the private key. The key that is published and thus, known to any party, is
called the public key. Encryption algorithm Enc(pk, m) takes as input a message m
and the public key pk, it then encrypts the message m along with the public key pk
to generate a ciphertext c. The ciphertext c is then transmitted over an insecure
channel. A recipient receives the ciphertext c and applies decryption algorithm
Dec(sk, c), where sk is the private key, to recover the message m.

The participants do not need anymore to agree on a shared secret key in advance.
They could communicate freely over untrusted networks by communicating only the
public key. This is indeed a major breakthrough and has revolutionized the field of
cryptography. Nowadays, it becomes the backbone of most large-scale encryption

1

schemes, for instance on the Internet.
With pioneering primitives in asymmetric cryptosystems, namely key exchange

in 1976 by Di�e and Hellman, public-key encryption in 1978 by Rivest, Shamir, and
Adleman, the scope of applications of cryptology is significantly expanded, and a
new era of modern cryptography has been open.

Public-key encryption (PKE) has always been a pillar in modern cryptography and
gradually became one of the most widely used and studied cryptographic primitives.
Traditional public key encryption schemes are used to provide confidentiality for
one-to-one communication over a public broadcast network. Practical applications of
PKE can be listed email (PGP), secure web browsing (SSH, SSL, TLS) and it occurs
in almost all areas of life: e-banking, e-commerce, e-insurance,...

The last decade has witnessed the emergence of cloud computing, where millions
of users worldwide with portable devices, laptops, smart devices, etc. can access
and store personal data such as photos, videos, invoices, personal medical records,
etc. on the Internet. Users can access and work from anywhere, anytime. Clearly,
it has drastically changed the ways of communication, work, and entertainment of
people worldwide. A wide range of applications, utilities, and platforms have been
designed, built, and launched to meet the communication and work needs. It has
gone beyond its primary purpose as a means of storing data: when a user wants to
access and work with data, he will have to download it to his device and then process
it. Consequently, the computation burden must be placed on personal devices where
the computing capacity is very limited. In such early days of cloud computing, users
simply stored personal data in a clear form. It is potentially a loss of personal data
if the cloud servers are attacked and lose control. As we have analyzed, establishing
trust in service providers in a computer network environment is quite risky. We
cannot be sure what they will do with our data. Therefore, we should encrypt our
data before posting it online. The birth of cloud computing with the primary task
is to provide computing services and return results to individual devices, end-users.
Nevertheless, the data stored in the cloud is in not clear form, so how can the servers
compute with this data? Is there any mechanism that allows servers to compute over
encrypted data without knowing anything about the underlying content?

To ensure the data privacy of users and the security of the computing systems on
the cyberspace of those platforms, traditional PKE is clearly not enough to satisfy
the increasing needs of users. Cryptographic primitives need to be extended and
considered in the multi-user setting. There have been many important studies and
implementations that have been conducted by the community of cryptographers
aiming to improve and upgrade PKE. The question is whether there is any method
(supporting the multi-user setting) to ensure the confidentiality of personal data
where heavy computation is outsourced to servers with strong computing power
in the sense that it leverages the power of cloud computing. Three options can
satisfy the above question: Multi-party Computation (MPC), Fully Homomorphic
Encryption (FHE) [Gen09] and Functional Encryption (FE) [BSW11].

1. MPC protocols allow parties to agree and work together to compute an arbitrary
common function so that each party knows only the value of the joint function
and nothing more. MPC is very useful in the design of decentralized protocols.
The general result [Yao82] shows that we can have MPC solution for any function.
That means MPC has supported fine-grained computation on data. However,
the main limitation of such a general result is the cost of communication, in
particular, the interaction between parties is extremely high and impractical.

2

2. FHE and multi-key FHE ([Gen09], [LTV12], [MW16]) are powerful tools and
extremely useful. Gentry’s groundbreaking work allowed the computation
of an arbitrary function on encrypted data in the single-user setting, while
multi-key FHE allows any computation on encrypted data in the multi-user
setting. One notable feature of Gentry’s FHE systems and variants (compared
to MPC) is that the schemes are non-interactive, so they are e�ective at low
communications. However, FHE constructions have not yet achieved practical
e�ectiveness.

3. Functional encryption schemes capture the benefits of PKE schemes (low cost
of interaction between users) and MPC protocols (fine-grained access control
to the data). FE notion is introduced by Boneh, Sahai, and Waters. It
is a generalization of some notion such as identity-based encryption (IBE),
attribute-based encryption (ABE), predicate encryption (PE) and broadcast
encryption (BE). Informally, a functional encryption scheme for a circuit family
C associates secret keys SKf with every circuit f œ C, and ciphertexts CT with
every input x. Any user who has the secret key SKf and the ciphertext CT
should be able to learn f(x), and nothing more. There has been constructions
of FE schemes for arbitrary general functions. However, these constructions
are based on non-standard cryptographic assumptions like indistinguishability
obfuscation (iO) or multi-linear maps. Although there is no FE construction
for every function based on well-known assumptions, there have been many
e�ective FE constructions for linear and quadratic functions as well as extended
versions of these functions in multi-input and multi-client settings.

While FE and ABE are of much interest in theory, it is still hard to believe that
there will be a practical solution in their general form. Therefore, it is also important
to study more basic primitives that are relevant in the real-world. In this thesis, we
focus on broadcast encryption and traitor tracing in multi-user encryption and in
inner-product functional encryption, which has many practical applications such as
pay-TV and satellite transmission.

While broadcast encryption can be seen as a generalization of PKE to the one-
to-many setting, traitor tracing is concerned with a genuinely new problem. We
first look at the setting where a center encrypts a message to all users. We want to
protect against users sharing their secret decryption keys with people outside the
group. Users who act in this way are called traitors. Since there is no way to prevent
users from sharing their secret keys or algorithms containing these keys, the idea is
that identifying a traitor from his decryption key will prevent users from giving their
keys away. We consider a practical scenario (pay-TV, for instance) in which a content
provider wants to privately broadcast to a set of paying clients. In this scenario,
each user receives a decryption box, called a decoder, containing its subscription
information that helps to decrypt the broadcasted ciphertext. If an attacker can
either corrupt some of the already paying clients or buy several subscriptions, then
some secret information can be extracted by the adversary. The adversary then
uses the information to produce a pirate device that allows anyone who owns the
device to recover illegally any private content in the broadcast system. Such pirate
devices caused serious economic damage to digital content delivery services. The
confidentiality feature of encryption schemes does not provide any guarantees against
such attackers, and this is obviously a new problem that we need to consider when
designing multi-user schemes. Such schemes are generally called Traitor tracing (TT

3

in short). We will consider TT in the standard multi-user encryption setting and
extend it to the case of FE.

1.1 Broadcast Encryption
Broadcast encryption is a generalization of one-to-one encryption to the one-to-

many setting, where a sender can choose at the time of encryption the target set
of users that can recover a broadcasted message. Traditional public-key encryption
clearly exposes a limitation (being very ine�cient) in encrypting a message to many
users. When the target set of users does not change much, a possible solution is that
we use a common key for all users in the target set. If users’ target set often changes,
which is the case in practice, e�cient encryption of a message for many users may
become a much more challenging task.

1.1.1 Notion
Broadcast encryption is a cryptographic primitive designed to e�ciently distribute

an encrypted content via a public channel to a designated set of users so that only
privileged users can decrypt while the other users cannot learn anything about
the content. The first constructions of broadcast encryption were proposed by
Berkovits [Ber91], and most notably by Fiat-Naor [FN94] who also advocated that
an e�cient scheme should be more e�cient than just repeating a single ciphertext
per user.

In the scheme in [FN94], the ciphertext size is sublinear in the number of users;
O(t log2 t log N) and it is secure against a collusion of t users. In real-life applications,
broadcast encryption schemes were largely employed in pay TV, satellite subscription
services, DVD content, multicast communication,.. Due to their usefulness, finding
e�cient constructions of broadcast encryption schemes has received considerable
attention from cryptographers ([NNL01], [BGW05], [DPP07]).

We consider the situation in which there is a group of users whose decryption
keys are obsolete or intendly leaked outsite for profit purposes. The objective
of the content provider is to revoke all of those malicious users from the scheme.
Roughly speaking, the content provider has to prevent them from decrypting the
content even if they collude together. Revocation functionality of the distributor
is inherently provided in some broadcast encryption systems. These form a special
kind of broadcast encryption schemes (a variant of BE schemes) in which a content
provider broadcasts encrypted messages that are generated in such a way so that
all but a small subset of recipients (the “revoked” users or non-paying subscribers)
can recover the message. They are called revocation schemes. In case the number
of users in the system is given and fixed, we consider broadcast encryption and
revocation schemes in which we do not di�erentiate between them. In case the set
of users in a system can change and update, there is a di�erence between BE and
revocation schemes. The Broadcast encryption scheme in this case is called dynamic
BE scheme [DPP07], [KHAM08], [PPS12]. For a dynamic BE scheme, users who join
the system after the broadcasted ciphertext is sent are in the revoked set, while for a
revocation scheme new users are in the privileged set.

4

1.1.2 State of The Art in Broadcast Encryption
There are two approaches to construct broadcast encryption schemes: an algebraic

approach and a combinatoric approach. The algebraic constructions often exploit
properties of algebraic structures (pairings, lattices, multi-linear maps, for instance)
directly. In this category, the most prominent result in broadcast encryption area
was the outcome in the paper of Boneh, Gentry and Waters [BGW05]. By using
a symmetric pairing in a prime-order group, Boneh, Gentry, and Waters (BGW)
[BGW05] introduced the first fully collusion secure broadcast encryption scheme with
constant-size ciphertext and decryption keys of users (independent of the number of
users in the system) and the public key size in the system is linear in the number of
users. A BE scheme is said to be collusion resistant if no coalition of users outside
of target set should be able to learn the original message from the broadcasted
ciphertext. The BGW scheme is proven secure in the standard model under the
N -BDHE assumption (q-type assumption). One of shortcomings of Boneh et al.’s
scheme [BGW05] is that it is proven selectively (static) secure where the adversary
is required to choose the corrupted users before the setup. It constrasts with the
notion of adaptive security. A typical scheme with adaptive security is of Gentry
and Waters [GW09]. However, the main drawbacks of the scheme is that it has
decryption keys with size linear in N and it is proven secure in the random oracle
model.

Since the first fully collusion secure broadcast encryption scheme with constant-
size ciphertext was described by Boneh, Gentry, and Waters [BGW05], many other
fully collusion secure broadcast encryption scheme based on bilinear maps were
proposed [Del07], [GW09], [PPSS12], [Wee16].

Gay, Kowalczyk, and Wee [GKW18a] proposed the first broadcast encryption
scheme with constant decryption key and ciphertext size that achieve adaptive
security under a static assumption (k-Lin) in prime-order bilinear groups. However,
their construction have a limitation in which the public key is quadratic instead of
linear in the total number of users in the system.

Lewko, Sahai, and Waters [LSW10] proposed an identity based revocation en-
cryption scheme with no bound on the number of users that can be revoked by
applying the 2-equation technique. Their constructions are based on symmetric
bilinear maps in prime order groups and their revocation scheme has ciphertext size
in O(r), private key size in O(1), and public key size in O(1).

A family of fully collusion secure broadcast encryption schemes relied on multi-
linear maps has been proposed [BW13], [GGH13]. These schemes achieve optimal
constants for ciphertext size and decryption key size, but the size of public key is
large and the encryption algorithms are private. In Crypto 2014, Boneh, Waters, and
Zhandry [BWZ14] introduced public key broadcast encryption schemes that make use
of the multi-linear map candidates. Their schemes achieve ciphertext size, decryption
key size in O(1) and public key size in O(log N). Lastly, the scheme of Boneh and
Zhandry [BZ14] achieves constant size keys, ciphertext size and short public key.
However, their scheme relies on strong assumptions namely, indistinguishability
obfuscation.

At Eurocrypt 2020 [AY20], Agrawal and Yamada considered BE schemes as
ciphertext policy attribute based encryption (CP ≠ ABE) schemes for policies that
are circuits in class NC1. In a CP ≠ ABE scheme, a message m will be encrypted
along with a policy f , and secret keys are generated for users with public attributes x.
Decryption will recover the original message m as long as the attribute x satisfies the

5

policy f , namely f(x) = 1. In the CP ≠ ABE context, BE will be restated as follows:
the encrypt algorithm takes as input a checking membership circuit fS for a set of
target S and a message m, it will output a ciphertext C such that only users with a
secret key that encodes the attribute i œ S can decrypt the message. To construct
a CP ≠ ABE where the sizes of the decryption key, public key, and ciphertext are
independent of the number of users, they employ the decomposability property in
the encryption algorithm of Boneh et al. scheme [BGG+14]. We note that Boneh’s
scheme is a key policy attribute based encryption (KP ≠ ABE), which is a dual notion
of CP ≠ ABE where the roles of the private key and the policy are interchanged,
and the construction of KP ≠ ABE for all circuit (including NC1) has relied on an
assumption on a lattice problem (LWE). Applying Boneh’s construction directly
does not give a collusion resistant scheme. Agrawal and Yamada lifted components
of the ciphertext and secret keys into the exponent form of a group element rather
than scalars to overcome this. They thus make use of a pairing to obtain a scheme
with collusion resistance. The parameters of their scheme are the following: the sizes
of a public key and a decryption key only depend on the depth of policy fS and
are independent of the size of that policy; the size of a ciphertext only depends on
the length of the input (the length of the attributes) and also does not depend on
the size of the circuit fS. It is known that for a set of target S µ [N] the depth
of policy check membership fS is O(log N) and the input length is also O(log N).
After converting KP ≠ ABE into CP ≠ ABE, they achieved a BE scheme with optimal
parameters and the security of their scheme is proved in the generic group model.

The combinatoric broadcast encryption schemes are constructions using tree
structures or fingerprinting codes. Pioneering results in tree-based broadcast encryp-
tion constructions we can mention are of Fiat and Naor [FN94]; Naor, Naor, and
Lotspiech [NNL01] (NNL scheme) with the Subset Cover Framework. The scheme of
Fiat and Naor was designed to be secure against a collusion of t users. In this case,
if there is an attacker who can compromise the private keys of more than t users,
then he may break the security of the BE scheme.

In order to construct a fully collusion resistant BE scheme in the sense that the
scheme is secure without a bound on the number of colluded users, Naor, Naor, and
Lotspiech [NNL01] proposed a general paradigm which is called the subset cover
(SC) framework, and they also proposed symmetric key revocation schemes such
that a content distributor can transmit a broadcasted ciphertext to all users but
r revoked users. They provided two instantiations of the SC framework which are
the complete subtree (CS) and the subset di�erence (SD) schemes. The CS scheme
has a ciphertext size in O(r log N/r) and a decryption key size in O(log N), and
the SD scheme has a ciphertext size in O(r) and a decryption key size in O(log2 N)
where N is the number of users in the system and r is the number of revoked users.
Halevy and Shamir [HS02] proposed the layered subset di�erence (LSD) scheme that
has a ciphertext size in O(r) and a decryption key size in O(log1.5 N). Dodis and
Fazio [DF02] proposed a public key version of the subset-cover framework using an
identity based encryption hierarchical IBE (HIBE) scheme for the CS structure and
HIBE of depth log N for the SD structure. Their scheme retains the same e�ciency,
using (H)IBE keys instead of symmetric keys.

6

1.2 Traitor Tracing
1.2.1 Notion

As we all know, nowadays, digital content piracy is becoming more and more
serious, and this can cause significant damage to companies and economies of
countries. A possible solution that can contribute to mitigating the issue is to use
cryptographic tools. One such tool used to deal with this issue is traitor tracing, a
fundamental primitive in cryptography. Traitor tracing ensures that anyone who
intentionally violates digital copyright content can be detected and punished. A
rough description of a traitor tracing (TT) system is as follows. We consider a TT
scheme of N recipients (users), where each user holds a secret decryption key and a
digital content distributor. The distributor uses a public key to encrypt a digital
content (message). The corresponding ciphertext is then put on a public channel
(insecure channel) and transmitted to all recipients. The legitimate recipients who
own a valid decryption key can recover the digital content.

Suppose a coalition of recipients (traitors) pooling together their secret decryption
keys, and they jointly produce an illegal decoder device (pirate device). Whenever a
pirate decoder is caught, a traitor tracing scheme provides a tracing algorithm that
can identify at least one of the recipients in the coalition.

The primary purpose of traitor tracing systems is to help content distributors
identify traitors (pirates) who violate copyright restrictions. The very first traitor
tracing scheme was proposed by Chor, Fiat, and Naor [CFN94]. A traitor tracing
system basically consists of five algorithms Setup, Extract, Encrypt, Decrypt, and
Tracing. The Setup algorithm generates a public key PK, a master secret key MSK,
and a tracing key TK. The Extract algorithm uses the master secret key MSK to
produce decryption keys sk1, ..., skN , which are then delivered to legal users. The
Encrypt algorithm takes as input the public key PK and a message m, it outputs
a ciphertext. The message can be recovered successfully by using the Decrypt
algorithm with any legal decryption key ski. The illegal users who do not own any
legal decryption key learn nothing about the content. The Tracing algorithm takes
the tracing key TK as input, interacts with a pirate decoder. It outputs at least an
index of user i œ {1, . . . , N}, which is associated with the decryption key ski that
was used to build the pirate decoder.

Suppose that the pirate decoder only has a maximum of t decryption keys (the
number of traitors has been assumed to be bounded by a threshold t). A traitor
tracing scheme is called t-collusion resistant if the tracing algorithm still works
correctly in this case. When the parameter t is an arbitrary polynomial, and the
number of traitors is no longer required to be smaller than a certain threshold (anyone
in the system can be a traitor), the scheme is called fully collusion resistant.

A traitor tracing scheme is called secret key if Tracing algorithm of the Tracer
makes use of the master secret key MSK to identify traitors (tracing key is master
secret key). In the opposite direction, if the Tracer only uses public information to
identify traitors, then we will call it a public-key traitor tracing scheme. The public
traceability property of not using any secret information to identify traitor tracing is
very interesting (any party can run the Tracing algorithm), and is one of a desirable
property of the traitor tracing schemes. Boneh and Franklin [BF99] introduced the
first e�cient public-key traitor tracing scheme that supports bounded collusions in
the sense that given a positive integer t, for any collusion of traitors with size at
most t, at least a traitor is accused correctly by a tracer who runs Tracing algorithm.

7

The scheme is e�cient because the parameters: the public key and private key for
each user are independent of the number of users, and the ciphertext size is only
linear in t.

There are two approaches to deal with the traitor tracing problem: the algebraic
approach (pairing-based and lattice-based schemes, for example) and the combinatoric
approach. The algebraic schemes give us traitor tracing schemes supporting both
bounded collusion [BF99], [CPP05], [LPSS14], [ABP+17] and unbounded collusion
[BSW06], [BW06], [BZ14], [GKW18b] while the combinatoric approach based schemes
mainly produce bounded collusion schemes [CFN94], [BS95], [BN08], [BP08],....

Traitor tracing models The crucial part of a traitor tracing scheme is the traitor
tracing procedure. Typically, the traitor tracing procedure works in one of the two
following models: non-black-box and black-box.

1. In a non-black-box tracing model, the tracer is supposed to be able to use the
reverse engineering technique to open the pirate decoder and get the stored
keys inside the pirate decoder. In this case, the tracing algorithm should find
at least one traitor given the set of pirate keys. We note that the decryption
keys are put in the pirate decoders may not be the same as the colluder’s
original decryption key. To make the traitor tracing process more di�cult,
the colluders intentionally deviate decryption keys such that the decrypting
process of the pirate decoder still recovers the original message correctly. They
do that by mixing decryption keys (for example, they take a linear combination
of decryption keys randomly) and then put them into the pirate decoder.

2. In the black-box tracing model, the situation is more complicated because the
reserve engineering technique may not work in this case. Then the tracer cannot
open the decoder box and access the stored keys. In this setting, the tracer
treats the pirate decoder as a black-box oracle. However, in this model, the
tracer can do interactions with the pirate decoder by making query ciphertexts
and observing the responses. That is, it can query encrypted messages to
the pirate decoder and see the output of the pirate decoder. To deal with
black-box pirate decoders, we can apply the linear tracing technique proposed
by Boneh and Franklin. In this technique, the tracer prepares ciphertexts.
Each ciphertext has many components. The pirate decoder is tested by the
tracer who sends ciphertexts. In the next steps, the tracer replaces step by
step each component with a random element. When we change a ciphertext
component into a random component, this only a�ects at most one user. Thus,
if the tracer detects pirate decoder decrypts di�erently from one step to the
next, we can catch a traitor.

3. A weaker form of black-box traitor tracing is called confirmation black-box
traitor tracing. In this tracing model, the purpose of this algorithm is to verify
a suspected set of identities. That is, the tracer has a list of suspected identities,
and he wants to check his suspicion. A tracing traitor algorithm is a black-box
confirmation if it satisfies two properties:

(a) Confirmation: If a suspected set of users actually contains the entire set
of traitors, then the output of the Tracing algorithm always returns at
least an identity i as guilty. More concretely, we assume that KD is a
set of secret keys used to build the pirate decoder D and Ksuspect is a set

8

of secret keys of suspected users. With the condition KD ™ Ksuspect, the
Tracing algorithm returns at least an identity i as guilty such that the
secret key corresponds to the identity i in Ksuspect as guilty.

(b) Soundness: The honest users will never be accused if the Tracing algorithm
outputs an identity as guilty; it is impossible for traitors to deceive the
Tracing algorithm into blaming innocent users. Said di�erently, if the
Tracing algorithm outputs an identity i as guilty then the secret key of i
also belongs to KD.

We can use black-box confirmation for black-box traitor tracing by testing all
possible subsets. However this manner will give a very ine�cient traitor tracing
algorithm with exponential running time.

In some traitor tracing schemes, Pirate decoder’s operating model is assumed to
fall into one of the following categories:

Available decoders: The pirate decoder does not maintain states between decryp-
tions. The available decoder always decrypts any ciphertext of the tracer and
does not employ any reaction mechanism.

Resettable decoders: In this setting, after decrypting each ciphertext, the pirate
decoder will be reset to the initial state by the tracer. It means that the
pirate decoder is not allowed to maintain state. It is prevented from stor-
ing information about previous queries of tracer, and it answers each query
independently.

Abrupt decoders: While available decoder always decrypts any ciphertext of the
tracer and does not employ any reaction mechanism, the abrupt decoder has
a reaction mechanism in the sense that it can switch to self-protection mode
(finish mode) to against the tracing procedure if it detects something out of the
ordinary for example it is being traced by the tracer by turning o� the pirate
device (refusing to decrypt further ciphertexts), making it useless, deleting
colluder keys inside the pirate device, etc. Once the finish mode is enabled,
the tracer is not allowed to submit any further ciphertexts anymore.

Stateful decoders: In contrast to available and resettable decoders, the stateful
decoder is stronger because they have a memory to keep previously queried
ciphertexts. If they detect problematic ciphertext, then they will use active
reaction mechanisms or output a random message.

Requirement on the pirate decoder The requirement for pirate decoder may fall
into one of three types as follows. We arrange in ascending order of strength of the
requirement for pirate decoders. The first one is the weakest pirate decoder, and the
last one is the strongest.

1. In a black-box traitor tracing scheme, the interaction between a tracer and a
pirate decoder in which the tracer has full accesses black-box tracing in the
sense that the tracer receives the actual message returned by the pirate decoder.
In brief, the requirement for the pirate decoder is whenever it is fed ciphertexts
that are queried by the tracer, it should return a full message.

9

2. Another situation of black box traitor tracing was considered in minimal access
black-box tracing [BF99]. For any query to the pirate decoder, the tracer
does not obtain the plaintext. However, it merely determines whether the
pirate-decoder can decrypt the ciphertext and “play” it (e.g., the case of a
pirate cable-box incorporating a TV-set).

3. We consider the same setting for the pirate as in [GKW18b]: of course, we do not
require that the pirate decoder D outputs the entire message (or an indicator
bit as in minimal access model) nor decrypts with high probability every
ciphertext which is taken from random messages. Instead, it is enough that the
pirate decoder can distinguish the encryption of two messages m0, m1, which are
chosen by itself (see [GKW18b]). This very strong notion of Pirate Distinguisher
has been introduced in [GKW18b]. It requires the pirate distinguisher to be
able to distinguish the encryption of two di�erent messages m0, m1. As shown
in [GKW18b], this notion is stronger than the classical Pirate Decoder, which
is able to correctly decrypt random messages with non-negligible probability.

1.2.2 State of The Art in Traitor Tracing
We can say that the linear tracing technique is one of the critical tools to deal

with the problem of traitor tracing, and to understand the state of the art of this
domain, we quickly recall this technique.

Boneh, Sahai, and Waters (BSW) [BSW06] formalized the linear tracing technique
via a new primitive called Private Linear Broadcast Encryption (PLBE). A PLBE
is defined as a broadcast encryption scheme such that the broadcaster can only
broadcast to linear sets Si which are target sets of the form Si = {i, i + 1, . . . , N} for
some i œ {1, 2, . . . , N + 1}. Thus, a PLBE enables the content distributor to generate
ciphertexts that can only be decrypted properly under keys ski, ski+1, . . . , skN . If
the index i = 1, it will broadcast to everyone in the sense that a message will be
encrypted with i = 1, and anyone can decrypt the ciphertext. A crucial requirement
of a secure PLBE scheme is that a ciphertext should reveal no non-trivial information
about the recipient set. This means that a broadcast to users {i, i + 1, . . . , N} should
hide non-trivial information about the index i. There is no adversary who can
distinguish an encryption using the index i from an encryption using the index i + 1
without the secret key ski.

By constructing a PLBE scheme using the algebraic approach, Boneh, Sahai,
and Waters [BSW06] introduced the first traitor tracing scheme supporting the full
collusion of traitors and achieving sub-linear sizes: O(

Ô
N) in ciphertexts, O(

Ô
N)

in public keys and constant size in secret keys O(1), where N is the total number of
users in the system. Their method is based on bilinear maps in groups of composite
order. They organize users’ identities in the scheme as elements of a matrix and
then apply the linear tracing technique (construct PLBE scheme) for the matrix.
This helps reducing the ciphertext size from O(N) to O(

Ô
N). The weakness of

this method is that the ciphertext size is still large (always in O(
Ô

N)), whatever
the maximum size of collusions is. It means that even if there are few traitors, the
ciphertext size is still in O(

Ô
N). Another limitation of BSW scheme is that their

tracing algorithm needs using the master secret key MSK. Therefore their scheme is
secret tracing. After that, Boneh and Waters [BW06] overcame this limitation to
achieve a public-key traitor tracing scheme where the tracing procedure does not
need using the information of the master secret key.

10

In independent works, Freeman [Fre10] and Garg et al. [GKSW10] further im-
proved the Boneh-Waters scheme [BW06] by proposing traitor tracing schemes where
the security of their schemes relies on hardness assumptions in prime order bilinear
groups. Because we know that hardness assumptions in composite order bilinear
groups are limited by known attacks on factoring their moduli, and there are sub-
exponential attacks against factoring problem, we should choose large composite
order groups. Moreover, operations in these larger composite order groups are much
slower than operation in prime order groups. The ciphertext, secret key, and public
key in their schemes are still O(

Ô
N).

Several years later, Boneh and Zhandry [BZ14] utilized indistinguishability ob-
fuscation to achieve a scheme along with the ideal parameters where ciphertexts
grow polynomially in log(n). However, we do not know how to construct an indistin-
guishability obfuscation from standard assumptions.

Recently, Goyal, Koppula, and Waters (GKW) [GKW18b] constructed the first
secure traitor tracing scheme from the polynomial hardness assumption of Learning
with Errors with sub-exponential modulus-to-noise ratio. The GKW scheme achieves
ciphertext, public key, and secret key sizes only in poly(log N), where N is the
number of users in the system. Moreover, GKW is secure against very strong pirate
decoders, which is called pirate distinguisher. That is, the pirate decoder is required
that it can distinguish encryptions of two messages, which are chosen by itself instead
of decrypting ciphertexts and responding answers to the tracer as in full access and
minimal access pirate decoders.

The traitor tracing scheme GKW [GKW18b] is constructed by using a 1-query
secure PLBE scheme. BSW [BSW06] argued that secure PLBE schemes are su�cient
for constructing traitor tracing schemes and the authors give a generic transformation
to convert a PLBE scheme into a traitor tracing scheme. In other words, any secure
PLBE scheme implies a secure traitor tracing scheme. GKW [GKW18b] showed that
the argument was not correct by providing a counter-example to show that there
exists at least one secure PLBE scheme, but there is an attacker who can construct a
non-traceable pirate decoder to defeat the tracing algorithm. In [GKW18b], the PLBE
scheme of Boneh, Sahai, and Waters is called 0-query secure. Goyal, Koppula, and
Waters [GKW18b] argued that 1-query secure PLBE schemes, where the adversary
is allowed to ask one more ciphertext query, are su�cient for constructing traitor
tracing schemes.

In order to achieve a 1-query secure PLBE scheme whose ciphertext size is
independent of the number of users under standard assumption, Goyal, Koppula, and
Waters combined key-policy an attribute-based encryption (KP ≠ ABE) scheme and
a Mixed Functional Encryption scheme. We have known that there are KP ≠ ABE
schemes for circuits that are secure under the LWE assumption [GVW13], [BGG+14].
Mixed Functional Encryption (MFE) is a function hiding functional encryption
scheme and it is also built from the LWE assumption.

Nishimaki et al. [NWZ16] introduced a very interesting concept that allows at least
a colluder (dishonest user) to be traced while preserving anonymity of honest people
in the system. Instead of storing all the user’s information, the system manager
embeds all that information into the decryption key. Once the colluders joined
together to build a pirate decoder, the tracing algorithm will interact with the pirate
decoder to output a traitor’s identity without reaching honest users. In this manner,
honest users will remain anonymous to the tracing algorithm (all their personal
information is secured). Only dishonest people who have built a malicious decoder

11

will face the possibility of being traced. The idea of embedding user information in
the decryption key can be realized in the two-party computation (2PC) context as
follows. The authority, taking as input the master secret key MSK, and a user join
in a protocol to generate a decryption key for user i. At the end of the calculation,
user i will learn the decryption key. All information of i has been embedded, and
the authority learns nothing about the decryption key. It is di�erent from previous
systems where all the user’s information is stored in a database server.

We know that the ciphertext size of PLBE schemes scales linearly in the bit length
of identities. If the space of identities is exponential then the ciphertext size will
scale linearly with the size of identity space. It leads to a traitor tracing with large
ciphertexts and the running time is very slow in this case. To reduce the ciphertext
size, we can trivially use a cryptographic hash function. As a result, the tracer will
output a hash value instead of an identity and he need to use a table to look up
the identity corresponding to the hash value. This violates the user’s privacy in the
system. Nishimaki et al. [NWZ16] provided an identity-based traitor tracing scheme
with short ciphertexts which scales in polylog(N) and preserves user privacy. The
technique used in their paper is known as “jump-finding technique”. Some recent
results in this line are [KW20], [GKW19].

There are similarities between watermarking public key encryption and traitor
tracing. A collusion resistant watermarking scheme for a public-key encryption scheme
would imply a collusion resistant traitor tracing scheme. The recent construction of
watermarking for public-key primitives [GKM+19] does imply a traitor tracing scheme
for general identities (with public tracing), but only provides bounded collusion
resistance (in fact, in this setting, their construction precisely coincides with the
bounded collusion resistant traitor tracing construction from [NWZ16]).

We already know that fingerprinting is a commonly used method in protecting
copyright of software products and electronic documents. This approach’s idea is
that each product will be duplicated into multiple copies. Each of these will be
marked with a distinctive string. That is, the copy owner information is encoded
into codewords and embedded in the product so that the content provider can easily
trace back the copy’s owner when needed.

An important attack against identification schemes using the fingerprinting
method: users will join coalition together and compare data to find codewords that
have been embedded in each copy, and could then be making a pirated version that
cannot be traced. The fingerprinting method shares some similarities with code-based
traitor tracing schemes. The codes embedded in the traitor tracing schemes are
collusion secure codes. Codewords of the code need to satisfy the marking assumption.
This assumption states that any word generated by an arbitrary t-collusion must be
identical at all fixed positions (undetectable positions) in the sense that it does not
allow to modify values at agreement positions of the t codewords. A deterministic
form of collusion secure codes is IPP code (identifiable parent property). A prominent
feature of schemes based on IPP codes is that the tracing algorithm always accurately
accuses at least one traitor, and no one is falsely accused. If the condition of catching
exactly one traitor is relaxed (the allowed tracing algorithm can output an incorrect
result with negligible probability), then we will have much more e�cient schemes.
These are traitor tracing schemes that rely on a randomized version of collusion
secure codes. Typical constructions for randomized collusion secure codes are those of
Boneh-Shaw, which are proposed in [BS95] and of Tardos in [Tar03]. In Boneh-Shaw
codes, given an ‘, the length of the codewords is O (N3 log(N/‘)) for fully-collusion

12

resistant cases and O (t4 log(N/‘)) for t-collusion resistant cases (codes resisting
collusions of at most t traitors). In Tardos codes, the length of codewords is optimal:
the length of the codewords is O (N2 log(N/‘)) for fully-collusion resistant cases and
O (t2 log(N/‘)) for t-collusion resistant cases.

Kiayias and Yung [KY02] discovered the beautiful property of traitor tracing
schemes using collusion secure codes that these schemes often achieve black-box
tracing and transmission rate (the ratio between the ciphertexts and the plaintexts)
as constant. We note that minimizing the transmission rate is a practical requirement
and that traitor tracing schemes based on algebraic approaches often fail to achieve
this. Kiayias and Yung introduced the first black-box traitor tracing scheme with a
constant transmission rate based on collusion secure codes. They follow the code-
based design paradigm: firstly, they construct a traceable PKE scheme for two users
and then extend it to multiple users with a collusion-secure code. Following this
approach, Phan, Safavi-Naini, and Tonien [PST06] constructed a black-box publicly
traceable scheme based on IPP codes from a PKE scheme and a q-ary IPP code.
Fazio, Nicolosi, and Phan [FNP07] introduced the first black-box traceable scheme
with transmission rate 1 (optimal transmission rate) based on collusion-secure codes,
and the scheme also applies an all-or-nothing transform (AONT) to force decoders
to decrypt all ciphertexts. Apart from rate transmission, we also need to consider
other parameters such as the size of secret keys, public keys, and ciphertexts. These
parameters depend on the length of codes that the traitor tracing schemes are based
on. Boneh-Naor [BN08] and Billet-Phan [BP08] provided schemes that obtained
optimally (constant) ciphertext lengths, and thus, these are the state of the art in
this line.

Trace & Revoke systems
A Trace & Revoke system can be seen as an extension of a standard traitor

tracing scheme in the sense that there is an additional secret key-revocation method
so that the owner of digital content can use it to disable the decryption capabilities
of malicious keys. Tracing and revoking users in a multi-receiver encryption setting
is an interesting and quite hard problem. At the same time, achieving these two
functionalities is very challenging as broadcast encryption and traitor tracing have
been viewed as two orthogonal problems. In practice, revocation should be considered
together with tracing. There are very few e�cient constructions of the Trace &
Revoke system. There are two main approaches to tackle this problem:

1. If we restrict to a bounded model of collusions (this model is quite close to
practical scenarios), there are a few e�cient constructions such as [NP01],
[NPP13], [NWZ16], [ABP+17].

2. When we consider the full collusion setting (all users can become traitors), there
exists asymptotically e�cient schemes which are built from assumptions such
as indistinguishability obfuscation [NWZ16] and positional witness encryption
[GVW19]. However, these are not standard assumptions. Trace & Revoke
schemes constructed from standard assumption such as [BW06], [GKSW10],
[GQWW19], [Zha20] seem more practical even though they are less e�cient
asymptotically.

13

1.3 Motivation for Our Works and Contributions
Anonymous Broadcast Encryption for Bounded Universe. Broadcast Encryption
is a fundamental primitive supporting sending a secure message to any chosen target
set of N users. Integrating privacy into BE is an important problem. While many
e�cient constructions for BE are known, understanding the e�ciency possible for an
“Anonymous Broadcast Encryption” (AnoBE), i.e., one which can hide the target set
itself, is quite open. The best solutions by Barth, Boneh, and Waters [BBW06] and
Libert, Paterson, and Quaglia [LPQ12] are built on public-key encryption (PKE),
and their ciphertext sizes are, in fact, N times that of the underlying PKE (rate=N).
Kiayias and Samari [KS12], in turn, showed a lower bound showing that such rate
is the best possible if N is an independent unbounded parameter. However, when
considering certain user set sizes bounded by a system parameter (e.g., the security
parameter), the problem remains interesting. We consider the problem of comparing
AnoBE with PKE under the same assumption. We call such schemes Anonymous
Broadcast Encryption for Bounded Universe – AnoBEB.

Our first contribution is to construct an AnoBEB construction for up to k users
from the LWE assumption, where k is bounded by the scheme security parameter.
The scheme does not grow with the parameter. Actually, our scheme is as e�cient
as the underlying LWE public-key encryption; namely, the rate is, in fact, 1 and thus
optimal.

Trace & Revoke System from AnoBEB and Robust IPP. We move on to employ
the new AnoBEB in other more general broadcasting framework and, as a second
contribution, we introduce a new approach to construct an e�cient “Trace & Revoke
scheme”. Recall that, as it was put forth by Kiayias and Yung [KY02], combinatorial
traitor tracing schemes can be constructed by combining a system for small universe,
integrated via an outer traceability code (collusion-secure code or identifying parent
property (IPP) code). There were many e�cient traitor tracing schemes from
traceability codes, but no known scheme supports revocation at the same time. Our
new approach integrates our AnoBEB system with a robust IPP code, introduced
by Barg and Kabatiansky [BK13]. This shows an interesting use for robust IPP in
cryptography. The robust IPP codes were only implicitly shown by an existence proof.
In order to make our technique concrete, we propose two explicit instantiations of
robust IPP codes. Our final construction gives the most e�cient Trace & Revoke
scheme in the bounded collusion model.

The results in the above parts were published in ACNS ’20 [DPY20].

Traceable Inner Product Functional Encryption. The third contribution of this
thesis is related to constructing a traitor tracing scheme for functional encryption
schemes. Functional Encryption (FE) has been widely studied in the last decade, as
it provides a handy tool for restricted access to sensitive data: from a ciphertext,
it allows specific users to learn a function of the underlying plaintext. In practice,
many users may be interested in the same function on the data, say the mean value
of the inputs, for example. The conventional definition of FE associates each function
to a secret decryption functional key, and therefore all the users get the same secret
key for the same function. This induces a critical problem: if one of these users
(called a traitor) leaks or sells the decryption functional key to be included in a
pirate decryption tool, then there is no way to trace back its identity. Our objective

14

is to solve this issue by introducing a new primitive, called Traceable Functional
Encryption: the functional decryption key will not only be specific to a function but
to a user too, in such a way that if some users collude to produce a pirate decoder,
that successfully evaluates a function on the plaintext, from the ciphertext only, one
can trace back at least one of them.

We propose a concrete solution for Inner Product Functional Encryption (IPFE).
We first remark that the ElGamal-based IPFE from Abdalla et al. [ABDP15] shares
many similarities with the Boneh-Franklin traitor tracing [BF99]. We can then
combine these two schemes in a very e�cient way, with the help of pairings, to obtain
a Traceable IPFE with black-box confirmation.

The result in this part was published in CT-RSA ’20 [DPP20].

Revocable Inner Product Functional Encryption. Because revocation is a crucial
issue in multi-user encryption, naturally, we consider the revocation for functional
encryption. The notion of revocable functional encryption for all circuits was first
introduced by Nishimaki et al. at Eurocrypt ’16 [NWZ16]. They gave a construction
with optimal parameters (constant size in ciphertexts, private keys, and public
parameters). However, their construction relies on a non-standard assumption
(indistinguishability obfuscation).

In this part of the thesis, we are interested in constructing e�ciently revocable
functional encryption schemes for inner product under a standard assumption. A
revocable inner product functional encryption in which there is a user who takes
as input a list of revoked identities R and then encrypts R along with a message y̨
to produce a ciphertext such that any non-revoked user can learn Èx̨, y̨Í by using a
decryption key for a functionality x̨ and nothing more. The fourth contribution of
the thesis is the following:

• We give two pairing-based constructions of revocable functional encryption
for inner product with short private keys. The constructions are e�cient with
the size of ciphertext is only O(r) (r is the number of revoked users) and
private key size is constant (only 3 group elements). We use the technique that
combines the inner product functional encryption of Abdalla et al. at PKC
’15 [ABDP15] with the two-equation technique by Lewko, Sahai, and Waters
at SP ’11 [LSW10].

• Using the n-equation technique of Attrapadung et al. at PKC ’10 [AL10], we
provide two schemes of revocable functional encryption for inner product with
constant size ciphertext, independent of the number of revokers.

Our results can be viewed as an independent work of the recently published results
of Abdalla et al. [ACGU20]. They also gave several pairing-based constructions of
attribute-based inner product functional encryption. Their schemes are obtained from
combining the inner product functional encryption scheme of Agrawal et al. [ALS16]
with any attributed-based encryption schemes relying on the dual-system encryption
methodology. However, their schemes do not imply e�ciently revocable inner product
functional encryption schemes as the overhead cost depends on the width of the
policy of ciphertext.

The result in this part is under submission.

15

Organization
The rest of this thesis is organized as follows. In Chapter 2, we specify some

notations that will be used throughout this thesis, and recall definitions for some hard
problems and intractability assumptions on which the security of our constructions
relies. In Chapter 3, we give our anonymous broadcast encryption for bounded
universe (AnoBEB) from lattices. Then, in Chapter 4, we present our Trace &
Revoke scheme as an application of AnoBEB and the robust-IPP code. In Chapter
5, we introduce the notion of traceable functional encryption, and we also provide
an instantiation for the inner product case. It is secure under BDDH assumption.
Finally, in Chapter 6, we describe recent unpublished results regarding constructions
of revocable inner product functional encryption from various standard asumptions
before concluding in Chapter 7.

16

2 Preliminaries

This chapter provides some formal definitions as well as backgrounds that will be
used in the forthcoming chapters.

Contents
2.1 Notations . 18

2.2 Standard Assumptions . 19

2.2.1 Prime order group assumptions 19

2.2.2 Pairing group assumptions 19

2.2.3 Hardness assumption of k ≠ LWE 21

17

2.1 Notations
In this section, we define some general notations that are used in this thesis.
Let N, R denote the set of all natural numbers {0, 1, 2, . . .} and the set of reals

number, respectively. For n œ N we define [n] = {1, 2, . . . , n}, [0, 1] = {x œ R | 0 Æ
x Æ 1}. ZN denotes the additive group of integers modulo N as well as the set
{0, . . . , N ≠ 1}. Zú

N denotes the multiplicative group of invertible integers modulo
N (i.e., those that are relatively prime to N). We denote vectors by using either
bold lower-case letters or lower-case letters with an arrow over it as v and v̨. A
matrix is usually denoted by a capital letter and sometimes we denote a matrix
by a bold capital letter. The transpose of a matrix (or vector), say matrix A, is
denoted by AT . We will treat a vector as a column vector. Namely, for any vector
v̨ = (v1, . . . , vn) œ Zn

q . gv̨ stands for the vector of group elements (gv1 , . . . , gvn)T œ Gn.
For ą, z̨ œ Zn

q , we denote their inner product as

Ę̀a, z̨Í = ąT z̨ =
nÿ

i=1
aizi.

Given gą and z̨,
1
gą

2z̨
:= gÈą,z̨Í. Let PPT stand for “Probabilistic Polynomial Time”.

Definition 2.1: Negligible function

A negligible function is a function ‹ : N æ [0, 1] such that

’c œ N, ÷nc œ N, ’n > nc : ‹(n) < n≠c.

A function is non-negligible if it is not a negligible function. It means that ‹
would satisfy the following:

÷c œ N, ’n0 œ N, ÷n Ø n0 : ‹(n) Ø n≠c.

Definition 2.2: Negligible probability and Hard problem

Let Pr[E(Ÿ)] denote the probability that an event E(Ÿ) (depending on a variable
Ÿ œ N) occurs. We say that the probability Pr[E(Ÿ)] is negligible, if Pr[E(Ÿ)] is
a negligible function. We say that the probability of E(Ÿ) is overwhelming, if
1 ≠ Pr[E(Ÿ)] is a negligible function.

A problem is said to be hard if there exists no PPT algorithm solving it with
non-negligible probability.

Assume that D1 and D2 are distributions over a countable set X, their statistical
distance is defined to be 1

2
q

xœX |D1(x) ≠ D2(x)|. We say that two distributions D1
and D2 (two ensembles of distributions indexed by n) are statistically close if their
statistical distance is negligible in n. We use the notation x ΩÚ D to refer that the
element x is sampled from the distribution D. We also let U(X) denote the uniform
distribution over X.

For two matrices A, B of compatible dimensions, let (AÎB) (or sometimes
3

A
B

4
)

denote vertical concatenations of A and B.

18

For A œ Zm◊n
q , define Im(A) = {As | s œ Zn

q } ™ Zm
q . For X ™ Zm

q , let Span(X)
denote the set of all linear combinations of elements of X and define X‹ to be
{b œ Zm

q | ’c œ X, Èb, cÍ = 0}.

2.2 Standard Assumptions
2.2.1 Prime order group assumptions

Let G be a group (written multiplicatively) of prime order q and let g be a
generator of G.

Definition 2.3: Discrete Logarithm Assumption

The Discrete Logarithm hypothesis states that given an element h œ G it is
hard to find µ œ Zq such that h = gµ.

Definition 2.4: Decisional Di�e-Hellman Assumption

The Decision Di�e Hellman (DDH) problem consists in distinguishing the
following distributions

D0 = {(ga, gb, gab) | a, b
$Ω Zq} D1 = {(ga, gb, gc) | a, b, c

$Ω Zq}.

The distribution D0 consists of Di�e-Hellman (DH) tuples whereas D1 consists
of random tuples. Roughly speaking, the DDH problem consists in distinguishing
DH tuples from random tuples. The DDH assumption states that the two above
distributions D0 and D1 are indistinguishable.

2.2.2 Pairing group assumptions
Let G1,G2,GT be multiplicatively written groups of prime order q, and let g1, g2

be generators of G1,G2, respectively. We write 1T to denote the unit element of GT .
Let e : G1 ◊ G2 æ GT be a function sending two elements from G1 and G2 into the
group GT . We say that the tuple (G1,G2,GT , q, e) is a bilinear group if the following
properties hold:

• Bilinearity: for all h1 œ G1, h2 œ G2 and a, b œ Zú
q, we have e(ha

1, hb
2) =

e(h1, h2)ab.

• Non-degeneracy: e(g1, g2) ”= 1T .

• The function e can be e�ciently computed.

Bilinear groups in which G1 = G2 = G are called symmetric bilinear groups (type 1).
In this case, we denote it (G,GT , q, e) and we assume that g = g1 = g2. If G1 ”= G2,
it is called an asymmetric bilinear group.

• An asymmetric bilinear group is called type 2 if there is an e�ciently computable
homomorphism from G2 to G1.

19

• An asymmetric bilinear group is called type 3 if there is no e�ciently computable
homomorphism from G2 to G1.

Decisional Linear Assumption (DLIN): The decisional linear problem is defined
as follows. We choose a group G of prime order p. We choose random generators
g, f, ‹ of G and random exponents c1, c2 œ Zp. If the attacker is given

P = {g, f, ‹, gc1 , f c2},

it must remain hard to distinguish ‹c1+c2 from a random element of G.
An algorithm B that outputs z œ {0, 1} has advantage ‘ in solving the decisional

linear problem in G if

Pr

Ë
B

1
P, T = ‹c1+c2

2
= 0

È
≠ Pr[B(P, T = R) = 0]

Ø ‘.

Definition 2.5: Decisional Linear Assumption

We say the decisional linear assumption holds if no poly-time algorithm (PPT)
has a non-negligible advantage in solving the decisional linear problem.

q-Decisional Multi-Exponent Bilinear Di�e-Hellman Assumption (MEBDH):
Let G be a bilinear group of prime order q. The q-MEBDH problem in G is stated as
follows:

A challenger picks a generator g œ G and random exponents r, –, a1, . . . , aq. The
attacker is then given

P =

Y
_]

_[

g, gr, e(g, g)–

’1Æi,jÆq gai , gair, gaiaj , g–/a2
i

’1Æi,j,kÆq,i”=j gaiajr, g–aj/a2
i , g–aiaj/a2

k , g–a2
i /a2

j

Z
_̂

_\

it must remain hard to distinguish e(g, g)–·r œ GT from a random element in GT .
An algorithm B that outputs z œ {0, 1} has advantage ‘ in solving q-decisional

MEBDH in G if

Pr [B (P, T = e(g, g)–r) = 0] ≠ Pr[B(P, T = R) = 0]

Ø ‘.

Definition 2.6

We say that the q -decisional Multi-Exponent Bilinear Di�e-Hellman assumption
holds if no poly-time algorithm has non-negligible advantage in solving the q-
MEBDH problem.

Definition 2.7: Bilinear Decisional Di�e-Hellman Assumption

Given an asymmetric bilinear group (G1,G2,GT , q, e), the Bilinear Decisional
Di�e-Hellman (BDDH) problem consists in distinguishing the following distri-

20

butions, for generators g1 and g2

D0 =
;1

ga
1 , gb

1, ga
2 , gc

2, e (g1, g2)abc
2

|a, b, c
$Ω Zq

<

D1 =
;1

ga
1 , gb

1, ga
2 , gc

2, e (g1, g2)z
2

|a, b, c, z
$Ω Zq

<
.

The BDDH assumption states that no PPT adversary can distinguish D0 and
D1 with non negligible advantage.

2.2.3 Hardness assumption of k ≠ LWE
This section presents the problem, which is a variant of the learning with errors

(LWE, for short) problem [Reg05] (proposed by Regev) called k ≠ LWE. The quantity
k is the number of secret keys leaked or corrupted by an adversary. This problem
was introduced by Ling et al. at CRYPTO ’14. In their paper [LPSS14], they showed
that there is a reduction from LWE to k ≠ LWE with a polynomial loss in k.

Let B consist of n linearly independent vectors {b1, b2, . . . , bn}. The n-dimensional
lattice � generated by the basis B is � = L(B) = {Bc = q

iœ[n] ci · bi | c œ Zn}.
The length of a matrix B is defined as the norm of its longest column: ÎBÎ =
max1ÆiÆn ÎbiÎ. Here we view a matrix as simply the set of its column vectors.

For a lattice L ™ Rm and an invertible matrix S œ Rm◊m, we define the Gaussian
distribution of parameters L and S by DL,S(b) = exp(≠fiÎS≠1bÎ2) for all b œ L.

The q-ary lattice associated with a matrix A œ Zm◊n
q is defined as �‹(A)

= {x œ Zm | xt · A = 0 mod q}. It has dimension m, and a basis can be computed in
polynomial-time from A. For u œ Zm

q , we define �‹
u (A) as the coset {x œ Zm | xt ·A =

ut mod q} of �‹(A).

Lemma 2.1: Theorem 3.1, [AP11]

There is a probabilistic polynomial-time algorithm that, on input positive
integers n, m, q Ø 2, outputs two matrices A œ Zm◊n

q and T œ Zm◊m such that
the distribution of A is within statistical distance 2≠�(n) from U(Zm◊n

q); the
rows of T form a basis of �‹(A); each row of T has norm Æ 3mqn/m.

Lemma 2.2: GPV algorithm, [GPV08]

There exists a probabilistic polynomial-time algorithm that given a basis B of
an n-dimensional lattice � = L(B), a parameter s Ø Î ÂBÎ · Ê

1Ô
log n

2
(where ÂB

is Gram-Schmidt orthogonalization of B), outputs a sample from a distribution
that is statistically close to D�,s.

The Learning With Errors (LWE) problem was introduced by Regev [Reg05]. This
problem is one of the most known problems in lattice-based cryptography, and it is
used to construct many cryptosystems.

Definition 2.8: LWE problem, [Reg05]

Let m Ø n Ø 1, q Ø 2 and – œ (0, 1). The LWE problem consists in

21

distinguishing between the distributions (A, As + e) and U
1
Zm◊n

q ◊ Zm
q

2
,

where A ΩÚ U
1
Zm◊n

q

2
, s ΩÚ U

1
Zn

q

2
and e ΩÚ DZm,–q. For an algorithm

A : Zm◊n
q ◊ Zm

q æ {0, 1}, we define:

AdvLWE

q,m,n,–(A) =
---Pr[A(A, As + e) = 1] ≠ Pr[A(A, u) = 1

where the probabilities are over A ΩÚ U
1
Zm◊n

q

2
, s ΩÚ U

1
Zn

q

2
, u ΩÚ U

1
Zm

q

2

and e ΩÚ DZm,–q and the internal randomness of A. We say that LWEq,m,n,– is
hard if for all PPT algorithm A, the advantage AdvLWE

q,m,n,–(A) is negligible.

The following problem, which is proposed by Ling et al. [LPSS14], is a variant
problem of LWE. The LWE problem asks an adversary A (which is given the matrix
A) to distinguish the distribution As + e and the uniform distribution over Zm

q . In
k ≠ LWE problem, given the matrix A and some extra information (k small hints xi

such that xt
iA = 0), the adversary A also is asked to distinguish the distribution

As + e and the uniform distribution in orthogonal span of xi plus some noises.
Formally, it is defined as follows:

Definition 2.9: k-LWE problem, [LPSS14]

Let S œ Rm◊m be an invertible matrix and denote Tm+1 = (R/Z)m+1. The
(k, S) ≠ LWE problem is: given A ΩÚ U(Zm◊n

q), u ΩÚ U(Zn
q) and xi ΩÚ D�‹

≠u(A),S
for i Æ k Æ m, the goal is to distinguish between the distributions (over Tm+1)

1
q

· U
3

Im
3 ut

A

44
+ ‹m+1

– and 1
q

· U
3

SpaniÆk(1Îxi)‹
4

+ ‹m+1
– ,

where ‹– denotes the one-dimensional Gaussian distribution with standard
deviation – > 0.

In [LPSS14], it was shown that this problem can be reduced to the LWE problem
for a specific class of diagonal matrices S. In our work, we only need any such S
where (k, S)-LWE is hard, and thus the use of S is implicit. For simplicity, we will
use k-LWE and (k, S)-LWE interchangeably in this thesis.

Projective Sampling

Inspired by the notion of projective hash family [CS02], Ling et al. [LPSS14]
proposed a new concept called projective sampling family. A construction of projective
sampling family from k ≠ LWE problem was built as well. The major purpose of
their construction is to switch a secret key traitor tracing scheme into a public
key one, where tracing signals are sampled from a distribution of spanned spaces
by secret keys xj. In their scheme, each secret key xj œ Zm

q is associated with a
public matrix Hj (projective key). Given the projective keys Hj, any entity in the
system can simulate the tracing signal in a computationally indistinguishable way
(under the k-LWE assumption) in the sense that the simulated signal U(fljIm(Hj))
is indistinguishable from the original tracing signal U

1
Spanj(x+

j)‹
2

even for entities
who know the secret keys xj. This implies that anyone in the system is allowed to
execute the tracing procedure.

22

We recall the construction of Hj [LPSS14] as follows:

1. Given a matrix A œ Zm◊n
q and an invertible matrix A œ Zm◊m

q , sampling
signals are taken from a spanned space U

1
SpanjÆk(x+

j)‹
2

+ Â‹–qËm+1, where
xj ΩÚ D�‹

≠u(A),S. We call vectors xj œ Zm
q secret keys.

2. Sample H ΩÚ U
1
Zm◊(m≠n)

q

2
, conditioned on Im(H) µ Im(A). Define the

public projected value of xj on H as hj = ≠H t · xj.

3. Define Hj = (ht
j Î H) œ Z(m+1)◊(m≠n)

q as the public projected key of xj.

Simulated signals are now sampled from the distribution U(fljÆkIm(Hj)) + Â‹–qËm+1.
Under the (k, S)-LWE hardness assumptions, the following two distributions:

U
1
SpanjÆk(x+

j)‹
2

+ Â‹–qËm+1 and U (fljÆkIm(Hj)) + Â‹–qËm+1

are indistinguishable. This implies that given projected keys Hj, anyone can take
samples from the distribution U

1
SpanjÆk(x+

j)‹
2

+ Â‹–qËm+1 although he does not
have the secret keys xj.

We restate an important result that is frequently used in our proofs. This result
comes directly from Theorem 25 and Theorem 27 in [LPSS14].

Lemma 2.3

We denote by [t] = {1, . . . , t} the set of the t first positive integers. Under the
k-LWE assumption, for k > t, given t secret keys x1, x2, . . . , xt, for any j ”œ [t],
the distrisbutions

U
1
Spaniœ[t](x+

i)‹
2

+ Â‹–qËm+1, U
1
Spaniœ[t]fi{j}(x+

i)‹
2

+ Â‹–qËm+1,

are indistinguishable (from Theorem 25 in [LPSS14]), and the distributions

U
1
fliœ[t]Im(Hi)

2
+ Â‹–qËm+1, U

1
fliœ[t]fi{j}Im(Hi)

2
+ Â‹–qËm+1,

are indistinguishable as well (from Theorem 27 in [LPSS14]).

23

3 Anonymous Broadcast Encryption for
Bounded Universe

Privacy is a primary ingredient for our digital life. There are many cryptographic
primitives that have been designed to address privacy in authentication (blind
signatures or anonymous credentials) or in confidentiality (homomorphic encryption,
randomizable encryption), to name a few. When cryptographic protocols are deployed
for emerging multi-user applications, the demand for privacy becomes more and more
important. The focus of this chapter is to build an anonymous broadcast encryption
scheme for bounded universe (AnoBEB). Barth, Boneh, and Waters [BBW06]
and Libert, Paterson, and Quaglia [LPQ12] have shown the best solution for an
anonymous broadcast encryption scheme from public-key encryption (PKE). However,
their generic constructions for N users su�er a linear factor N in the ciphertext size.
If we consider a relaxed condition where the adversary is the outsider who has no
key in the target set, the best construction is of Fazio and Perera [FP12] in which
the ciphertext size in O(logN). Kiayias and Samari [KS12] stated that achieving a
sub-linear ciphertext in N is impossible. If we consider the case where the number
of users is bounded, the problem of constructing an e�cient broadcast encryption
system to preserve user privacy remains challenging.

In this chapter, we provide a non-blackbox construction with optimal rate (=1)
for the case when the number of users N is bounded by the security parameter. In
the domain of anonymous broadcast encryption, this is the first construction that
achieves the same e�ciency as the underlying (LWE) public-key encryption. We will
show in Chapter 4 that this scheme in bounded universe can be used to achieve a
Trace & Revoke scheme in the general case where the number of users is not bounded.
Our observation is that we can switch the traitor tracing scheme in [LPSS14] into an
AnoBEB scheme.

Contents
3.1 Definitions . 25

3.1.1 Broadcast Encryption . 25

3.1.2 Anonymous Broadcast Encryption 26

3.2 A Construction based on the Learning with Errors Assumption . . . 27

3.3 E�ciency of AnoBEB . 33

24

3.1 Definitions
3.1.1 Broadcast Encryption

Broadcast encryption is a cryptographic primitive designed to e�ciently distribute
an encrypted content via a public channel to a designated set of users so that only
privileged users can decrypt while the other users cannot learn anything about the
content. We follow the definition in [BGW05].

Definition 3.1

Let PT and CT denote the plaintext and ciphertext spaces, respectively. A
broadcast encryption scheme consists of algorithms (Setup, Extract, Encrypt, Decrypt)
defined as below

Setup(1n, N): Takes as input the security parameter n, it generates the global
parameters param of the system, including N the maximal number of
users (receivers are implicitly represented by integers in a universe of users
U = {1, . . . , N}), and outputs a master public key ek and a master secret
key MSK.

Extract(ek, MSK, i): Take as input the public key ek, the master secret key MSK
and a user index i œ U , the algorithm extracts the decryption key dki

which is sent to the user i.

Encrypt(ek, m, S): Take as input the public key ek, a message m œ PT and
a set of previleged users S ™ U , outputs a ciphertext c œ CT , which is
broadcasted to every member of S.

Decrypt(ek, dki, c, S): Take as input the public key ek, the decryption key dki

of user i, a ciphertext c œ CT and the set of receivers S ™ U . If i œ S, the
algorithm outputs a message m œ PT or an invalid symbol ‹.

The correctness requirement is that, with overwhelming probability over the random-
ness used by the algorithms, we have:

’M œ PT , ’i œ S : Decrypt(ek, dki, Encrypt(ek, M, S)) = M.

Security of a broadcast encryption scheme:

Definition 3.2

The CPA security of a BE scheme � is defined based on the following game
between an adversary A and a challenger B

• The challenger runs Setup(1n, N) and gives the produced public key ek to
the adversary A.

• The adversary (adaptively) chooses indices i œ U to ask decryption keys.
The challenger gives A all the dki for all required indices.

• The adversary then chooses two messages M0, M1 œ PT of equal length

25

and a set S µ U of users with restriction that no index i œ S required
decryption key before. It then gives M0, M1 and S to the challenger.

• The challenger samples b ΩÚ {0, 1} and provides c ΩÚ Encrypt(ek, Mb, S)
to A.

• The adversary A continues asking for decryption keys for any index i
outside S.

• Finally, the adversary returns its guess bÕ œ {0, 1} for the b. The adversary
wins this game if b = bÕ.

We define SuccIND(A) = Pr[bÕ = b], the probability that A wins the game. We say
that � is semantically secure (IND) if all polynomial time adaptive adversaries
A have at most negligible advantage in the above game, where A ’s advantage
is defined as

AdvIND(A) = |SuccIND(A) ≠ 1
2 | = | Pr[bÕ = b] ≠ 1

2 |.

3.1.2 Anonymous Broadcast Encryption
A broadcast encryption scheme is called anonymous (AnoBE for short) if it allows

addressing a message to a subset of the users, without revealing this privileged
set even to users who successfully decrypt the message. We follow the definition
in [LPQ12]:

Definition 3.3

Let PT and CT denote the plaintext and ciphertext spaces, respectively. Let
U = {1, . . . , N} be the universe of users. An anonymous broadcast encryption
(AnoBE) consists of the following algorithms:

Setup(1n, N): Takes as input the security parameter n and the maximal number
of users N . It outputs a public key ek and a master secret key MSK.

Extract(ek, MSK, i): Takes as input the public key ek, the master secret key
MSK and a user index i œ U , the algorithm extracts the decryption keys
dki which is sent to the corresponding user i.

Encrypt(ek, M, S): Takes as input the public key ek, a message M œ PT and a
set of target users S µ U , outputs a ciphertext c œ CT .

Decrypt(ek, dki, c): Takes as input the public key ek, the decryption key dki

of user i and a ciphertext c œ CT . The algorithm outputs the message
M œ PT or an invalid symbol ‹.

The correctness requirement is that, with overwhelming probability over the random-
ness used by the algorithms, we have:

’M œ PT , ’i œ S : Decrypt(ek, dki, Encrypt(ek, M, S)) = M.

26

When the number of users N in the scheme is bounded by the security parameter
(where N Æ k for some k bounded by a security parameter n), we have the notion of
anonymous broadcast encryption for bounded universe – AnoBEB.

Security of an anonymous broadcast encryption scheme:

Definition 3.4

The security of an AnoBEB scheme � is defined based on the following game
between an adversary A and a challenger B. The challenger B runs Setup(1n, N)
to obtain a public key ek and a master secret key MSK and sends ek to adversary
A.

Phase 1. The adversary A adaptively issues decryption key extraction queries
for any index i œ U . The challenger runs Extract algorithm on index i and
returns to A the decryption key dki = Extract(ek, MSK, i).

Challenger. The adversary chooses a message M œ PT and two distinct
subsets S0, S1 µ U of users. We require that A has not issued key queries
for any index i œ S0 — S1 = (S0 \ S1) fi (S1 \ S0). The adversary A passes
M and S0, S1 to the challenger B. The challenger B randomly chooses a
bit b œ {0, 1}, computes c = Encrypt(ek, M, Sb) and sends c to A.

Phase 2. A adaptively issues decryption key extraction queries on indices
i ”œ S0 — S1 and obtains decryption keys dki.

Guess. The adversary outputs a guess bÕ œ {0, 1} and wins the game if bÕ = b.

We denote by SuccANO(A) = Pr[bÕ = b] the probability that A wins the game,
and its advantage is

AdvANO(A) = |SuccANO(A) ≠ 1
2 | = | Pr[bÕ = b] ≠ 1

2 |.

We say that a scheme � is anonymous against chosen plaintext attacks – ANO
if all polynomial-time adversaries A have a negligible advantage in the above
game.

3.2 A Construction based on the Learning with Errors
Assumption

Ling et al. [LPSS14] introduced the first lattice-based traitor tracing scheme
based on the k ≠ LWE assumption. They showed a polynomial-time reduction from
k ≠ LWE to LWE, so their scheme is as e�cient as the LWE encryption. A natural
question is why one cannot directly rely on their scheme to design an anonymous
revoke or broadcast encryption scheme. Revoking users is a very di�cult task and the
following simple question is still open: for a constant number of revoked users, can
we design a revoke scheme that is comparably e�cient to the underlying encryption.
Based on k ≠ LWE, it seems very hard, because for revocation, essentially one need
to find a vector that is “orthogonal” to all the secret vectors of the non-revoked

27

users (so that they get the same message) and this is impossible for a large universe
system. Now, concerning broadcast encryption, whenever relying on k ≠ LWE, one
cannot allow the adversary to corrupt more than k-users, where k Æ m is bounded by
the underlying lattice dimension. Therefore, at best, one can aim at an anonymous
broadcast encryption for a small universe.

The below construction of a AnoBEB scheme comes from a basic “tweaking
purpose” idea: switching the tracing procedure in [LPSS14] to be functional as a
broadcast encryption. We first recall that in the LPSS traitor tracing scheme, the
linear tracing technique [CFN94] was applied: to detect a traitor in a group of suspect
users, they first create a ciphertext so that every user in this group can decrypt
successfully the ciphertext. In the subsequent steps, the tracer will disable, one by
one, users in the group, preventing them from decrypting the ciphertext. We observe
that if we switch the suspected users in LPSS scheme to be the legitimate users, and
the removed users in the suspected set to the revoked users, then we get a broadcast
encryption. Because the LPSS traitor tracing can deal with a bounded number (less
than the dimension of the underlying lattice) of traitors, we also get a broadcast
encryption for a bounded number of users, that we call broadcast encryption for
bounded universe.

We now consider a construction in detail an anonymous broadcast encryption for
bounded universe scheme (AnoBEB) from k-LWE problem.

Let N be the maximal number of users (receivers are implicitly represented by
integers in U = {1, . . . , N}). Given a security parameter n, we assert that parameters
q, m, –, S are chosen so that the (k, S)-LWE problem is hard to solve as presented
in [LPSS14]. Since the adversary can corrupt any user, we require that N Æ k (the
system’s bounded universe constraint).

Setup(1n, N): Takes as input the security parameter n and maximal number of users
N . It uses Lemma 2.1 to generate 2 matrices (A, T) œ Zm◊n

q ◊ Zm◊m and
picks u uniformly in Zn

q . We set a master secret key MSK = (A, T) and a
public key ek = {A+, (Hj)jÆN}, where A+ = (utÎA) and the projected keys
Hj (corresponding to the secret keys xj, defined in Section 2.2.3) are added
each time a secret key xj is generated by the Extract. For a system of N users,
one can run N times Extract inside the Setup to generate N secret keys.

Extract(ek, MSK, j): Takes as input the public key ek, the master secret key MSK
and a user index j œ U , the algorithm calls the GPV algorithm (Lemma 2.2)
using the basis �‹(A) consisting of the rows of T and the standard deviation
matrix S. It obtains a sample xj from D�‹

≠u(A),S. The algorithm outputs
decryption key dkj = x+

j := (1Îxj) œ Zm+1 for user j.

Encrypt(ek, M, S): Takes as input the public key ek, a message M œ PT = {0, 1}
and a set of users S ™ U . To encrypt M , one chooses a vector y œ Zm+1

q from
the distribution U(fliœSIm(Hi)), e ΩÚ Â‹–qËm+1 and outputs c œ CT , which is
broadcasted to every member of S as follows:

c = y + e +
3

MÂq/2Ê
0

4
,

whereas ÂxÊ denotes the greatest integer less than or equal to x.

28

Decrypt(ek, dkj, c): Takes as input the public key ek, a decryption key dkj = x+
j of

user j and a ciphertext c œ CT . The function Decrypt will return 0 if Èx+
j , cÍ

is closer 0 than to Âq/2Ê modulo q, otherwise return 1.

Correctness. We require that for a given subset S ™ U and all j œ S, if c =
Encrypt(ek, m, S) and dkj is the decryption key for user j œ S, we then recover
M = Decrypt(ek, dkj, c) with overwhelming probability. Indeed, since fliœSIm(Hi) ™
SpaniœS(x+

i)‹, for each user j œ S and y ΩÚ U(fliœSIm(Hi)), we have Èx+
j , yÍ = 0.

Therefore,

Èx+
j , cÍ = Èx+

j , yÍ + Èx+
j , eÍ + Èx+

j ,
3

MÂq/2Ê
0

4
Í mod q

= Èx+
j , eÍ + MÂq/2Ê mod q,

where e ΩÚ Â‹–qËm+1. According to [LPSS14], the quantity Èx+
j , eÍ is relatively small

modulo q with overwhelming probability. The procedure Decrypt returns the original
message with overwhelming probability. Therefore, every user in S can decrypt
successfully. We now consider the security of the scheme, essentially showing that an
adversary which is allowed to corrupt any user outside S, cannot break the semantic
security of the scheme.

Theorem 3.1

Under the k-LWE assumption, for any N Æ k, the AnoBEB scheme � constructed
as above is IND-secure.

Proof

We consider the sequence of the following games between a challenger B and an
attacker A.
Game G0: This is the real world game, security as defined in the security model.
The interaction between the challenger B and the adversary A takes place as
follows:
Setup. The challenger generates matrix A ΩÚ U(Zm◊n

q) and u ΩÚ U(Zn
q). The

challenger sends public key ek = {A+, (Hj)jÆN}, where each Hj is the projected
key associated with a secret key xj and A+ = (utÎA). The public key then sent
to A.
Phase 1. A queries decryption keys for several users i œ {1, . . . , N}. B samples
xi ΩÚ D�‹

≠u(A),S and gives x+
i to A, where x+

i := (1Îxi) œ Zm+1.
Challenger phase. The adversary selects two messages M0, M1 Ω PT =
{0, 1}, a subset of users S µ U so that queried indices must be outside S.
A then sends M0, M1 and S to B. The challenger picks at random a bit
b ΩÚ U({0, 1}), outputs a challenge ciphertext (of the message Mb) sampled
from one of two following distributions:

D0 = U (fliœSIm(Hi)) + Â‹–qËm+1 +
3

M0Âq/2Ê
0

4
,

D1 = U (fliœSIm(Hi)) + Â‹–qËm+1 +
3

M1Âq/2Ê
0

4
.

29

Phase 2. The adversary continues querying for decryption keys with the
limiting condition that A only queries indices outside S.
Guess. A gives a guess bÕ for b.
Game G1: The challenger now makes one small change to the previous game.
Namely, every steps in this game coincides with a corresponding step in the
previous one, but the challenge ciphertext sampled from one of two distributions
D1

0 and D1
1.

D1
0 = U

1
fliœS\{j}Im(Hi)

2
+ Â‹–qËm+1 +

3
M0Âq/2Ê

0

4
,

D1
1 = U

1
fliœS\{j}Im(Hi)

2
+ Â‹–qËm+1 +

3
M1Âq/2Ê

0

4
,

whereas j œ S. Applying Lemma 2.3, within the view of A, there are two pairs
of distributions

D0 = U (fliœSIm(Hi)) + Â‹–qËm+1 +
3

M0Âq/2Ê
0

4
,

D1
0 = U

1
fliœS\{j}Im(Hi)

2
+ Â‹–qËm+1 +

3
M0Âq/2Ê

0

4

and

D1 = U (fliœSIm(Hi)) + Â‹–qËm+1 +
3

M1Âq/2Ê
0

4
,

D1
1 = U

1
fliœS\{j}Im(Hi)

2
+ Â‹–qËm+1 +

3
M1Âq/2Ê

0

4

are indistinguishable under the assumption that k-LWE is hard to solve. There-
fore, the di�erence of the advantage of the adversary A in the two consecutive
games is negligible.

Similarly, we consider extra ¸ ≠ 1 games, where ¸ = |S| and reach the final
game.
Game G¸: The challenger also makes one small change to the previous games,
while every step in this game coincides with the previous one, but for the
challenge ciphertext sampled from one of two distributions D¸

0 and D¸
1, as

follows:

D¸
0 = U

3
Zm+1

q

4
+ Â‹–qËm+1 +

3
M0Âq/2Ê

0

4
,

D¸
1 = U

3
Zm+1

q

4
+ Â‹–qËm+1 +

3
M1Âq/2Ê

0

4
.

Obviously, the advantage of A in this game is equal to zero.
To summarize, we have a sequence of games where the final game Game

G¸ has zero-advantage and the di�erence of each two successive games Game
Gi≠1, Game Gi, for all 2 Æ i Æ ¸, is negligible, and ¸ is polynomial. Therefore,
the scheme � is IND≠secure. ⌅

We next consider anonymity of the AnoBEB scheme (our main Theorem for this

30

section):

Theorem 3.2

Under the k-LWE assumption, for any N Æ k, the AnoBEB scheme is ANO-
secure.

Proof

Intuitively, the anonymity requires that an adversary cannot distinguish between
encryptions for two targets S0, S1 of its choice. If we consider an outsider
adversary, defined in [FP12], which only corrupts users outside both S0, S1, then
the proof is direct because from the k-LWE assumption, the encryption for S0
and for S1, both, look like random ciphertexts to the adversary. It is more
challenging to consider a general adversary which can also corrupt the key in the
intersection of S0 and S1. Fortunately, by applying Lemma 2.3 which informally
states that the encryptions for a set S and for a set S fi {i} are indistinguishable
if the adversary does not corrupt the user i, even if the adversary corrupts users
in S. We then apply a hybrid argument which moves an encryption for the set
S0 (or S1) to an encryption for the set S0 fi S1 by adding one by one users in
S1 \ S0 (or in S1 \ S0, respectively).

We will prove the above by considering a sequence of games, as following:
Game G0: This is the real world game, security defined in the security model.
We repeat the interaction between the challenger B and the adversary A as
following:
Setup. The challenger generates a matrix A ΩÚ U(Zm◊n

q) and picks u uniformly
in Zn

q . Then the public key is set to ek = {A+, (Hj)jÆk}, with A+ = (utÎA),
and given to A.
Phase 1. When A asks for the decryption key for user i, B replies with
x+

i = (1||xi), where xi ΩÚ D�‹
≠u(A),S.

Challenger phase. A chooses a message M , two subsets S0, S1 with the
restriction that no asked query is in U \ (S0 — S1) and sends it to B. The
challenger picks randomly b œ {0, 1} and gives A a ciphertext c taken from one
of two distributions (distribution Db, over Tm+1):

D0 = U (fliœS0Im(Hi)) + Â‹–qËm+1 +
3

MÂq/2Ê
0

4
,

D1 = U (fliœS1Im(Hi)) + Â‹–qËm+1 +
3

MÂq/2Ê
0

4
.

Phase 2. In this step, A continues querying to get decryption keys with the
limitations as mentioned before (query indices i œ

3
U \ (S0 — S1)

4
). B gets x+

i

from D�‹
≠u(A),S and answers A.

Guess. A guesses bÕ for b.
Game G1: In this game, the inputs and the settings of this game are identical
to the ones of Game G0. In the challenger phase, the adversary A received a

31

ciphertext from one of the two following distributions:

D0 = U (fliœS0Im(Hi)) + Â‹–qËm+1 +
3

MÂq/2Ê
0

4
,

D1
1 = U

1
fliœS1fi{j1}Im(Hi)

2
+ Â‹–qËm+1 +

3
MÂq/2Ê

0

4
,

where the projected key Hj1 corresponds to the secret key x+
j1 ΩÚ D�‹

≠u(A),S,
j1 œ S0 \ S1.

Here we notice that the adversary A does not know the key x+
j1 because A

can only choose the keys with index in U \ (S0—S1). Since k-LWE is hard, by
applying Lemma 2.3, the two distributions

D1 = U (fliœS1Im(Hi)) + Â‹–qËm+1 +
3

MÂq/2Ê
0

4
,

D1
1 = U

1
fliœS1fi{j1}Im(Hi)

2
+ Â‹–qËm+1 +

3
MÂq/2Ê

0

4

are indistinguishable. This means that the di�erence between the advantage of
A in Game G1 and Game G0 is negligible.
Game G· : We assume that Ÿ = |S0 \ S1| and S0 \ S1 = {j1, j2, . . . , jŸ}. For
each 2 Æ · Æ Ÿ, we consider a game in a sequence of Ÿ ≠ 1 games. We set
T1 = S1 fi {j1} and T· = T·≠1 fi {j· }. It implies that TŸ = S0 fi S1. In each
game in this sequence, the inputs and the settings are identical to the ones of
previous games. In the challenger phase, the adversary A receives a ciphertext
from one of the two following distributions:

D0 = U (fliœS0Im(Hi)) + Â‹–qËm+1 +
3

MÂq/2Ê
0

4
,

D·
1 = U (fliœT· Im(Hi)) + Â‹–qËm+1 +

3
MÂq/2Ê

0

4
.

Since adversary A does not know any key x+
j·

in the set S0 \ S1 and the
k ≠ LWE problem is hard, we apply Lemma 2.3, the two distributions:

D·≠1
1 = U

1
fliœT·≠1Im(Hi)

2
+ Â‹–qËm+1 +

3
MÂq/2Ê

0

4
,

D·
1 = U (fliœT· Im(Hi)) + Â‹–qËm+1 +

3
MÂq/2Ê

0

4
,

are indistinguishable for each · . This means that the di�erence between the
advantage of A in any transition in the sequence of games Game G· , 1 Æ · Æ Ÿ
is negligible.
Game GŸ+÷: We assume that ÿ = |S1\S0| and S1\S0 = {j1, j2, . . . , jÿ}. For each
1 Æ ÷ Æ ÿ, we consider a game in a sequence of ÿ games. We set T Õ

1 = S0 fi {j1}
and T Õ

÷ = T Õ
÷≠1 fi {j÷}. It implies that T Õ

ÿ = S0 fi S1. In each game in this
sequence, the inputs and the settings are identical to the ones of previous games.
In challenger phase, the adversary A receives a ciphertext from one of following

32

two distributions:

D÷
0 = U

1
fliœT Õ

÷Im(Hi)
2

+ Â‹–qËm+1 +
3

MÂq/2Ê
0

4
,

DŸ
1 = U

1
fliœ(S0fiS1)Im(Hi)

2
+ Â‹–qËm+1 +

3
MÂq/2Ê

0

4
.

It means that we keep fix the distribution DŸ
1 and replace the distribution D0 by

D÷
0 = U

1
fliœT Õ

÷Im(Hi)
2

+ Â‹–qËm+1 +
3

MÂq/2Ê
0

4
,

where we set D÷
0 = D0 in case ÷ = 0. By the same argument as in previous

games, in the view of the adversary A, two distributions D÷≠1
0 and D÷

0 are
indistinguishable under the hardness of k-LWE, this means that the two following
distributions

D÷≠1
0 = U

1
fliœT Õ

÷≠1Im(Hi)
2

+ Â‹–qËm+1 +
3

MÂq/2Ê
0

4
,

D÷
0 = U

1
fliœT Õ

÷Im(Hi)
2

+ Â‹–qËm+1 +
3

MÂq/2Ê
0

4

are indistinguishable for each 1 Æ ÷ Æ ÿ. Therefore the di�erence between
the advantage of A in the transitions of the sequence of games Game G÷+Ÿ,
1 Æ ÷ Æ ÿ is negligible. We recall that in the last game (÷ = ÿ), A will receive a
challenger ciphertext taken from

U
1
fliœ(S0fiS1)Im(Hi)

2
+ Â‹–qËm+1 +

3
MÂq/2Ê

0

4
,

U
1
fliœ(S0fiS1)Im(Hi)

2
+ Â‹–qËm+1 +

3
MÂq/2Ê

0

4
.

Obviously, the advantage of adversary A in this game is equal to zero since
these distributions are identical.

We conclude (as all sequences are polynomial size) that our scheme AnoBEB
is ANO-secure under the hardness of k-LWE problem. ⌅

3.3 E�ciency of AnoBEB
Concerning e�ciency, our scheme AnoBEB is exactly as e�cient as the Ling et

al.’s traitor tracing scheme in [LPSS14] which was shown in [LPSS14] to be as e�cient
as the standard LWE encryption.

Finally, we also note that, as shown in [LPSS14], example parameters are k =
m/10, ‡ = Â�(n), q = Â�(n5) and m = �(n log n). We can therefore set our parameters
to: N = k and the e�ciency of the AnoBEB scheme is approximately as e�cient
as the underlying LWE-PKE, inherently from the fact the LPSS k-LWE traitor
tracing has approximately the same e�ciency as the underlying LWE-PKE, as shown
in [LPSS14].

33

4 Trace & Revoke Scheme from AnoBEB

Designing a Trace & Revoke system is a challenge problem. A Trace & Revoke
system is not merely combining a traitor tracing system with a broadcast encryption
system, as shown in the paper of Boneh and Waters in [BW06], building a Trace &
Revoke from traceability and revocability system is very di�cult to achieve.

This chapter is devoted to constructing a Trace & Revoke (TR) protocol from
a robust IPP code and the AnoBEB which is presented at the previous chapter. We
also give two explicit constructions of robust IPP code that are suitable for the Trace
& Revoke system.

Contents
4.1 Definitions . 35

4.1.1 Intuition . 35

4.1.2 Trace & Revoke Systems 35

4.1.3 Robust Identifying Parent Property codes 37

4.2 Construction . 39

4.2.1 Trace & Revoke scheme from AnoBEB and robust IPP code 40

4.2.2 Correctness and Security 46

34

4.1 Definitions
4.1.1 Intuition

Boneh and Waters [BW06] have shown that it is very di�cult to achieve a Trace
& Revoke from traceability and revocability system by giving an example as follows.
We consider a Trace & Revoke scheme TR for N users by combining a traitor tracing
scheme TT and a revocation scheme R. In order to encrypt a message M , the content
distributor first splits the message M into two components M1 and M2 and then the
message M1 is encrypted using TT system and the message M2 is encrypted using R
system. A user with the decryption key ski can recover the message M if it can be
able to decrypt correctly under both schemes TT and R. If there is an Adversary A
who corrupts two users P1 and P2, it builds a pirate decoder D with a decryption
strategy as follows: it uses the decryption key of P1 to decrypt the ciphertext which
is generated by R and uses the decryption key of P2 to decrypt the ciphertext which
is generated by TT . When the tracer runs Tracing algorithm, it finds that P2 is
guilty. Clearly, P2 should be removed from the system. Therefore, the scheme TR is
insecure because the pirate decoder D still works fine.

4.1.2 Trace & Revoke Systems
Adapted from the definition of the Trace & Revoke system in [AKPS12], we will

see that our AnoBEB is a Trace & Revoke system in the black-box model, namely a
BE system with a black-box tracing algorithm. A Trace & Revoke (TR) system, in
turn, consists of algorithms as follows:

Setup(⁄, N): Takes as input the security parameter ⁄, maximal number of user N
and a maximum malicious coalition size t. It outputs the global parameters
param of the system, a public key ek, a master secret key MSK and a tracing
key TK, where TK is public.

Extract(ek, MSK, i): Takes as input the public key ek, the master secret key MSK
and a user index i œ U , the algorithm extracts the decryption keys dki which
is sent to the corresponding user i.

Encrypt(ek, M, S): Takes as input the public key ek, a message M œ PT and a set
of target users S µ U = {1, 2, . . . , N}, outputs a ciphertext c œ CT . Remark
that we do not impose any restriction on the target set S and therefore we can
use Encrypt as a revoke algorithm: to revoke a set of revoked users R µ U , we
simply set the target set S to U \ R. It is assumed that the revoked user set is
managed centrally by a revocation authority.

Decrypt(ek, dki, c): Takes as input the public key ek, the decryption key dki of user i
and a ciphertext c œ CT . The algorithm outputs the message M œ PT or an
invalid symbol ‹.

Tracing(D, ek, TK): It takes as input the public key ek, the tracing key TK and has
access to a pirate decoder D. The tracing algorithm outputs the identity of at
least one user that participated in building D.

In this chapter, we shall assume that pirate devices are resettable, meaning that they
do not maintain state during the tracing process. Moreover, we also assume that

35

the tracing procedure is being considered in the minimal black-box access model. It
means that the tracer has access to D by using an oracle OD. The oracle OD will
be fed the input which has the form (c, M) œ (CT , PT). The tracer will get 1 from
the output OD in the case that the decoder decrypts correctly the ciphertext c, i.e.
D(c) = M and will get 0 in the other case. We require that the pirate device D
decrypts correctly with a non-negligible probability (Á).

Pr
M ΩÚ U(PT)

c ΩÚ Encrypt(M)

Ë
OD(c, M) = 1

È
Ø Á = 1

|PT | + 1
⁄c

,

for some constant c > 0.
The traceability is defined via the following game between an attacker A and a

challenger B:
Tracing Game

1. The adversary A outputs a set T = {u1, u2, . . . , ut} µ {1, . . . , N} of colluding
users.

2. The challenger B runs Setup(⁄, N) and sends all public keys ek, tracing key
TK and decryption keys dku1 , . . . , dkut to the adversary A.

3. The adversary A creates a resettable pirate decoder D so that the pirate
decoder decrypts correctly the ciphertexts with at least Á.

4. The challenger B executes the procedure Tracing(D, ek, TK) and outputs a set
L µ T that is accused.

We say that the adversary A wins the game if the set L is either empty, or is not
a subset of T and � = (Setup, Extract, Encrypt, Decrypt, Tracing) is a TR scheme
with tracing success probability – against t-coalition Á-pirates if no polynomial time
attacker A can win the game described above with probability more than 1 ≠ –. We
denote by AdvTR the probability that adversary A wins this game.

We remake that any Anonymous Broadcast Encryption is also a TR system.
Indeed, it is relatively straightforward to see that revocation is implied directly from
the semantic security of BE system (since the sender has freedom of choosing the
receiver set and will not include revoked users). About traceability of Anonymous
BE systems, we can apply the linear tracing technique for the Anonymous BE system
to capture this ability. We do not present arguments in the general case. Instead,
we will apply directly this technique in the AnoBEB context.

1. For i = 0 to t, do the following:

(a) Let cnt Ω 0.
(b) Repeat the following steps W Ω 8⁄(t/Á)2 times:

i. M ΩÚ U(PT)

ii. c ΩÚ U
1
Span(x̨+

1 , . . . , x̨+
i)‹

2
+ Â‹–qËm+1 +

3
MÂq/2Ê

0

4

iii. Call oracle OD on input c and if OD(c, M) = 1 then cnt Ω cnt + 1
(c) Let Âpi be the fraction of times that D decrypted the ciphertexts correctly.

We have Âpi = cnt/W .

36

2. Let L be the set of all i œ {1, . . . , t} for which Âpi ≠ Âpi≠1 Ø Á/4t.

3. Output the set L as the set of guilty colluders.

We define pi as the probability the pirate decoder D decrypts correctly the ciphertext
for i œ [0, t].

pi = Pr
c̨ ΩÚ T ri

M ΩÚ U({0, 1})

C

OD
A

c +
C

M · Âq/2Ê
0̨

D

, M

B

= 1
D

,

where
Tri = U

1
Span(x̨+

1 , . . . , x̨+
i)‹

2
+ Â‹–qËm+1.

A gap between pi≠1 and pi is meant to indicate that ui is a traitor.
We will compute an approximation Âpi of the probabilities pi using W = 8⁄(t/Á)2

samples. Applying the additive form of the Cherno� bound Pr [|p ≠ Âp| > Á] < 2e≠W Á2 ,
we have

Pr [|pi ≠ Âpi| > Á/(16t)] < 2e≠2W (Á/(16t))2

= 2e≠2·8⁄(t/Á)2(Á/(16t))2

= 2e≠⁄/16 < 2e≠⁄/64,

which is negligible in the security parameter ⁄ for all i = 1, . . . , t. Therefore, we may
assume from here on that |pi ≠ Âpi| Æ Á/(16t) for all i = 1, . . . , t.

The confirmation and soundness properties of the tracing algorithm then follows
directly from Theorems 24, 25 in [LPSS14].

However, public tracing is more challenging. Fortunately, our system also supports
public traceability. It comes directly from the result in [LPSS14]. We thus achieve a
Public TR scheme for a Bounded Universe.

4.1.3 Robust Identifying Parent Property codes
Before recalling the formal definition of Robust IPP code, we visit the notation

of IPP code. Let � be an alphabet set containing q symbols.
If C = {w1, . . . , wN} µ �¸ then C is called a q≠ary code of size N and length

¸. Each wi œ C is called a codeword and we write wi = (wi,1, wi,2, . . . , wi,¸) where
wi,j œ � is called the j≠th component of the codeword wi. We denote by (¸, N, q) a
code wof size N , length ¸, and over an alphabet size q. Let � denote the minimum
Hamming distance of the code C.

Given a positive integer t, a subset of codewords X = {w1, w2, . . . , wt} µ C is
called a coalition of size t. Let Xi = {w1,i, w2,i, . . . , wt,i} be the set of the i≠th
coordinates of the coalition X. If the cardinality of Xi is equal to 1, say |Xi| = 1, the
coordinate i is called undetectable, else it is called detectable. The set of detectable
coordinates for the coalition X is denoted by D(X). The set of descendants of X,
denoted desc(X), is defined by

desc(X) =
;

x = (x1, . . . , x¸) œ �¸ | xj œ Xj, 1 Æ j Æ ¸
<

,

codewords in the coalition X is called parents of the set desc(X). Define a t≠descendant
(t≠envelope) of the code C, denoted desct(C), as follows:

desct(C) =
€

XµC,|X|Æt

desc(X).

37

The desct(C) consists of all ¸≠tuples that could be generated by some coalition of
size at most t. Codes with identifiable parent property (IPP codes) are defined next.

Definition 4.1

Given a code C = (¸, N, q), let t Ø 2 be an integer. The code C is called a t≠ IPP
code if for all x œ desct(C), it holds that

‹

xœdesc(X),XµC,|X|Æt

X ”= ÿ.

Then, in a t ≠ IPP code, given a descendant x œ desct(C), we can always identify
at least one of its parent codewords error-free.

In [BS95], Boneh and Shaw considered a more general coalition, called wide-sense
envelope of the coalition X. The set of descendants in their fingerprinting code is
defined as follows:

desc(X) =
;

x = (x1, . . . , x¸) œ �¸ fi {ú} | xj œ Xj, j /œ D(X)
<

,

where D(X) consists of detectable coordinates of the coalition X. This means that
any symbol of � or erased symbols ú are allowed in the detectable coordinates. Only
detectable coordinates of descendant are allowed to modify the values by following
the marking assumption. The notation Robust IPP code is an intermediate concept
between the IPP and fingerprinting codes in the sense that robust IPP codes allow
a limited number of coordinates to not follow their parents. These coordinates are
allowed to deviate by breaking the marking assumption.

Let X µ �¸, |X| Æ t be a coalition. For i = 1, . . . , ¸, let Xi be the set of the i≠th
coordinates of the elements of a coalition X. Assume that there is a descendant x in
the set desc(X), following the marking assumption rule except Án coordinates that
can deviate from this rule. Call a coordinate i of x œ desc(X) a mutation if xi /œ Xi

and consider mutations of two types: erasures, where xi is replaced by an erasure
symbol ú, and one replaced by an arbitrary symbol yi œ � ≠ Xi.

Denote by desc(X)Á the set of all vectors x formed from the vectors in the coalition
X so that xi œ Xi for ¸(1 ≠ Á) coordinates i and xi is a mutation in at most Á¸
coordinates. Codes with robust identifiable parent property (Robust IPP codes) are
defined below:

Definition 4.2

Code C µ �¸ is a (t, Á) ≠ IPP code (robust t ≠ IPP code) if
‹

XµC,|X|Æt,xœdesc(X)Á

X ”= ÿ.

In words: the code C guarantees exact identification of at least one member of the
coalition X of size at most t for any collusion with at most Á¸ mutations. In the case
Á = 0, the robust IPP becomes IPP code.

38

A robust IPP code is said to have the traceability property if for any x œ descÁ(X),
the codeword c œ C closest to x by the Hamming distance is always one of the parents
of x, i.e.,

c œ
‹

XµC,|X|Æt,xœdesc(X)Á

X.

This implies that a pirate can be provably identified by finding any vector c œ C such
that the distance from c to x is shortest.

A robust IPP code with traceability property is called robust TA code. In this
thesis, we shall use robust IPP with traceability property.

4.2 Construction
Overview.
We first consider code-based traitor tracing schemes. Combinatorial methods of

designing a traitor tracing consist of two steps: first, construct a small scheme, then
combine these schemes to achieve a general one. This method is proposed in the very
first traitor tracing paper of Chor-Fiat-Naor [CFN94]. Kiayias and Yung [KY02]
integrated a 2-user traitor tracing scheme with a collusion-secure code [BS95] into
a TT scheme. This method can be summarized as follows: First, a 2-user traitor
tracing scheme can be trivially obtained from applying a public-key encryption
(PKE) twice, each for one user. Now, a message or a session key is divided into ¸
sub-keys. The sender then essentially encrypts each sub-key twice with PKE and gets
sub-ciphertexts. Each recipient, provided sub-keys associated with a codeword of a
collusion-secure code, can decrypt one of the two sub-ciphertexts for each sub-key
and thus recover the whole message or session key which will be used to encrypt
data.

Key assignment :
Table 0 pk0,1 pk0,2 pk0,3 pk0,4 pk0,5 ... pk0,¸

Table 1 pk1,1 pk1,2 pk1,3 pk1,4 pk1,5 ... pk1,¸

Codeword i 1 0 0 1 0 ... 1
user i sk1,1 sk0,2 sk0,3 sk1,4 sk0,5 ... sk1,¸

Encryption :
Session Key K1ü K2ü K3ü K4ü K5ü ... üK¸ = K
Ciphertext c0,1 c0,2 c0,3 c0,4 c0,5 ... c0,¸

c1,1 c1,2 c1,3 c1,4 c1,5 ... c1,¸

Table 4.1: Traitor tracing with binary collusion secure code

Table 4.1 shows an example of a traitor tracing with binary collusion secure code.
A legitimate user is assigned a codeword in the code. The authority will decompose
a session key K into segments Kj according to the length ¸ of the code. In each
sub-system, the segment of session key Kj will be encrypted twice alternately with
public-keys pk0,j or pk1,j. Each user i provided a secret-key sk0,j or sk1,j depending
on the value of its codeword at position j. The user thus provided ¸ secret-keys
and employs these secret-keys to recover the sub-session keys Kj, j = 1, . . . , ¸ from
one of two ciphertexts c0,j or c1,j. Finally, the user combines them to obtain the
original session key K. The tracing procedure consists of using the traceability in
each 2-user scheme to extract a word associated with the pirate decoder. Thanks
to the tracing capability of the collusion-secure code, one can then trace back one

39

of the traitors. This method is then generalized for q≠ary IPP code by integrating
it with a q-user traitor tracing scheme. The q-user traitor tracing scheme can also
be obtained by applying q times PKE [PST06]. Now, if we have AnoBEB for q-user
which is as e�cient as the underlying PKE, we can save a factor q in cipher e�ciency.

We next explain why it is di�cult to get revocation with code-based schemes and
how we can overcome the problem. We recall that the binary collusion secure code
is well suitable for traitor tracing; its shortcoming is the incapacity of supporting
revocation. In fact, to revoke a group of users, the authority has to disable the
ability to decrypt with sub-keys in each position of the revoked group. In using the
binary collusion secure code scenario, there are only two possibilities for sub-key of
each position. Whenever the authority executes the revocation procedure, a large
number of legitimate non-revoked users will be a�ected, and will not be able to
decrypt anymore. A non-trivial remedy is for the designer of system to choose a code
with big alphabet for example q≠ary IPP code instead of a binary collusion secure
code with alphabet size two. Revocation will decrease the number of valid slightly.
Certainly, in this case, the possibility that legitimate users will be excluded o� the
system with revoked users must also be taken into account. A secret sharing scheme,
in turn, is a mechanism that allows us to think about a solution: a legitimate user
only needs to have a certain fraction of the sub-keys to be able to recover the original
message. However, this reduced requirement gives an advantage to the pirates as
well: they become stronger as they do not need to put all sub-keys in the pirate
decoder; namely, they are permitted to delete sub-keys. The introduction of robust
IPP of Barg et al. [BK13] which allows the identification of parents even if some
positions are intentionally erased, allows for a tool to deal with the above problem.
We propose a new generic method for designing a Trace & Revoke system from
robust IPP codes and AnoBEB. As in the previous code-based method, the ciphertext
size of the Trace & Revoke system is proportional to the length of the code and the
ciphertext size of the AnoBEB.

4.2.1 Trace & Revoke scheme from AnoBEB and robust IPP code
Our aim is now to construct a Trace & Revoke (TR) scheme from AnoBEB. In

our approach, we combine the t ≠ IPP robust code C = (¸, N, q) with an AnoBEB
scheme. It is described as follows:

Given a q≠ary robust t ≠ IPP code C = (¸, N, q) with length ¸, size N , mimimum
Hamming distance � over alphabet � = {1, . . . , q}, we denote by C = {w1, . . . , wN}
the codewords of code C and wi = (wi,1, . . . , wi,¸). Since C is a robust IPP code, each
descendant w œ descÁ(X), |X| Æ t will have at most Á¸ erasure positions ú.

We choose a (fl¸, ¸)-secret sharing scheme, where fl = 1≠Á so that the non-revoked
users can decrypt due to the secret sharing correctness. Let r be maximum number
of revoked users. We require that the parameter r, with the purpose of revocation,
ischosen so that

� > ¸
3

1 ≠ 1 ≠ fl

r

4
. (4.1)

We denote by [N] = {1, . . . , N} the set of N users. We define a mixture S =
(S1, . . . , S¸) over �¸ to be a sequence of ¸ subsets of �, i.e. Si ™ �. Given a vector
Ę̂ = (Ê1, . . . , Ê¸) œ �¸, the agreement between Ę̂ and a mixture S is defined to be

40

the number of positions i œ [¸] for which Êi œ Si:

agr(Ę̂, S) =
ÿ̧

i=1
1ÊiœSi ,

where 1ÊiœSi = 1 if Êi œ Si and 1ÊiœSi = 0 if otherwise.
We will construct a broadcast system � for the set [N] as follows: we identify

each user i œ [N] with the codeword wi = (wi,1, . . . , wi,¸) in C, whereas wi,j is the
j-th coordinate of the codeword wi œ C. By assigning each user i in � to a set with
¸ sub-keys, we have

dki = (dk1,wi,1 , . . . , dkj,wi,j , . . . , dk¸,wi,¸
).

In our system, at any coordinate component of the decryption key, we have at
most q sub-keys. We consider a one-to-one correspondence between the set of q
sub-keys and the set of decryption keys of q users in AnoBEB system. Consequently,
to broadcast a message K to the set of N users, we decompose K into ¸ components
(by using (fl¸, ¸)≠secret sharing scheme) and we encrypt jth-component with AnoBEB.

Formally, to build a broadcast system for N users, we concatenate ¸ instantiations
of the scheme AnoBEB (for q users) according to an q≠ary code C. In particular,
we will combine the code C with robust IPP code C. Our construction consists of 4
algorithms: Setup, Extract, Encrypt and Decrypt.

Setup(n, N): Takes as input the security parameter n and the size N of the code C.
By calling ¸ times the procedure AnoBEB.Setup(n, q), where ¸ is the length of
the code C, we obtain public keys ekj and master secret keys MSKj, j = 1, . . . , ¸.
We set ek = (ek1, . . . , ek¸) and MSK = (MSK1, . . . , MSK¸).

Extract(ek, MSK, i): Takes as index i œ [N] for each user, we use MSK to extract ¸
decryption keys for user i:

dki = (sk1,wi,1 , . . . , skj,wi,j , . . . , sk¸,wi,¸
),

where wi,j is the value at position j of codeword wi. Here,

skj,wi,j = AnoBEB.Extract(ekj, MSKj, wi,j) œ Zm+1, j œ [¸].

Encrypt(ek, K, R): Takes as input a set of revoked users R µ C, where the cardinality
of R is at most r. The message K will be broadcasted to the target set C \ R.
We call the procedure Share(¸, fl¸, ¸) of (fl¸, ¸)-secret sharing scheme. The
Share(¸, fl¸, ¸) algorithm outputs a secret K œ PT ¸ and ¸ shares K1, . . . , K¸.
At least fl¸ of the shares are needed to recover the message K. We broadcast
using the following mixture

M = (M1, . . . , M¸) = (� \ R[1], . . . , � \ R[¸]),

where R[j] = fiiœRwi,j. The ciphertext has the form

c̨ = (c1, . . . , c¸) œ CT ¸,

=
3

AnoBEB.Encrypt(ek1, K1, M1), . . . , AnoBEB.Encrypt(ek¸, K¸, M¸)
4

,

where each cj is the output of the encryption algorithm AnoBEB.Encrypt with
input Kj and Mj. This means that each part of message, Kj is encrypted
with keys {skj,wi,j }i/œR.

41

Decrypt(ek, dki, c̨): Takes as input ciphertext c̨ œ CT ¸ and a decryption key dki of
user i. For each j œ [¸], the user calls AnoBEB.Decrypt(ekj, skj,wi,j , cj) of the
AnoBEB scheme on sub-keys skj,wi,j to obtain at least fl¸ values among the
shared values Kj (as will be proved in the correctness). By calling the function
Combine of the secret sharing scheme over pairs {(j, Kj)}, the user recovers
the original message K.

Tracing: We consider the mixture M as in Encrypt procedure. Let T be the subset of
U \R with at most t elements (traitors). We assume that the tracing procedure
will be considered in the minimal black-box access model [BF99]. In this model,
the tracing authority has access to an oracle OD that itself internally uses D.
Oracle OD behaves as follows: it takes as input any pair (̨c, K) œ (CT ¸ ◊ PT ¸)
and returns 1 if D(c̨) = K and 0 otherwise; the oracle only tells whether the
decoder decrypts c̨ to K or not. We assume that the pirate produces an ‘-useful
decoder D in the sense that it can decrypt any normal ciphertext in the form

c̨ = (c1, . . . , c¸)

=
3

AnoBEB.Encrypt(ek1, K1, M1), . . . , AnoBEB.Encrypt(ek¸, K¸, M¸)
4

,

with non-negligible probability (at least ‘). We denote here Mj = {jÿ}ÿœQ,
Q ™ [q] or Mj = ÿ for all j = 1, . . . , ¸. We consider the tracing procedure as
follows:

For j = 1 to ¸, do the following:
1. While Mj ”= ÿ, do the following:

(a) Let cnt Ω 0.
(b) Repeat the following steps W Ω 8n(q/‘)2 times:

i. cj = AnoBEB.Encrypt(ekj, Kj, Mj).
ii. Call oracle OD on input c̨ = (c1, . . . , cj, . . . , c¸).

If OD(c̨, K) = 1 then cnt Ω cnt + 1.
(c) Let Âpj,jÿ be the fraction of times that D decrypted the ciphertexts

correctly. We have Âpj,jÿ = cnt/W .
(d) Mj = Mj \ {jÿ}.

2. If there exists an index jÿ œ Mj for which Âpj,jÿ ≠ Âpj,jÿÕ Ø ‘/4q¸ for all
jÿÕ œ Mj then
(a) the key jÿ is accused and Êj = jÿ,
(b) cj = AnoBEB.Encrypt(ekj, Kj, Mj)
else cj = random and Êj = ú.

End for.
From the pirate word Ę̂ = (Ê1, . . . , Ê¸) found after the Loop finished, call

tracing procedure in robust IPP code on input Ę̂. The Tracing returns a
traitor.

For the above Tracing algorithm, we note that the decryption probabilities of the
pirate device do not change significantly in every iterations step because even if the
tracer detects a non-negligible decryption probability of pirate decoder, it will reset
the modified component to a normal component. After step 2, the tracer will find

42

out a letter of pirate word at position j. The value of a position is either a symbol
in the alphabet or an erasure symbol.

We prove that the tracing algorithm returns at least fl¸ keys. Indeed, if the
output of the algorithm provides t < fl¸ keys then the ciphertext in the final iteration
step ¸ will appear as t normal components and the pirate device will be able to still
correctly decrypt the ciphertext. This is a contradiction because in the setting of
our system, by using (fl¸, ¸)≠secret sharing scheme, it is impossible for any decoder
device to decrypt the ciphertext with less than fl¸ normal components successfully.
Therefore, our tracing algorithm will output at least fl¸ pirate keys. We thus get at
the end of Step 2 a pirate word with fl¸ components without ú. Since the scheme �
employs robust IPP code C, the tracer uses the property of robust IPP for the pirate
word which was found from the black-box tracing to identify at least one user who
contributed to building the pirate device.

As the tracing procedure in robust IPP code (like IPP code) does not require
any secret information and we only use the AnoBEB.Encrypt to produce the tracing
signals, the combined scheme � supports full public traceability.

Correctness. We consider the correctness of our TR system: for all users i œ [N]
and all messages K. Whenever user i, i ”œ R is given a ciphertext c̨, he can decrypt
successfully. Indeed, since C is the code having the minimum Hamming distance
that satisfies inequality (4.1) above, any user i in C \ R, we have agr(wi, M) Ø fl¸.
This comes from the fact that:

agr(wi, M) Ø ¸ ≠ r(¸ ≠ �) Ø fl¸.

It implies user i has at least fl¸ sub-keys that agree with the mixture M and recovers
at least fl¸ sub-messages Ki. By calling the function Decrypt, he will receive the
original message K.

We will show below the e�ciency of our Trace & Revoke scheme. We will consider
the parameters of the scheme to be the number of decryption keys per each user and
the length of the ciphertext.

After the black-box tracing procedure, we get a pirate word. With a given pirate
word, to ensure that the identify algorithm can return e�ciently at least a traitor
from a t≠collusion, the constructed robust IPP codes must have traceability property.
According to Proposition 3.1 in [BK13], the minimum Hamming distance of the code
must satisfy

�/¸ > 1 ≠
31 ≠ Á

t2 ≠ Á

t

4
,

whereas 0 < Á < (t + 1)≠1. This means that the codeword having closest distance to
the pirate word is always a traitor.

Therefore, in order for the system to capture simultaneously tracing and revoking
features, the q-ary robust IPP codes with minimum Hamming distance � must
satisfy:

� > ¸ · max
;

1 ≠ 1 ≠ fl

r
, 1 ≠

31 ≠ Á

t2 ≠ Á

t

4<

= ¸ ·
3

1 ≠ min
;1 ≠ fl

r
,
1 ≠ Á

t2 ≠ Á

t

<4
.

The number of keys per user is ¸ and the ciphertext size is at most ¸ times the
ciphertext size of AnoBEB. To summarize, we just proved the following theorem.

43

Theorem 4.1

Given

• C = (¸, N, q), a q≠ary code of Hamming distance � and 0 < Á < (t + 1)≠1;

• a (fl¸, ¸)≠secret sharing scheme, for fl œ (0, 1);

• an anonymous broadcast encryption for q users AnoBEB;

satisfying the following condition

�/¸ > 1 ≠ min
;1 ≠ fl

r
,
1 ≠ Á

t2 ≠ Á

t

<
. (4.2)

Then �, constructed as above, is a TR scheme for N users in which we can
revoke up to r users and trace succesfully at least one traitor from any coalition
up to t traitors.

We remark that any code C verifying condition (4.2) is a robust IPP code, as

�/¸ > 1 ≠
31 ≠ Á

t2 ≠ Á

t

4
.

Ciphertext Size. We now consider the ciphertext size of the scheme �. This turns
out to evaluate the length of the Robust IPP code ¸ (times the size of an AnoBEB
ciphertext). So we next estimate ¸. But, we can not directly use any analysis in the
paper [BK13] because of two reasons:

• In [BK13], a proof of existence of robust IPP codes was given, but there was
no immediate explicit construction given there, neither given any the analysis
of the length of the code.

• Robust IPP codes only deal with the number of traitor. In our scheme, we
need, moreover, to take into account of the number of the revoked users that
satisfying condition (4.2) above, so that in total we have an extended code
requirement to consider (namely, robust IPP code supporting revocations).

Explicit construction of codes. The relative distance of the code C is defined
by ” := �/¸. We present two constructions.
Construction 1: We will consider a code with ” satisfying the Gilbert-Varshamov
bound. To do this, let us pick

1 ≠ min
;1 ≠ fl

r
,
1 ≠ Á

t2 ≠ Á

t

<
< ” Æ 1 ≠ 1

q
.

According to the Gilbert-Varshamov theorem (Theorem 4.10, [Rot06]), there exists a
q≠ary code C with rate R(C) = 1

¸ logq N satisfying

R(C) Ø 1 ≠ Hq(”) ≠ o(1),

where Hq(”) is the q-ary entropy function Hq : [0, 1] æ R defined by

Hq(”) = ” logq

q ≠ 1
”

+ (1 ≠ ”) logq

1
1 ≠ ”

.

44

We choose
d = max

I
r

1 ≠ fl
,

t2

(1 ≠ Á) ≠ Át

J

.

Therefore
1 ≠ 1/d < ” Æ 1 ≠ 1

q
.

To ensure the obtained code is not a random code, we apply the derandomization pro-
cedure of Porat-Rothschild [PR08]. This means that we give an explicit construction
for the code C. It progresses as follows:

We choose ” = 1 ≠ 1
d+1 . Obviously, we do not want large ” because that can only

reduce the size of the code. To satisfy ” Æ 1 ≠ 1
q we need q Ø d + 1. Since q Ø d + 1,

we choose q = �(d). Next, we need to estimate the value of 1 ≠ Hq(”). We will use
the fact that log(1 + x) ¥ x for small x extensively below.

1 ≠ Hq(”) = 1 ≠ ” logq(q ≠ 1) + ” logq ” + (1 ≠ ”) logq(1 ≠ ”)
= 1 ≠ logq(q ≠ 1) + (1 ≠ ”) logq[(q ≠ 1)(1 ≠ ”)] + ” logq ”

=
log

1
q

q≠1

2

log q
+ log[(q ≠ 1)/(d + 1)]

(d + 1) log q
≠ d

d + 1
log(1 + 1/d)

log q

¥ 1
(q ≠ 1) log q

+ log[�(1)]
(d + 1) log q

≠ 1
(d + 1) log q

= �
A

1
d log q

B

.

Since R(C) Ø 1 ≠ Hq(”) ≠ o(1), we omit small terms and obtain R(C) = 1 ≠ Hq(”).
Moreover, R(C) = 1

¸ logq N , it implies the length of the code is

¸ =
logq N

R(C) =
logq N

1 ≠ Hq(”) = O
1
d log q logq N

2
= O(d log N).

In short, we obtain
q = �(d) and ¸ = O(d log N).

Finally, we get

¸ = O

A

max
I

r

1 ≠ fl
,

t2

(1 ≠ ‘) ≠ ‘t

J

log N

B

.

Construction 2: In another construction, we consider our code C in the Reed-
Solomon setting: we also pick

d = max
I

r

1 ≠ fl
,

t2

(1 ≠ ‘) ≠ ‘t

J

.

The Reed-Solomon code has ” = ¸≠k+1
¸ = 1≠ k

¸ + 1
¸ , whereas k is the dimension of code

C. In this case, if we choose ¸ = kd then ” > 1 ≠ 1/d. Hence, to use Reed-Solomon
code we need to pick q Ø ¸ = kd such that qk Ø N or, equivalently, ¸ log q Ø d log N .

For example, we can pick q = ¸ ¥ 2d log N
log(d log N) and k ¥ log N

log q . In this case, the length
of the code is

¸ = O

A
2d log N

log(d log N)

B

.

45

4.2.2 Correctness and Security
Semantic Security. We now consider the security of the scheme �.

Theorem 4.2

Assume that the scheme AnoBEB is IND-secure, then the scheme � is also
IND-secure.

Proof

We consider a sequence of games starting with Game G0 as follows:

Game G0: This is the real game as defined in the security model. The
challenger generates ¸ public keys {eki}¸

i=1 and chooses robust IPP code
C = {w1, . . . , wN} which he then gives to the adversary A�. In Phase
1, A� queries descryption keys for user i œ {1, . . . , N} and obtains dki,
where

dki = (sk1,wi,1 , . . . , skj,wi,j , . . . , sk¸,wi,¸
),

where skj,wi,j is a decryption key extracted from the scheme � by calling
algorithm

�.Extract(ekj, MSKj, wi,j).

In the Challenger phase, the adversary selects two messages m0, m1 œ
PT ¸ and a subset of revoked users R µ C. The challenger picks at random
a b ΩÚ {0, 1}, calls the procedure Share(¸, fl¸, ¸) to get ¸ shares mb

1, . . . , mb
¸

for the message mb and outputs a ciphertext �.Encrypt(ekj, mb
j, Mj)¸

j=1,
where

(M1, . . . , M¸) = (� ≠ R[1], . . . , � ≠ R[¸]), R[j] :=
€

i|wiœR
{wi,j}.

In Phase 2, A� received the ciphertext, sampled from one of two compu-
tationally indistinguishable distributions

D0 =
3

�.Encrypt(ek1, m0
1, M1), . . . , �.Encrypt(ek¸, m0

¸ , M¸)
4

D1 =
3

�.Encrypt(ek1, m1
1, M1), . . . , �.Encrypt(ek¸, m1

¸ , M¸)
4

,

A� outputs a guess bÕ for b. Let AdvGame 0
A� (D0, D1) be the advantage of

A� with two given distributions D0 and D1. The advantage is defined by:

AdvGame 0
A� (D0, D1) =

----2Pr [A�(Db) = b] ≠ 1

=
----Pr [A�(D0) = 1] ≠ Pr [A�(D1) = 1]

----.

Game G1: The challenger now makes one small change to the Game G0.
Namely, instead of encrypting the first share m0

1 with all keys in the
mixture M1, we encrypt m1

1 with the mixture M1. This means that the

46

challenger only changes the first coordinate in D0 and does not do anything
with D1. In this game, all steps are the same as in Game G0 except as
mentioned about the above ciphertext. Thus, A� will receive a challenger
ciphertext, sampled from one of two computationally indistinguishable
distributions D1

0 and D1, where

D1
0 =

3
�.Encrypt(ek1, m1

1, M1), �.Encrypt(ek2, m0
2, M2)

, . . . , �.Encrypt(ek¸, m0
¸ , M¸)

4
.

We denote the advantage of the adversary in this game by
AdvGame 1

A� (D1
0, D1). The, from this, we can see that

----Pr [A�(D0) = 1] ≠ Pr [A�(D1) = 1]

Æ
----Pr [A�(D0) = 1] ≠ Pr

Ë
A�(D1

0) = 1
È ----

+
----Pr

Ë
A�(D1

0) = 1
È

≠ Pr [A�(D1) = 1]
----.

Therefore, we have

AdvGame 0
A� (D0, D1) Æ AdvGame 1

A� (D1
0, D1) + Á1,

where Á1 is a quantity, defined by

Á1 :=
---- Pr
xΩD0

[A�(x) = 1] ≠ Pr
xΩD1

0
[A�(x) = 1]

----.

Claim 1. Á1 is bounded by an avantage of the attacker in AnoBEB scheme,
namely

Á1 Æ AdvAnoBEB.

Indeed, assume the contrary, that there exists a polynomial time attacker
ADIST which is able to distinguish between the two distributions D0 and
D1

0 with a non-negligible probability. We then build a simulator S to break
the � scheme as follows:
The simulator takes as input a public key ek� and generates (¸≠1) pairs of
public key and secret key {eki, MSKi}¸

i=2. S passes ek = (ek�, ek2, . . . , ek¸)
to ADIST. S also collects some parameters such as: the shares {m0

1, . . . , m0
¸},

{m1
1, . . . , m1

¸} and the family of mixture {M1, M2, . . . , M¸}. By querying
the challenger of the scheme � with the shares m0

1, m1
1 and the mixture

M1, S it receives a ciphertext of the form, Encrypt(ek1, mb
1, M1), where

bit b was chosen randomly by the challenger. The others ciphertexts
{Encrypt(ekj, m0

j , Mj)}¸
j=2 generated by the simulator as well to establish

a full ciphertext
3

Encrypt(ek1, mb
1, M1), Encrypt(ek2, m0

2, M2), . . . , Encrypt(ek¸, m0
¸ , M¸)

4
.

47

By our assumption, ADIST can distinguish e�ciently the two distributions
above, as soon as ADIST outputs bit b, the simulator S will return the
same value b. We see that if m0

1 = m1
1, the two distributions D0 and D1

0
coincide.
To summarize, we already built an e�cient simulator to break the scheme
� and it is a contradiction because � is IND≠secure.

Game G2: This game is identical with Game G1 with the di�erence that the
challenger changes the second coordinate in D1

0 by �.Encrypt(ek2, m1
2, M2)

and still does not do anything with D1. Thus, AdvA� will receive a
challenger ciphertext, sampled from one of two computationally indistin-
guishable distributions D2

0 and D1, where

D2
0 =

3
� . Encrypt(ek1, m1

1, M1),

�.Encrypt(ek2, m1
2, M2), . . . , �.Encrypt(ek¸, m0

¸ , M¸)
4

.

We denote the advantage of the adversary in this game by
AdvGame 2

A� (D2
0, D1). And from this, we have

AdvGame 1
A� (D1

0, D1) Æ AdvGame 2
A� (D2

0, D1) + Á2,

where Á2 is a quantity, defined by

Á2 :=
---- Pr
xΩD1

0
[A�(x) = 1] ≠ Pr

xΩD2
0
[A�(x) = 1]

----.

By an argument analogous to that of Claim 1, we get Á2 Æ AdvAnoBEB.

Game G¸: We substitute the ¸th coordinate of the distribution D¸
0 by

�.Encrypt(ek¸, m1
¸ , M¸)

and still introduce no change to the distribution D1. AdvA� will receive a
challenger ciphertext, sampled from one of two computationally identical
distributions D¸

0 and D1. We denote advantage of the adversary in this
game by AdvGame ¸

A� (D¸
0, D1). Then, from this, we have

AdvGame ¸≠1
A� (D¸≠1

0 , D1) Æ AdvGame ¸
A� (D¸

0, D1) + Á¸ = Á¸,

where Á¸ is a quantity, defined by

Á¸ :=
---- Pr
xΩD¸≠1

0

[A�(x) = 1] ≠ Pr
xΩD¸

0

[A�(x) = 1]
---- Æ AdvAnoBEB.

48

Putting the above arguments altogether and applying the triangle inequal-
ity we have:

----AdvGame 0
A� (D0, D1)

---- =
----AdvGame 0

A� (D0, D1) ≠ AdvGame ¸
A� (D¸

0, D1)

Æ
ÿ̧

i=1
Á¸ Æ ¸.AdvAnoBEB.

Further Remarks.
- The length of the above robust IPP codes is approximately the length of the best

collusion secure code which is essentially O(t2(log N
‘)) [Tar03], where ‘ is the

error probability in identifying traitors (we note that an interesting property
in IPP and robust IPP codes is that one achieves zero error in identifying
traitors). Suppose that one can construct an AnoBEB which is as e�cient as
the underlying PKE (which is the case for LWE encryption as we achieve in
this work), then our proposed robust IPP code based Trace & Revoke schemes
has the same ciphertext size as the state of the art collusion secure code based
traitor tracing schemes. Note that, unlike our case, one cannot revoke users in
the collusion secure code based traitor tracing schemes.

- We compare now our schemes with other Trace & Revoke schemes in the
bounded collusion model. If the tracing model is relaxed to be the black-box
confirmation with the assumption that the tracer gets a suspect set that contains
all the traitors, then the Agrawal et al.’s scheme from CCS ’17 [ABP+17] is
the most e�cient with the ciphertext size of ÂO(r + t + n) where n the security
parameter. However, transforming from black-box confirmation to black-box
tracing requires an exponential lost and thus is impractical: one have to make
a correct guess on the set that contains exactly the traitors. Focusing on
the standard black-box tracing in the bounded collusion model, the result
in [NWZ16] gives the referred schemes. As stated in [ABP+17], when based on
the bounded collusion FE of [GVW12], the resulting scheme in [NWZ16] has a
ciphertext size growing at least as ÂO((r + t)5Poly(n)); by relying on learning
with errors, this blowup can be improved to ÂO((r + t)4Poly(n)), but at the cost
of relying on heavy machinery such as attribute based encryption [GVW13] and
fully homomorphic encryption [GKP+13]. Our Trace & Revoke achieves the
ciphertext size complexity of ÂO((r + t2)(n2) log N) (the code length multiplied
by the LWE ciphertext size), for a system of N users. Our construction thus
gives the most e�cient Trace & Revoke scheme for standard black-box tracing
in the bounded collusion model.

- We provided a construction of AnoBEB which is as e�cient as the underlying
LWE PKE. We raise an open question of constructing AnoBEB schemes from
other standard encryptions such as ElGamal, RSA, Paillier encryptions without
a significant loss in the ciphertext size.

- Boneh-Naor [BN08] and Billet-Phan [BP08] provided a solution to tracing
traitors from imperfect pirate device, with short ciphertext size. Their schemes
were built from robust collusion secure codes and PKE. We can completely
follow these methods to obtain a traitor tracing scheme from a robust IPP
code and an AnoBEB with short ciphertext size. However, we target the more
challenging case of Trace & Revoke in this thesis.

49

5 Traceable Inner Product FunctionalEncryption

This chapter is devoted to introducing a new primitive, called Traceable Functional
Encryption. This work’s motivation is as follows: Functional Encryption (FE) has
been widely studied in the last decade, as it provides a very useful tool for restricted
access to sensitive data. From a ciphertext, it allows specific users to learn a function
of the underlying plaintext. In practice, many users may be interested in the same
function on the data, say the mean value of the inputs, for example. The conventional
definition of FE associates each function to a secret decryption functional key and
therefore, all the users get the same secret key for the same function. This induces an
important problem: if one of these users (called a traitor) leaks or sells the decryption
functional key to be included in a pirate decryption tool, then there is no way to
trace back its identity. However, in the new primitive, the functional decryption key
will not only be specific to a function but to a user too, in such a way that if some
users collude to produce a pirate decoder that successfully evaluates a function on
the plaintext, from the ciphertext only, one can trace back at least one of them.

We will propose a concrete construction Traceable Functional Encryption for
Inner Product. Our observation is that the ElGamal-based IPFE from Abdalla et al.
in PKC ’15 shares many similarities with the Boneh-Franklin traitor tracing from
CRYPTO ’99. We can then combine these two schemes in a very e�cient way, with
the help of pairings, to obtain a Traceable IPFE with black-box confirmation.

Contents
5.1 Traceable Functional Encryption 51

5.1.1 Definition . 51

5.1.2 Security . 53

5.2 Construction for Inner-Product Case 54

5.3 Security Analysis . 56

5.3.1 Semantic Security . 56

5.3.2 Security of Tracing Algorithm 60

50

5.1 Traceable Functional Encryption
5.1.1 Definition

We begin by describing the syntactic definition of traceable functional encryption
(TFE) for circuits. A functionality (circuit) F œ F⁄ describes the function of a
plaintext that can be derived from the ciphertext. More precisely, a functionality is
defined as follows.

Definition 5.1

Let Y = {Y⁄}⁄œN and S = {S⁄}⁄œN denote ensembles where each Y⁄ and S⁄ is
a finite set. Let F = {F⁄}⁄œN denotes an ensemble where each F⁄ is a finite
collection of circuits, and each circuit F œ F⁄ takes as input a message y œ Y⁄

and outputs F (y) œ S⁄.

Definition 5.2

A traceable functional encryption scheme T ≠ FE for an ensemble F consists
of five algorithms (Setup, Extract, Encrypt, Decrypt, Tracing) defined as follows:

Setup(1⁄): Takes as input a security parameter ⁄ and outputs a master key pair
(PK, MSK).

Extract(ID, MSK, F): Given an identity ID of a user, a circuit F œ F⁄ and the
master secret key MSK, this algorithm outputs an individual functional
secret key skF,ID.

Encrypt(PK, y): Takes as input the public key PK and a message y œ Y⁄, this
randomized algorithm outputs a ciphertext CT.

Decrypt(PK, skF,ID, CT): Given the public key PK, a secret key skF,ID and a
ciphertext CT, this algorithm outputs F (y) œ S⁄, if CT encrypts y, or an
invalid symbol ‹.

TracingDF (MSK, F, µ(.), y0, y1): The tracing algorithm takes as input the master
secret key MSK, a circuit F œ F⁄, two messages y0, y1 œ Y⁄ which are
obtained from DF and a function µ(.) representing the probability that
the decoder can distinguish between the ciphertexts of y0 and of y1. The
algorithm interacts with a confiscated pirate decoder DF , as a black-box,
and outputs an identity or an invalid symbol ‹.

For correctness, we require that for all (PK, MSK) Ω Setup(1⁄), all y œ Y⁄, each
F œ F⁄ and all identities ID, skF,ID Ω Extract(ID, MSK, F), if CT Ω Encrypt(PK, y),
then one should get Decrypt(PK, skF,ID, CT) = F (y), with overwhelming probability.

51

Requirement on the pirate decoder

• The classical requirement is that the pirate decoder DF is a device that is
able to decrypt successfully any normal ciphertext generated by the Encrypt
algorithm with high probability. Yet, in another approach, the tracer is only
able to interact with DF through an oracle OD

F by sending a message-ciphertext
pair (tracing signal) to OD

F and gets a response that is a bit indicating whether
DF can successfully decrypt the ciphertext into the provided message (evaluated
with the function F). We say that the tracing algorithm is executing in minimal
access black-box mode.

OD
F (CT, y) =

Y
]

[
1 if DF (CT) = F (y)
0 otherwise.

• We consider the same setting for the pirate as in [GKW18b]: of course, this is
not required the pirate decoder DF to output entire message (or an indicator
bit as in minimal access model) nor to decrypt with high probability every
ciphertexts which are taken from random messages. Instead, it is enough that
the pirate decoder can distinguish the encryption of two messages y0, y1 which
are chosen by itself (see [GKW18b]): Adapted from [GKW18b], we define a
µ-useful Pirate Distinguisher DF associated to a unique function F as below

Pr

S

WWWWWWU
DF (CTb) = b :

(MSK, PK) Ω Setup(·)
{skF,i Ω Extract(i, MSK, F)}iœ[n]
(DF , y0, y1) Ω A(PK, {skF,i}iœ[t])
st. F (y0) ”= F (y1)
b

$Ω {0, 1}, CTb Ω Encrypt(PK, yb)

T

XXXXXXV
≠ 1

2

Ø µ(⁄),

where the function µ(·) is a non-negligible function in ⁄.
This very strong notion of Pirate Distinguisher has been introduced in [GKW18b].
It requires the pirate distinguisher to be able to distinguish the encryption of
two di�erent messages y0, y1. To adapt to the functional encryption, as the
goal of the pirate is to compute the function on the message, we require that
the pirate distinguisher be able to distinguish the encryption of y0, y1 such that
F (y0) ”= F (y1).
As shown in [GKW18b], this notion is stronger than the classical Pirate
Decoder which is able to correctly decrypt random messages with non-negligible
probability. When considering the case of functional encryption, a pirate
decoder for a function F is useful if it can compute F (y) from the encryption
of y, for a random message y. Clearly, pirate distinguisher is also stronger
than pirate decoder in this case. Indeed, one can build a distinguisher DF

from a decoder DecF : randomly choose y0, y1 such that F (y0) ”= F (y1), then
when receiving the challenge ciphertext CT, call DecF and check whether this
is F (y0) or F (y1) to output the correct guess, if this is none of them, output a
random guess. In this work, we will deal with this notion of pirate distinguisher
which is actually the strongest notion (i.e., minimal requirement) about the
usefulness of pirate decoders.

52

5.1.2 Security
We consider the IND security game between an adversary A and a challenger B

as follows:

Definition 5.3

A traceable functional encryption scheme T ≠ FE for an ensemble F , T ≠ FE =
(Setup, Extract, Encrypt, Decrypt, Tracing) is semantically secure under chosen-
plaintext attacks (or IND ≠ CPA security) if no PPT adversary has non-negligible
advantage in the following game:

• The challenger B runs (PK, MSK) Ω Setup(1⁄) and the public key PK is
given to the adversary A.

• The adversary adaptively makes secret key queries to the challenger.
That is, the adversary A chooses some pairs of identities ID and functions
F œ F⁄. A sends them to B and then obtains skF,ID Ω Extract(ID, MSK, F)
from B.

• The adversary A chooses distinct messages y0, y1 œ Y⁄ such that F (y0) =
F (y1) for all F already asked. This restriction is required in all functional
encryption to avoid trivial attacks. Whenever B receives the messages, it
randomly picks —

$Ω {0, 1} and then transfers to A a ciphertext CT— =
Encrypt(PK, y—).

• Adversary A continues making further decryption key queries for other
pairs of identities ID and functions F , and receives skF,ID from B. Again,
it is also required that F (y0) = F (y1) to avoid trivial attacks.

• Adversary A eventually returns a guess —
Õ for a bit — and wins if —

Õ = —.

A weaker version has been defined, when the messages y0, y1 for the challenge
ciphertext are chosen before the Setup algorithm started, then the T ≠ FE scheme
is said selectively-security against chosen-plaintext attacks, which is denoted by
sel≠IND≠CPA.

Traceability. The security game between the attacker A and the challenger B takes
place as follows:

1. The challenger B runs (PK, MSK) Ω Setup(1⁄) and the public key PK sent to
the adversary A. B also creates a table T to store pairs of identities of users
who queried keys and functions F , for all F œ F⁄. It means that the table T
stores (ID, F). Initially T is set empty.

2. The adversary adaptively makes secret key queries to the challenger. Concretely,
the adversary A chooses some pairs of identities ID and functions F œ F⁄ to
query functional secret keys. The challenger B stores all these pairs in the
table T and replies with the secret keys skF,ID for those pairs.

3. The adversary A outputs (F ú, DF ú) and two messages y0, y1, where DF ú is a
pirate distinguisher for the function F ú.

53

4. After receiving the messages y0, y1 from A, the challenger B runs the algorithm
TracingDF ú (MSK, F ú, 1µ, y0, y1) and outputs an identity IDú.

We say that the adversary A wins the game if the output of Tracing is either an
invalid symbol IDú = ‹ or the identity IDú did not ask for F ú: (IDú, F ú) ”œ T .

When the adversary A is allowed to ask secret keys for the only target function
F ú (but for any ID), and so for (ID, F ú), the security of Tracing algorithm will then
be called one-target security.

We will explain that the one-target security also covers the case where the
adversary outputs any function F such that the target function F ú is computable
from F with public information. In such a case, when the pirate outputs the function
F and the decoder DF (together with two messages), one can define a decoder DF ú

that calls DF and then applies the computation of F ú from F on the output, then
do tracing on this DF ú , applying also the public transformation to the messages.

5.2 Construction for Inner-Product Case
Intuition. We exploit the similarities between the Boneh and Franklin’s traitor
tracing scheme [BF99] and the Abdalla et al.’s IPFE scheme [ABDP15] to integrate the
Boneh-Franklin tracing technique into the IPFE scheme of Abdalla et al. [ABDP15]
which allows in particular to personalize functional decryption keys. Interestingly,
our method of personalizing keys and adding traceability does not need a huge extra
cost as it is usually required for others primitives such as broadcast encryption.

We first informally recall the main ingredients of the IPFE of Abdalla et al.
[ABDP15], that encrypts a plaintext vector y̨ = (y1, . . . , yk) as follows: the master
secret key MSK = s̨ = (s1, . . . , sk) and the public key PK =

3
G,

1
hi = gsi

2

iœ[k]

4

respectively allow to generate functional decryption keys and ciphertexts:

skx̨ = Ès̨, x̨Í =
ÿ

iœ[k]
si · xi, CTy̨ =

3
gr,

1
hr

i · gyi
2

iœ[k]

4
.

Here, we are working in a cyclic G of prime order q, with a generator g. The
master secret key MSK is a vector s̨ with components si are taken from Zq. The
public key PK consists of k group elements hi. The vector x̨ = (x1, . . . , xk) with
components xi is taken from Zq is used to extract a functional decryption key skx̨.
A ciphertext, which is generated for a plaintext y̨, denoted by CTy̨. The Decrypt
algorithm computes

Ÿ

iœ[k]

3
hr

i · gyi

4xi

◊
3

gr
4≠skx̨

= gÈs̨,x̨Ír · gÈx̨,y̨Í

gÈs̨,x̨Ír = gÈx̨,y̨Í

and gets Èx̨, y̨Í, which is supposed to be relatively small, to allow the computation of
the discrete logarithm.

For the mean value, the vector x̨ is (1, . . . , 1). If many users are interested in the
mean value then they all get the same functional decryption key skx̨ and there will
be no way to trace the source of the leakage if this secret key is used somewhere.

In order to personalize functional decryption keys for each vector x̨, we have
got inspired from the seminal technique of Boneh-Franklin: we associate to each
user a representation of gÈs̨,x̨Í in the basis of

1
bi = gti

2

iœ[k]
, with ti is taken from Zq.

54

Therefore, by adding br
i in the ciphertext, each user can compute gÈs̨,x̨Ír as above and

the decryption works in the same manner. Concretely, each user ID is associated to
a public codeword ◊̨ID = (◊1, . . . , ◊k) and then, the personal secret key will be simply
set to: tkx̨,ID = Ès̨, x̨Í/Ę̀t, ◊̨IDÍ. The master secret key MSK consists of two vectors
s̨ = (s1, . . . , sk) and t̨ = (t1, . . . , tk). The public key

PK =
3
G,

1
bi = gti

2

iœ[k]
,
1
hi = gsi

2

iœ[k]

4
.

For each plaintext y̨, the ciphertext is

CTy̨ =
31

br
i

2

iœ[k]
,
1
hr

i · gyi
2

iœ[k]

4
.

The Decrypt algorithm then outputs

Ÿ

iœ[k]

3
hr

i · gyi

4xi

◊
Ÿ

iœ[k]

3
br

i

4≠tkx̨,ID◊i

= gÈs̨,x̨Ír · gÈx̨,y̨Í

gÈs̨,x̨Ír = gÈx̨,y̨Í.

The use of pairings. The above technique of personalizing secret keys seems to
work well as in the Boneh-Franklin traitor tracing. However, there exists an issue
specific to the setting of the functional encryption, that goes beyond the framework
of Boneh-Franklin traitor tracing. Suppose that we are considering a scheme for two
users with identities ID1 and ID2. The first user queries the secret keys corresponding
to vectors x̨1 and x̨2 and gets tkx̨1,ID1 = Ès̨,x̨1Í

Èt̨,◊̨ID1 Í and tkx̨2,ID1 = Ès̨,x̨2Í
Èt̨,◊̨ID1 Í . The second

user only queries secret key to vector x̨1 and gets tkx̨1,ID2 = Ès̨,x̨1Í
Èt̨,◊̨ID2 Í . From these

three secret keys tkx̨1,ID1 , tkx̨2,ID1 and tkx̨1,ID2 , it is possible to compute the secret key
tkx̨2,ID2 = tkx̨2,ID1 ·tkx̨1,ID2

tkx̨1,ID1
for the vector x̨2 and identity ID2. To avoid this attack, we

will put the scalar tx̨,ID in the exponent skx̨,ID = gtkx̨,ID and the decryption will then
be performed in the target group of the pairing. The goal of the rest of this chapter
is to prove this modification actually leads to a secure scheme.

Enhancing the security of IPFE. It is worth noticing that, by putting the secret
key in the exponent, we may enhance the security of the functional encryption. In
the Abdalla et al.’s scheme [ABDP15], whenever the adversary queries more than k
secret keys, it can get the whole MSK by solving a system of linear equations. In our
scheme, there is no way, unless breaking discrete logarithm, to get this master key
as it is only put in the exponent. We will though not exploit further this advantage
in this work, as we will focus on traceability.

Construction. We will describe concretely a traceable functional encryption for
inner product scheme (T ≠ FE) for n users. Let G be a bilinear group of large prime
of order q. Additionally, let e : G1 ◊ G2 æ GT denote a bilinear map, where G1,G2
and GT are cyclic groups of order q, written multiplicatively.

Setup(1⁄, 1k): This algorithm generates a bilinear setting G = (G1,G2,GT , q, e) for
su�ciently large prime order q and g1, g2 respectively are generators of the
groups G1 and G2. The bilinear map e over G1, G2 can be calculated e�ciently.

• Randomly choose t1, . . . , tk
$Ω Zq, set t̨ = (t1, . . . , tk) and b1 = gt1

1 , . . . ,
bk = gtk

1 .

55

• For each i œ {1, . . . , k}, randomly choose si
$Ω Zq. We set s̨ = (s1, . . . , sk)

and set G = e(g1, g2) œ GT and Hi = Gsi œ GT for all i = 1, . . . , k.
• We consider a linear code � over the alphabet Zq with n codewords

� = {◊̨1, . . . , ◊̨n}, corresponding to n users in our system. Each codeword
has the length k.

• The public key is PK =
3
G, �, g1, g2, G, H1, . . . , Hk, b1, . . . , bk

4
.

• The master secret key is MSK = {s̨, t̨}.

Extract(ID, MSK, x̨): Takes as input an identity ID, the master secret key MSK and a
characteristic vector x̨ = (x1, . . . , xk) œ Zk

q . Choose a (new) vector (codeword)
◊̨ID = (◊1, . . . , ◊k) œ �. A secret key is an element g

tkx̨,ID
2 œ G2 such that

tkx̨,ID · ◊̨ID is a representation of gÈs̨,x̨Í
1 in the basis of (b1, b2, . . . , bk). That is

gÈs̨,x̨Í
1 = rk

i=1 b
tkx̨,ID◊i

i = b
tkx̨,ID◊1
1 · · · b

tkx̨,ID◊k

k . Concretely, set tkx̨,ID = Ès̨, x̨Í
Ę̀t, ◊̨IDÍ

and

define skx̨,ID = g
tkx̨,ID
2 for ◊̨ID.

Encrypt(PK, y̨): Takes as input the public key PK and a message y̨ = (y1, . . . , yk) œ Zk
q .

To encrypt y̨, sample r
$Ω Zq and compute

CT = (Hr
1Gy1 , . . . , Hr

kGyk , br
1, . . . , br

k).

Decrypt(PK, skx̨,ID, CT): Takes as input the public key PK, the secret key skx̨,ID =
g

tkx̨,ID
2 for ◊̨ID = (◊1, . . . , ◊k) and a ciphertext CT, the algorithm computes

E =

1
Hr

1Gy1
2x1 · · ·

1
Hr

kGyk

2xk

e
31

br
1
2◊1 · · ·

1
br

k

2◊k
, g

tkx̨,ID
2

4 .

Finally, it returns the discrete logarithm of E in basis G = e(g1, g2).

Correctness: For all (PK, MSK) Ω Setup(1⁄, 1k), all y̨ œ Zk
q and x̨ œ Zk

p, for
skx̨,ID = (gtkx̨,ID

2 , ◊̨ID) Ω Extract(ID, MSK, x̨) and CT Ω Encrypt(PK, y̨), we have that
1
Hr

1Gy1
2x1 · · ·

1
Hr

kGyk

2xk

e
31

br
1
2◊1 · · ·

1
br

k

2◊k
, g

tkx̨,ID
2

4 =
GÈx̨,y̨Í ·

3
Gx1s1+···+xksk

4r

e
3

gt1r◊1
1 · · · gtkr◊k

1 , g
Ès̨,x̨Í

Èt̨,◊̨IDÍ
2

4

= GÈx̨,y̨Í · ⇠⇠⇠⇠GrÈs̨,x̨Í

⇠⇠⇠⇠⇠⇠⇠
e(g1, g2)rÈs̨,x̨Í

GÈx̨,y̨Í = e(g1, g2)Èx̨,y̨Í.

5.3 Security Analysis
5.3.1 Semantic Security

Theorem 5.1

Under the BDDH assumption, the above T ≠ FE achieves the selective security

56

(sel≠IND≠CPA).

Proof

We assume that there exists an adversary A can distinguish distributions
of ciphertexts in the real game with non-negligible advantage. We build a
simulator B that solves the BDDH problem. It means that B takes as input a
tuple

1
ga

1 , gb
1, ga

2 , gc
2, T

2
œ G2

1 ◊ G2
2 ◊ GT , it must decide whether the input is

BDDH tuple where T = e (g1, g2)abc or random tuple where T = e (g1, g2)z. We
set

D0 =
;1

ga
1 , gb

1, ga
2 , gc

2, e (g1, g2)abc
2

|a, b, c
$Ω Zq

<

D1 =
;1

ga
1 , gb

1, ga
2 , gc

2, e (g1, g2)z
2

|a, b, c, z
$Ω Zq

<
.

The algorithm B progresses as follows:

• Firstly, B is provided two distinct messages y̨0 and y̨1.

• B chooses � = {◊̨1, . . . , ◊̨n} is a linear code of size n and length k, as well
as t1, . . . , tk

$Ω Zq. Set t̨ = (t1, . . . , tk) and bi = gti
1 , for i = 1 to k.

• B finds a (k ≠ 1)-basis of subspace (y̨0 ≠ y̨1)‹ because the adversary A
can only ask secret keys for vectors x̨ in (y̨0 ≠ y̨1)‹. We denote this basis
by (z̨1, . . . , z̨k≠1). For i = 1, . . . , k ≠ 1, B randomly chooses ui

$Ω Zq.

• We consider the canonical basis (ę1, . . . , ęk) of Zk
q . A linear transforma-

tion from basis (z̨1, . . . , z̨k≠1, (y̨0 ≠ y̨1)) to (ę1, . . . , ęk) is given by: ęi =
–i (y̨0 ≠ y̨1) + qk≠1

j=1 ⁄i,j z̨j, where the coe�cients –i, ⁄i,j can be found
e�ciently by B. Note that Èęi, y̨0 ≠ y̨1Í = –i ◊ ||y̨0 ≠ y̨1||2. Then
–̨ = q

i –ięi = 1/||y̨0 ≠ y̨1||2 ◊ q
iÈęi, y̨0 ≠ y̨1Íęi = 1/||y̨0 ≠ y̨1||2 ◊ (y̨0 ≠ y̨1).

• From the challenge tuple, and random scalars u1, . . . , uk≠1
$Ω Zq, set

G = e(g1, gc
2) and

Hi = e
3

(ga
1)–i · g

qk≠1
j=1 uj⁄i,j

1 , gc
2

4

= e(g1, gc
2)

a–i+
qk≠1

j=1 uj⁄i,j = Ga–i+
qk≠1

j=1 uj⁄i,j

for i = 1, . . . , k, which implicitly defines si = a–i +
qk≠1

j=1 uj⁄i,j . The public
key is set to PK =

3
G, �, g1, g2, H1, . . . , Hk, b1, . . . , bk

4
.

• For any vector x̨ = (x1, . . . , xk) œ (y̨0 ≠ y̨1)‹, B computes Ÿx̨ = Ès̨, x̨Í =
qk≠1

j=1
qk

i=1 xiuj⁄i,j and, for identities ID, skx̨,ID = g
tkx̨,ID
2 , where tkx̨,ID =

Ÿx̨

Ę̀t, ◊̨IDÍ
. It sends the value g

tkx̨,ID
2 to A. Vector ◊ID is a codeword in �.

57

• The challenger randomly picks —
$Ω {0, 1} and, from the challenge tuple

where T is the last element in GT , gives A a ciphertext CT = (ct1, . . . , ct2k),

where ctj = T –j · e
3 1

gb
1
2qk≠i

i=1 ui⁄j,i
, gc

2

4
· Gy—,j and ctj+k =

1
gb

1
2tj , for

j = 1, . . . , k.

• At the end, the adversary outputs his guess —Õ for —. If —Õ = — then B
returns 1 for “BDDH tuple”. Otherwise returns 0 for “random tuple”. We
will show that B can break BDDH assumption. To do so, we need to prove
that the di�erence below is negligible

----Pr[B(D0) = 1] ≠ Pr[B(D1) = 1]

=
----Pr[— = —Õ | T = e (g1, g2)abc] ≠ Pr[— = —Õ | T = e (g1, g2)z]

----.

We find that:

1. When T = e (g1, g2)abc then we have ctj = T –j · e
3 1

gb
1
2qk≠1

i=1 ui⁄j,i
, gc

2

4
·

Gy—,j = Hb
j Gy—,j , for j = 1, . . . , k. Therefore

CT =
3

Hb
1Gy—,1 , . . . , Hb

kGy—,k , bb
1, . . . , bb

k

4
.

It implies that B perfectly simulates the real game. Since A can break
the semantic security with non-negligible probability, we have Pr[— = —Õ |
T = e (g1, g2)abc] = Adv(A) + 1/2.

2. When T = e(g1, g2)z = Gv is random element, the challenger will send
A the ciphertext of message y̨— + v–̨ = y̨— + v/||y̨0 ≠ y̨1||2 ◊ (y̨0 ≠ y̨1) =
µy̨0 + (1 ≠ µ)y̨1, for some random µ œ Zq. This makes — perfectly
unpredictable: Pr[— = —Õ | T = e (g1, g2)z] = 1/2.

We conclude the advantage is non-negligible as
----Pr[— = —Õ | T = e (g1, g2)abc] ≠ Pr[— = —Õ | T = e (g1, g2)z]

=
----Adv(A) + 1

2 ≠ 1
2

---- = Adv(A).

⌅
This section will be devoted to present a black-box confirmation traitor-tracing
algorithm. The purpose of this algorithm is to verify sets of secret keys which are
suspected by a Tracer. The tracing algorithm takes as input the master secret key
MSK and it can access the table T (see the Tracing security game) to take a set of
secret keys for which it wants to check its suspicion. We will use the scalar form
tkx̨,ID of the secret keys instead of the group element form skx̨,ID. But as we only
consider possible legitimate secrete keys in this form, the scalars are known to the
authority.

Suppose that Tracer is provided a set of t secret keys (for the suspected traitors),
say Ksuspect = {tk1, . . . , tkt} which are derived from a fixed vector x̨ = (x1, . . . , xk).
Here, we have slightly abused the notation, as we are in the one-target security. When

58

the vector x̨ is explicit, we use the notation {tk1, . . . , tkt} instead of {tkx̨,1, . . . , tkx̨,t},
the pirate decoder Dx̨ is replaced by D and we use integers to represent identities of
users. A codeword will be ◊̨i which is attached to a user with identity i. The goal of
the Tracer is to verify whether there is any traitor in Ksuspect. Before go further we
need to define some notations.

• Set Ki = {tk1, . . . , tki} ™ Ksuspect, for all i œ [t] and K0 = ÿ.

• We define spaces of tracing signals (ciphertexts) Tr0, Tr1, . . . , Trt such that each
signal from Tri can be decrypted successfully by any secret key in Ki. More
concretely, for each i from 0 to t, the tracing signal for a message y̨ = (y1, . . . , yk)
is taken from the distribution Trx̨

i (y̨) (or Tri(y̨) for simplicity, when x̨ is explicit)
that is defined as follows

Y
]

[

3
Ha

1 Gy1 , . . . , Ha
k Gyk , gz1

1 , . . . , gzk
1

4 ------
a

$Ω Zq, z̨
$Ω Zk

q ,

Èz̨, tkj ◊̨jÍ = aÈs̨, x̨Í, ’j œ [i]

Z
^

\,

where z̨ = (z1, . . . , zk). G, H1, . . . , Hk are group elements of GT and belong to
the public key PK. Set Q(a) = e(g1, g2)aÈs̨,x̨Í, as s̨ and x̨ are fixed.

• Every user j with secret key in Ki can output the same

(Ha
1 Gy1)x1 · · · (Ha

k Gyk)xk

e(gÈz̨,◊̨jÍ
1 , g

tkj
2)

= P(y̨, a)
Q(a) ,

where P(y̨, a) = (Ha
1 Gy1)x1 · · · (Ha

k Gyk)xk = Q(a) ◊ GÈy̨,x̨Í.

• Define distribution of normal ciphertext for a message y̨ = (y1, . . . , yk), de-
noted Norm(y̨): randomly draw r

$Ω Zq and output ciphertext (Hr
1Gy1 , . . . ,

Hr
kGyk , br

1, . . . , br
k).

• For i = 0, . . . , t, we set pi = Pr[D(CT) = b | b
$Ω {0, 1}, CT Ω Tri(y̨b)],

where y̨0, y̨1 are chosen by D. When i = 0, in Tri(y̨b), a and z̨ are perfectly
independent, and so under the DDH assumption, the Ha

i hides the yb,i. So we
have p0 = 1/2 + negl(⁄).

Definition 5.4

A tracing traitor algorithm is black-box confirmation if it satisfies:

1. Confirmation: If suspected set of users actually contains the entire set
of traitors then output of Tracing algorithm always returns at least an
identity i such that tki œ Ksuspect is guilty. Formally, with the condition
KD ™ Ksuspect, the Tracing algorithm returns at least an identity i such
that the secret key tki œ Ksuspect as guilty. We denote by KD a set of secret
keys used to build the pirate decoder D.

2. Soundness: The honest users will never be accused if the Tracing algorithm
outputs an identity as guilty; it is impossible for traitors to deceive Tracing
algorithm to blame innocent users. Said di�erently if Tracing algorithm
outputs an identity i such that tki is guilty then tki œ KD.

59

5.3.2 Security of Tracing Algorithm
The tracing algorithm needs to use the following lemmas.

Lemma 5.1

Under the DDH assumption in G1, no adversary corruping t users 1, . . . , t can
distinguish the distribution of tracing signals Trt(y̨) with the distribution of
normal ciphertexts Norm(y̨), for any adversarially chosen y̨.

Proof

Suppose that an adversary A can distinguish the distribution of tracing signals
Trt(y̨) with the distribution of normal ciphertexts Norm. We will build a
simulator B breaks the DDH assumption in G1. The simulator has inputs: 4-
tuples (g1, g2, u1, u2) œ G4

1, where g2 = gc
1 and c is unknown. It decides whether

this is a DDH tuple or a random tuple:

1. Take randomly t codewords ◊̨1, . . . , ◊̨t from the code �.

2. Take randomly A from Zq such that gA
1 g2 ”= 1.

3. Take randomly ą = (a1, . . . , ak), ę = (e1, . . . , ek) $Ω Zk
q such that È◊̨i, ą ≠

AęÍ = 0, for all i = 1, . . . , t.

4. Set bi = gai
1 gei

2 , for all i = 1, . . . , k.

5. Take randomly –̨ = (–1, . . . , –k) $Ω Zk
q such that È–̨, ą ≠ AęÍ = 0. Take

randomly g2
$Ω G2 and it sets g1 = gA

1 g2, G = e(g1, g2). We set Hi =
e(uA

1 u2, g2)–i for all i œ [k]. The public key is PK = (G, �, g1, g2, G, H1, . . . ,
Hk, b1, . . . , bk), where G is a bilinear group.

6. The simulator B calculates secret key for queries (x̨, i), tkx̨,i = È–̨, x̨Í
È◊̨i, ęÍ

, for

i œ [t] and functions x̨ then gives all g
tkx̨,i
2 to the adversary A. It is clear

that tkx̨,i◊̨i is a representation of (gA
1 g2)È–̨,x̨Í in the base (b1, . . . , bk) .

7. Take randomly a
$Ω Zq. The simulator constructs the ciphertext for a

message y̨ as below

CT = (Ha
1 Gy1 , . . . , Ha

k Gyk , (ua1
1 ue1

2)a, . . . , (uak
1 uek

2)a),

where y̨ = (y1, . . . , yk).

8. Send the ciphertext CT to the adversary A. If A decides the ciphertext
comes from normal distribution (i.e. A returns 1) then B returns “DDH
tuple”, else returns “random tuple”.

60

We first show that the public key PK which is generated by the simulator B is
indistinguishable from the corresponding public key in the real algorithm.

• We will prove that distribution of tuples (b1, . . . , bk) œ Gk
1 is uniform.

Indeed, , write bi = gti
1 then, for each (t + k)-tuple (̨0, t1, . . . , tk) where

t1, . . . , tk
$Ω Zq and 0̨ = (0, . . . , 0) œ Zt

q the below system of equations has
a solution

Q

cccccccccca

. . . ◊̨1 ≠A◊̨1 . . .
...

. . . ◊̨t ≠A◊̨t . . .
1 . . . 0 c . . . 0
...
0 . . . 1 0 . . . c

R

ddddddddddb

◊
A

ą
ę

B

=

Q

cccca

0̨
t1
...
tk

R

ddddb
.

We denote by �0 a matrix with its rows are vectors ◊̨1, . . . , ◊̨t. The rank
of this matrix is t.
Indeed, it is equivalent that

A
�0 ≠A�0
Ik cIk

B

◊
A

ą
ę

B

=
A

0̨
t̨

B

has solutions. Here Ik is the (k ◊ k)-unit matrix. We set

� =
A

�0 ≠A�0
Ik cIk

B

.

Since A is chosen such that 1 ”= gA
1 g2 = gA+c

1 , ((t + k) ◊ 2k)-matrix �
has rank k + t. Therefore, dim Im� = rank � and the dimension of
Ker� = 2k ≠ (k + t) = k ≠ t. Therefore, the above system of linear
equations with unkowns (̨a, ę) exists a solution. It implies that (b1, . . . , bk)
is uniform over Gk

1.

• Concerning Hi, in the real game Hi = e(g1, g2)–i for randomly chosen
but known g1, g2 while in the simulation game, Hi = e(uA

1 u2, g2)–i for
randomly chosen A and (–i)i in a span of dimension k ≠1. Under the DDH
in the G1, uA

1 u2 is indistinguishable from random, and thus Hi follows
from a correct distribution in the computational sense.

We now show that, for any adversarially chosen y̨, if (g1, g2, u1, u2) œ G4
1 is

a DDH tuplee then the ciphertext is a normal ciphertext of y̨ and when it is a
random tuple then the ciphertext comes from Trt(y̨). Therefore, if the adversary
can distinguish these two distributions then B can break the DDH assumption
in G1: |Pr[B(D0) = 1] ≠ Pr[B(D1) = 1]| is non-negligible. By definition, it is
equivalent to
-----Pr[A(CT) = 1 | (g1, g2, u1, u2) $Ω D0] ≠ Pr[A(CT) = 1 | (g1, g2, u1, u2) $Ω D1]

61

is non-negligible. Here, CT is a ciphertext generated as in Step 7. We find that:

1. When (g1, g2, u1, u2) $Ω D0, we will prove that

Pr[A(CT) = 1 | (g1, g2, u1, u2) $Ω D0] = Pr[A(CT) = 1 | CT $Ω Norm].

Indeed, suppose that (g1, g2, u1, u2) = (g1, g2, gz
1, gz

2), where z is unknown.
The ciphertexts in Step 7 is then:

CT =
3

Ha
1 Gy1 , . . . , Ha

k Gyk , (ua1
1 ue1

2)a, . . . , (uak
1 uek

2)a
4

=
3

Ha
1 Gy1 , . . . , Ha

k Gyk , (gza1
1 gze1

2)a, . . . , (gzak
1 gzek

2)a
4

=
3

Ha
1 Gy1 , . . . , Ha

k Gyk , (ga1
1 ge1

2)z·a, . . . , (gak
1 gek

2)z·a
4

=
3

Ha
1 Gy1 , . . . , Ha

k Gyk , bz·a
1 , . . . , bz·a

k

4
,

which is in the space of normal ciphertext. It is su�cient thus to show
that, with the decryption with the secret key tkx̨,i, the decryption will
gives GÈx̨,y̨Í. Indeed,

E =

1
Ha

1 Gy1
2x1 · · ·

1
Ha

k Gyk

2xk

e
31

ua1
1 ue1

2
2a◊1 · · ·

1
uak

1 uek
2

2a◊k
, g

tkx̨,i
2

4

= GÈx̨,y̨Í · e(uA
1 u2, g2)ax1–1 · · · e(uA

1 u2, g2)axk–k

e
33

gA
1 g2

4zaÈę,◊̨Í
, g

Èx̨,–̨Í
È◊̨,ęÍ

2

4

= GÈx̨,y̨Í · e(gA
1 g2, g2)azx1–1 · · · e(gA

1 g2, g2)azxk–k

e
33

gA
1 g2

4zaÈę,◊̨Í
, g

Èx̨,–̨Í
È◊̨,ęÍ

2

4

= GÈx̨,y̨Í · e(gA
1 g2, g2)azÈx̨,–Í

e
33

gA
1 g2

4zaÈę,◊̨Í
, g

Èx̨,–̨Í
È◊̨,ęÍ

2

4 = GÈx̨,y̨Í.

2. When (g1, g2, u1, u2) $Ω D1, we will prove that

Pr[A(CT) = 1 | (g1, g2, u1, u2) $Ω D1] = Pr[A(CT) = 1 | CT $Ω Trt].

Indeed, suppose that (g1, g2, u1, u2) = (g1, g2, g“1
1 , g“2

2), where “1 ”= “2 and
g2 = gc

1. The ciphertexts in Step 7 is then:

62

CT =
3

Ha
1 Gy1 , . . . , Ha

k Gyk , (ua1
1 ue1

2)a, . . . , (uak
1 uek

2)a
4

=
3

Ha
1 Gy1 , . . . , Ha

k Gyk , (g“1a1
1 g“2e1

2)a, . . . , (g“1ak
1 g“2ek

2)a
4

=
3

Ha
1 Gy1 , . . . , Ha

k Gyk , ga(“1a1+c“2e1)
1 , . . . , ga(“1ak+c“2ek)

1

4

=
3

Ha
1 Gy1 , . . . , Ha

k Gyk , gz1
1 , . . . , gzk

1

4
,

where zi = a(“1ak + c“2ek) for all i œ [k].
We show that for any traitor with the key tkx̨,i, i = 1 to t, it decrypts to
the same message. Indeed:

E =

1
Ha

1 Gy1
2x1 · · ·

1
Ha

k Gyk

2xk

e
31

g“1a1
1 g“2e1

2
2a◊1 · · ·

1
g“1ak

1 g“2ek
2

2a◊k
, g

tkx̨,i
2

4

= GÈx̨,y̨Í · e(uA
1 u2, g2)ax1–1 · · · e(uA

1 u2, g2)axk–k

e
3
gÈą,◊̨Ía“1

1 gÈę,◊̨Ía“2
2 , g

Èx̨,–̨Í
È◊̨,ęÍ

2

4

= GÈx̨,y̨Í · e(gA“1
1 g“2

2 , g2)ax1–1 · · · e(gA“1
1 g“2

2 , g2)axk–k

e
3
gÈę,◊̨ÍaA“1

1 gÈę,◊̨Ía“2
2 , g

Èx̨,–̨Í
È◊̨,ęÍ

2

4

= GÈx̨,y̨Í · e(gA“1
1 g“2

2 , g2)aÈx̨,–Í

e
33

gA“1
1 g“2

2

4aÈę,◊̨Í
, g

Èx̨,–̨Í
È◊̨,ęÍ

2

4 = GÈx̨,y̨Í · e(gA“1
1 g“2

2 , g2)aÈx̨,–Í

e
3
gA“1

1 g“2
2 , g2

4aÈx̨,–̨Í = GÈx̨,y̨Í.

Here ◊̨i = (◊1, . . . , ◊k).
Finally, we will prove that the distribution of ciphertext CT is uniform
over the space of signals Trt. It requires that the system of equations

Q

ca
�0 ≠A�0
Ik cIk

a“1Ik ac“2Ik

R

db ◊
A

ą
ę

B

= “̨

is consistent, where “̨ is a fixed vector in Zt+2k
q . It is equivalent that the

63

below (t + 2k, 2k)-matrix
Q

ccccccccccccccccccca

. . . ◊̨1 ≠A◊̨1 . . .
...

. . . ◊̨t ≠A◊̨t . . .
1 . . . 0 c . . . 0
...
0 . . . 1 0 . . . c

a“1 . . . 0 ac“2 . . . 0
...
0 . . . a“1 0 . . . ac“2

R

dddddddddddddddddddb

has full rank (i.e. rank = 2k). Indeed, This is straightforward because the
last 2k rows of the above matrix are linear independent due to “1 ”= “2.

We conclude that
--- Pr [B(D0) = 1] ≠ Pr[B(D1) = 1]

= | Pr[A(CT) = 1 | CT $Ω Normal] ≠ Pr[A(CT) = 1 | CT $Ω Trt]| = Adv(A),

which is non-negligible. ⌅

Lemma 5.2: Hybrid Lemma

Considering the one-target security for an adversarially chosen target function
x̨. Under the DDH assumption over group G1, for all 1 Æ i0 Æ t, no adversary
can distinguish the distribution of tracing signals Tri0(y̨) with the distribution
of Tri0≠1(y̨) unless it owns the secret key ski0 .

Proof

Suppose that an adversary A can distinguish the distribution of tracing signals
Tri0 with Tri0≠1. We build a simulator B that breaks DDH assumption. The
simulator has input a 4-tuple (g1, g2, u1, u2) œ G4

1, where g2 = gc
1 and c is

unknown. It must output “DDH tuple” or “random tuple”.

1. Take randomly t codewords ◊̨1, . . . , ◊̨t from the code � corresponding
to t traitors and also take t codewords ◊̨(s)

1 , . . . , ◊̨(s)
t from the code �

corresponding to t suspected users. We are considering the adversary A
does not know the secret key ski0 or the pirate decoder does not contain
skx̨,i0 in itself.

2. Take randomly A from Zq such that gA
1 g2 ”= 1.

3. Take randomly ą = (a1, . . . , ak), ę = (e1, . . . , ek) $Ω Zk
q such that È◊̨i, ą ≠

AęÍ = 0, for all i = 1, . . . , t, È◊̨(s)
i , ą ≠ AęÍ = 0, for all i = 1, . . . , t, i ”= i0

and È◊̨(s)
i0 , ą ≠ AęÍ ”= 0.

64

4. Set bi = gai
1 gei

2 , for all i = 1, . . . , k. Take randomly v̨ = (v1, . . . , vk) $Ω Zk
q

such that È◊̨(s)
i , v̨Í = 0, for all i = 1, . . . , i0.

5. Take randomly –̨ = (–1, . . . , –k) $Ω Zk
q such that È–̨, ą ≠ AęÍ = 0 and

È–̨, v̨Í = 0.

6. When B receives a target function x̨ from A. It calculates ·i = È–̨, x̨Í
È◊̨i, ęÍ

, for

i = 1, . . . , t and then give all g·i
2 to the adversary A to create a Pirate

Decoder Dx̨. Moreover, · (s)
i = È–̨, x̨Í

È◊̨(s)
i , ęÍ

, for i = 1, . . . , i0 ≠1. It is clear that

·i◊̨i and · (s)
i ◊̨(s)

i are representations of (gA
1 g2)È–̨,x̨Í in the base (b1, . . . , bk).

7. Take randomly G, H1, . . . , Hk
$Ω GT , a

$Ω Zq. When the simulator receives
a message y̨, it constructs the ciphertext

CT = (Ha
1 Gy1 , . . . , Ha

k Gyk , gv1
1 ua1

1 ue1
2 , . . . , gvk

1 uak
1 uek

2),

where y̨ = (y1, . . . , yk). It then sends the ciphertext to the adversary A.
If A returns the ciphertext comes from Tri0(y̨) distribution then B returns
DDH tuple, else returns random tuple.

By the similar argument as in Lemma 5.3.2, the ciphertext CT in Step 7 of the
algorithm B comes from the distribution Tri0(y̨) if the input of B is actually
DDH tuples and from the distribution Tri0≠1(y̨) otherwise. ⌅

Based on the lemmas 5.3.2 and 5.3.2, we can design a tracing algorithm that relies
on the linear technique tracing:

• Initial step: Tracer constructs distributions of tracing signal Trt, . . . , Tr0.

• Do experiments on the pirate distinguisher D finitely many times. We start
testing D by taking tracing signals CT from the distribution Trt. We measure
the rate that D outputs correctly his guess, denoted by Âpt. Experiments can
be done because we can prove that the pirate distinguisher cannot distinguish
distributions Trt and Norm (see Lemma 5.3.2).

• At step i, for i = t ≠ 1, . . . , 0. We do experiment on the pirate distinguisher D
with tracing signals taken from Tri. From Lemma 5.3.2, the pirate distinguisher
cannot see any change from previous step i + 1 to this step i unless it holds the
secret key tki+1. More formally, we also measure the rate Âpi that D outputs
correctly his guess and show that if D does not contain tki+1 then there is no
significant di�erence between Âpi+1 and Âpi.

• At the final step, D will be tested with tracing signals taken from Tr0. D
answers correctly only negligibly close to 1/2.

• We output the traitor i such that the gap between Âpi and Âpi≠1 is the largest
value among all indices i.

Below, we present the tracing algorithm in more details. We note that y̨0, y̨1 are
vectors which are chosen by the pirate distinguisher D.

65

For i = t downto 0, do the following:

1. Let cnt Ω 0.
2. For j = 1 to N = 8⁄t2/µ, do the following:

i. b
$Ω {0, 1}.

ii. CT $Ω Tri(y̨b).
iii. Send CT to D. If D(CT) = b then cnt Ω cnt + 1.

3. End for.
4. Let Âpi be the fraction of times that D did the correct guess. We have

Âpi = cnt/N .

End for.

Output identities i such that |Âpi ≠ Âpi≠1| Ø µ(⁄)
4t

.

Below, we state and prove confirmation and soundness property of our Tracing
algorithm.

Lemma 5.3: Confirmation property

Under the DDH assumption in G1, the Tracing algorithm has the confirmation
property.

Proof

We want to prove that in the case of that all the traitors are in the set of
suspected users, i.e. KD ™ Ksuspect, the Tracing algorithm always returns the
identity of a guilty. It means that the output of Tracing algorithm is not empty
with high probability. We denote A an adversary who used the secret keys in
KD to output the pirate distinguisher D. Since the adversary A can create a
µ-useful pirate distinguisher D, it implies that

---pNorm ≠ 1
2

--- Ø µ(⁄), where

pNorm = Pr

S

WWWWWWU
D (CTb) = b :

(MSK, PK) Ω Setup(·)
{ski Ω Extract(i, MSK, x̨)}iœ[n]
(D, y̨0, y̨1) Ω A(PK, {ski}iœ[t])

st. Èx̨, y̨0Í ”= Èx̨, y̨1Í
b

$Ω {0, 1}, CTb Ω Norm(PK, y̨b)

T

XXXXXXV
.

We denote S the set of indices i œ [t] such that |pi ≠ pi≠1| > µ(⁄)/4t. The set S
is well defined in the sense that S ”= ÿ. Indeed, as we know that p0 is negligibly
close to 1/2, and Lemma 5.3.2 showed that no adversary A can distinguish the
distribution Norm from Trt, then |pt ≠ p0| Ø µ(⁄) ≠ negl(⁄) > µ(⁄)/2. Then,
there exists an index i such that |pi ≠pi≠1| > µ(⁄)/2t. Thus S is a non empty set.
Applying Cherno� bound for all i œ S, we have on experimental probabilities

Pr
C

|Âpi ≠ Âpi≠1| <
µ(⁄)
4t

D

Æ negl(⁄),

66

Therefore, with overwhelming probability, there exists an index i such that

|Âpi ≠ Âpi≠1| Ø µ(⁄)
4t

.

The latter is thus returned with overwhelming probability.
⌅

Lemma 5.4: Soundness property

Under the DDH assumption in G1, the Tracing algorithm has the soundness
property.

Proof

We now prove the soundness property of Tracing algorithm. Suppose that the
Tracing algorithm outputs an identity j, where tkj œ Ksuspect, we will prove that
tkj œ KD. According to Cherno� bound, thanks to N = 8⁄t2/µ(⁄) to calculate
Âpi, for all i, we have

Pr
C

|Âpi ≠ pi| >
µ(⁄)
16t

D

< 2 · e≠⁄/64.

Therefore, with high probability we have |Âpi ≠ pi| Æ µ(⁄)/16t, for all i = 0, . . . , t.
By definition, whenever the Tracing algorithm outputs j as a guilty, we

have |Âpj ≠ Âpj≠1| Ø µ(⁄)/4t, and thus |pj ≠ pj≠1| Ø µ(⁄)/8t. In other words,
the pirate distinguisher can distinguish the two tracing signals Trj and Trj≠1
with advantage at least µ(⁄)/8t. It implies that D contains the secret key tkj,
tkj œ D. This follows from the fact that if D does not know the secret key
tkj, tkj ”œ D, the two tracing signals Trj and Trj≠1 are indistinguishable. More
concretely, under the hardness of the DDH problem in group G1, it is impossible
for the pirate to distinguish Trj and Trj≠1 without tkj. This is stated and proved
in Lemma 5.3.2. ⌅

Theorem 5.2

Under the DDH assumption, our tracing scheme is one-target security in black-
box confirmation model.

Proof

We recall that in the black-box confirmation model we will verify a set suspected
secret keys Ksuspect = {tk1, . . . , tkt} which are also derived from the vector x̨.
We will prove that Tracing algorithm always outputs an identity of a traitor
whenever KD fl Ksuspect ”= ÿ. It means that Tracer always wins in the game with
the pirate distinguisher D. Indeed, we consider the following two cases:

• In the first case KD ™ Ksuspect. It means that all traitors are in suspicious

67

set Ksuspect. Tracing algorithm will output a guilty identity i by the
confirmation property. According to soundness property, the identity is a
traitor (tki œ KD).

• In case KD ”™ Ksuspect and KD fl Ksuspect ”= ÿ. Because KD fl Ksuspect ”= ÿ,
tracing algorithm will output an identity i so that ski œ Ksuspect. It implies
i is a traitor (tki œ KD) by the soundness property. ⌅

68

6 Revocable Inner Product FunctionalEncryption

In this chapter, we are interested in the revocation for functional encryption. In a
functional encryption scheme, each functional decryption key is specified by a function
and an identity. The objective is to be able to revoke any user from decrypting any
function. Such a primitive was called a revocable functional encryption in [NWZ16].
Their construction of revocable functional encryption is based on indistinguishability
obfuscation, which is a non-standard assumption. So far, there is still no revocable
functional encryption, which is built from standard assumption. We thus propose
some pairing-based constructions for revocable inner product functional encryption.

Contents
6.1 Revocable Functional Encryption 70

6.1.1 Motivation . 70

6.1.2 Definition . 70

6.1.3 Security . 71

6.2 Revocable Functional Encryption for Inner Product with Constant-size

Secret Keys . 72

6.2.1 Construction based on q-type Assumption 72

6.2.2 Construction based on BDDH and DLIN Assumptions 76

6.3 Revocable Functional Encryption for Inner Product with Constant-size

Ciphertext . 82

6.3.1 Construction based on q-type Assumption 82

6.3.2 Construction based on BDDH and DLIN Assumptions 87

6.4 Towards Fine-grained Revocable Functional Encryption for Inner Product 95

69

6.1 Revocable Functional Encryption
6.1.1 Motivation

Designing a revocable inner product functional encryption that achieves constant
size in both ciphertext and functional key is a challenging problem, unknown even
for conventional revoke systems. Depending on the specific practical applications,
we will focus on constructions with constant-size functional keys or constant-size
ciphertexts.

• In Section 6.2, we give two pairing-based constructions of revocable functional
encryption for inner product with short private keys. The constructions are
e�cient where the size of ciphertext is only O(r) (r is the number of revoked
users) and the private key size is constant (only 3 group elements). We use the
technique that combines the inner product functional encryption of Abdalla et
al. at PKC ’15 [ABDP15] with the two-equation technique by Lewko, Sahai,
and Waters at SP ’11 [LSW10].

• In Section 6.3, by using the n-equation technique of Attrapadung et al. at
PKC ’10 [AL10], we provide two schemes of revocable functional encryption
for inner product with the constant size ciphertext, independent of the number
of revokers.

Related and concurrent work. Recently Abdalla et al. [ACGU20] proposed several
pairing-based constructions of attribute-based inner product functional encryption.
However, their schemes does not imply e�ciently revocable inner product functional
encryption schemes as the overhead cost depends on the size of the policy of ciphertext.

We observe that revoking all functions at once may not be suitable for some
practical situations like in the PayTV context. In the final part, we will discuss
the extension of revocable inner product functional encryption to the fine-grained
revocation in which we can disable the decryption of functional keys on a selective
set of revoked functions instead of all functions for each identity.

6.1.2 Definition
We recall the notion of revocable functional encryption scheme which is introduced

by Nishimaki et al. [NWZ16]. This is a functional encryption scheme in which the
encryption algorithm can take as input a list R of identities such that all functional
decryption keys of each revoker user will be disabled. We will then extend this notion
to the fine-grained revocation in which we can disable the decryption of functional
keys on a selective set of revoked functions instead of all functions for each identity.

Definition 6.1

A revocable functional encryption scheme rFE consists of four algorithms

(Setup, Extract, Encrypt, Decrypt)

which is defined as follows:

Setup(1⁄): Takes as input a security parameter ⁄ and outputs a master key pair

70

(PK, MSK).

Extract(ID, MSK, F): Given an identity ID of an user, a circuit F œ F⁄ and the
master secret key MSK, this algorithm outputs a secret key skF,ID.

Encrypt(PK, y, R): Takes as input the public key PK and a message y œ Y⁄, and
a list of identities R, this randomized algorithm outputs a ciphertext CT.

Decrypt(PK, skF,ID, CT): Given the master public key PK, a secret key skF,ID and
a ciphertext CT, this algorithm outputs F (y) œ S⁄ or an invalid symbol
‹.

For correctness, we require that for all (PK, MSK) Ω Setup(1⁄), all y œ Y⁄,
each F œ F⁄ and all identities ID ”œ R, skF,ID Ω Extract(ID, MSK, F), if CT Ω
Encrypt(PK, y, R), then one should get Decrypt(PK, skF,ID, CT) = F (y), with over-
whelming probability.

6.1.3 Security
Indistinguishability. We consider the IND security game between an adversary A
and a challenger B as follows:

Definition 6.2

A revocable functional encryption scheme rFE for a list of identities R,

rFE = (Setup, Extract, Encrypt, Decrypt)

is semantically secure under chosen-plaintext attacks (or IND ≠ CPA security) if
no PPT adversary has non-negligible advantage in the following game:

• The challenger B runs (PK, MSK) Ω Setup(1⁄) and the master public key
PK is given to the adversary A.

• The adversary adaptively makes secret key queries to the challenger.
That is, the adversary A chooses some pairs of identities ID and functions
F œ F⁄. A sends them to B and then obtains skF,ID Ω Extract(ID, MSK, F)
from B.

• The adversary A chooses distinct messages y0, y1 œ Y⁄ and a set R of
revoked identities such that:

1. The set R ™ C, where we denote C as all identities that were queried
by the adversary A.

2. For each identity ID œ (C ≠R) and every function F which is assigned
to ID, the following conditions need to be satisfied:

F (y0) = F (y1).

This restriction is required in all functional encryption to avoid trivial
attacks.

71

Whenever B receives the messages, it randomly picks — ΩÚ {0, 1} and then
transfers to A a ciphertext CT— = Encrypt(PK, y—, R).

• Adversary A eventually returns a guess —
Õ for a bit — and wins if —

Õ = —.

Selective security. When the messages y0, y1 and a list of revoked users R are
chosen before the Setup algorithm started, then the rFE scheme is said selectively-
security against chosen-plaintext attacks, which is denoted by sel≠IND≠CPA.

6.2 Revocable Functional Encryption for Inner Prod-
uct with Constant-size Secret Keys

In this section, we present two pairing-based constructions of revocable inner
product functional encryption. The first construction is based on MEBDH assumption
and it achieves selective security. The second construction is based on simple
assumption such as BDDH and DLIN and it achieves adaptive security because it
applies the Waters’ dual system method [Wat09]. The technique is used in both
constructions is based on the idea of applying 2-equation technique [LSW10] for
IPFE scheme of Abdalla et al. [ABDP15] and they all obtain short ciphertext (O(r)
where r is the number of revoked users) and private keys.

6.2.1 Construction based on q-type Assumption
We will construct a revocable functional encryption for Inner Product with

constant-size secret keys.
Let e : G ◊ G æ GT a bilinear map, where G,GT are cyclic groups of order q,

written multiplicatively.

Setup(1⁄, 1k): This algorithm generates a bilinear pairing (G,GT , q, e) for su�ciently
large prime order q and g, h are two generators of the group G. The bilinear
map e over (G,G) can be calculated e�ciently.

• For each i œ {1, . . . , k}, randomly choose si
$Ω Zq. We set s̨ = (s1, . . . , sk).

• We take randomly –, b
$Ω Zq.

• The public key is

PK =
3
G, g, gb, gb2

, hb, e(g, g)–, e(g, g)s1–, . . . , e(g, g)sk–
4

.

• The master secret key is MSK = {s̨, –}.

Extract(ID, MSK, x̨): Takes as input an identity ID œ Zq, the master secret key MSK
and a characteristic vector x̨ = (x1, . . . , xk) œ Zk

q . For each identity ID, we take
randomly t

$Ω Zq and the secret key skx̨,ID is a tuple:

sk0 = g–Ès̨,x̨Ígb2t, sk1 =
1
gb·IDh

2t
, sk2 = g≠t.

72

Encrypt(R, PK, y̨): Takes as input the set R of identities {ID1, . . . , IDm} that secret
keys will be revoked, the public key PK, a message y̨ = (y1, . . . , yk) œ Zk

q . We
sample r

$Ω Zq chooses random r1, . . . , rm such that r = r1 + . . . + rm and
compute

CT0 = (C1, C2, . . . , Ck)
= (e(g, g)y1e(g, g)s1–r, . . . , e(g, g)yke(g, g)sk–r)

CT1 = gr,

CTj,1 = gb·rj ,

CTj,2 =
1
gb2·IDj hb

2ri
.

for all j œ [m].

Decrypt(PK, skx̨,ID, CT): In the case ID ”= IDj for all j œ [m], we first compute

e(sk1, CTj,1)
1

ID≠IDj e(sk2, CTj,2)
1

ID≠IDj =

= e
31

gb·IDh
2t

, gb·rj

4 1
ID≠IDj

e
1
g≠t,

1
gb2·IDj hb

2rj
2 1

ID≠IDj

= e(g, g)
tb2rj ID

ID≠IDj e(g, g)
≠tb2rj IDj

ID≠IDj

= e(g, g)tb2rj .

Since r = r1 + . . . + rm, this implies that

A1 =
mŸ

j=1

3
e(sk1, CTj,1)

1
ID≠IDj e(sk2, CTj,2)

1
ID≠IDj

4
= e(g, g)tb2r.

We then computes

A2 = e (sk0, CT1) = e
1
g–Ès̨,x̨Ígb2t, g·r

2
= e(g, g)–rÈs̨,x̨Íe(g, g)tb2r.

Finally, we compute
rk

i=1 Cxi
i

A2/A1
=

rk
i=1 e(g, g)xiyie(g, g)sixi–r

e(g, g)–rÈs̨,x̨Í

= e(g, g)Èx̨,y̨Íe(g, g)–rÈs̨,x̨Í

e(g, g)rÈs̨,x̨Í

= e(g, g)Èx̨,y̨Í,

and output Èx̨, y̨Í = loge(g,g) e(g, g)Èx̨,y̨Í.

Theorem 6.1

Under the decisional q-MEBDH assumption, our construction is sel≠IND≠CPA.

73

Proof

Suppose that there exists an adversary A who breaks the selective security game
of our scheme. We will build a simulator B that breaks the decisional q-MEBDH
assumption.

The simulator B takes as input a q-MEBDH challenge P, T. The simulator
then proceeds in the game as follows.

The adversary A submits a revocation set R = {ID1, . . . , IDm}, (m Æ q) and
two messages y̨0, y̨1 œ Zk

q to the simulator.
B finds a basis {zi}iœ[k≠1] of (y̨1 ≠ y̨0)‹. For each vector zi, chooses a random

element di œ Zp as secret key and set e(g, g)di as the master public key for zi

and also, B sets e(g, g)– as the master public key for y̨1 ≠ y̨0. Let {ę1, . . . , ęk}
be the canonical basis of Zk

q . B finds ci, ⁄i,j œ Zq such that

ęi = ci (y̨1 ≠ y̨0) +
k≠1ÿ

j=1
⁄i,jzj

then, sets

“i =
k≠1Ÿ

j=1
e(g, g)dj⁄i,j and e(g, g)–si = e(g, g)–ci · “i.

The simulator now creates the public key PK and gives A the decryption
keys for all identities in R. It will implicitly set b as a1 + a2 + · · · + am. The
simulator first chooses a random › œ Zq.

The public key PK is published as:
Q

ag, gb =
Ÿ

1ÆiÆm

gai , gb2 =
Ÿ

1Æi,jÆm

(gai·aj) , h =
Ÿ

1ÆiÆm

(gai)≠IDi g›, e(g, g)–, e(g, g)–si

R

b

We observe that the public parameters are distributed identically to the real
system.
Simulate Decryption keys: The simulator B should answer all decryption
keys in the revocation set R such that the function x̨ which is assigned to
ID œ R must hold

Èx̨, y̨1 ≠ y̨0Í = 0.

• We have

Ès̨, x̨Í =
ÿ

jœ[k≠1]

Q

a
ÿ

iœ[k]
xi⁄i,j

R

b dj.

• To cancel out the term g– which B doesn’t know. B will chooses randomly
an element zi œ Zq and will implicitly set the randomness ti as

ti = ≠–Ès̨, x̨Í/a2
i + zi,

for each identity IDi.

74

• The decryption key skx̨,IDi for IDi and a function x̨ is generated as follows:

sk0 =

Q

ca
Ÿ

1Æj,kÆn
s.t. if j=k then j,k ”=i

1
g≠Ès̨,x̨Í–ajak/a2

i

2
R

db
Ÿ

1Æj,kÆn

(gajak)zi

sk1 =

Q

ca
Ÿ

1ÆjÆn
j ”=i

1
g≠–Ès̨,x̨Í·aj/a2

i

2(IDi≠IDj) 1
g(IDi≠IDj)·aj

2zi

R

db
1
g≠–Ès̨,x̨Í/a2

i

2›
g›zi

sk2 = g–Ès̨,x̨Í/a2
i g≠zi .

Simulate Challenge Ciphertext: The simulator receives y̨0, y̨1 and it picks
randomly — œ {0, 1}. The simulator then chooses random rÕ, rÕ

1, . . . , rÕ
m œ Zq

such that rÕ = q
i rÕ

i. This quantity can compute from PK and we set

ui = gb2IDihb.

The ciphertext will be encrypted under randomness Âr = r + rÕ. This
randomness will be splited into shares Âri = air/b + rÕ

i. It implies that thatq
Âri = Âr.
The challenge ciphertext will be simulated as follows:

CT0 = (C1, C2, . . . , Ck)
=

1
e(g, g)y—,1T s1 · e(g, g)s1–rÕ

, . . . , e(g, g)y—,kT sk · e(g, g)sk–rÕ2

CT1 = grgrÕ
,

CTj,1 = graj

A
Ÿ

i

gai

BrÕ
i

,

CTj,2 =

Q

ca
Ÿ

1ÆiÆm
i”=j

(graiaj)IDj≠IDi

R

db (gajr)› u
rÕ

j

j .

for all j œ [m].
Finally, the adversary A outputs a guess —Õ for —. B outputs 1 to guesses

that T = e(g, g)–r if — = —Õ; otherwise, it outputs 0 to indicate that T is a
random in GT .

When T = e(g, g)–r, B simulates the ciphertext perfectly. We have

Pr [B (P, T = e(g, g)–r) = 0] = 1
2 + AdvA.

When T = R, we have

Pr[B(P, T = R) = 0] = 1
2 .

Therefore, B can break the MEBDH assumption with non-negligible advantage.
⌅

75

6.2.2 Construction based on BDDH and DLIN Assumptions
Let e : G ◊ G æ GT a bilinear map, where G,GT are cyclic groups of order q,

written multiplicatively.
Setup(1⁄, 1k): This algorithm generates a bilinear pairing (G,GT , q, e) for su�ciently

large prime order q and g is a generator of the group G. The bilinear map e
over (G,G) can be calculated e�ciently.

• We choose random generators g, v, v1, v2, w, h œ G.
• We pick random exponents a1, a2, b, –1, . . . , –k œ Zp.

• We set ·1 = vva1
1 , ·2 = vva2

2 .

• The public key is

PK =
1
gb, ga1 , ga2 , gba1 , gba2 , ·1, ·2, · b

1 , · b
2 , w, h, e(g, g)–1a1b, . . . , e(g, g)–ka1b

2
.

• The master secret key is

MSK = (g, v, v1, v2, –̨ = (–1, . . . , –k)) .

Extract(ID, MSK, x̨): Takes as input an identity ID œ Zq, the master secret key MSK
and a characteristic vector x̨ = (x1, . . . , xk) œ Zk

q . For each identity ID, this
algorithm chooses random exponents d1, d2, z1, z2 œ Zp and sets d = d1 + d2.
The secret key skx̨,ID is the following 8-tuple:

D1 = gÈ–̨,x̨Ía1vd, D2 = g≠È–̨,x̨Ívd
1gz1 , D3 =

1
gb

2≠z1
, D4 = vd

2gz2 ,

D5 =
1
gb

2≠z2
, D6 = gd2b, D7 = gd1 , K =

1
wIDh

2d1
.

Encrypt(R, PK, y̨): Takes as input the set R of identities {ID1, . . . , IDr} that secret
keys will be revoked, the public key PK, a message y̨ = (y1, . . . , yk) œ Zk

q .
The encryption algorithm chooses random exponents s1, s2, t1, . . . , tr and sets
s = s1 + s2, t = t1 + · · · + tr (where r = |R|, the number of revoked users). The
ciphertext CT is constructed as:

CT0 = (C1, C2, . . . , Ck)
=

1
e(g, g)y1

1
e(g, g)–1a1b

2s2
, . . . , e(g, g)yk

1
e(g, g)–ka1b

2s22

CT1 =
1
gb

2s
, CT2 =

1
gba1

2s1
, CT3 = (ga1)s1 , CT4 =

1
gba2

2s2

CT5 = (ga2)s2 , CT6 = · s1
1 · s2

2 , CT7 =
1
· b

1
2s1 1

· b
2
2s2

w≠t

CTj,1 = gtj

CTj,2 =
1
wIDj h

2tj
,

for all j œ [m].

Decrypt(PK, skx̨,ID, CT): In the case ID ”= IDj for all j œ [m], the decryption algorithm
will start by computing:

A1 = e (CT1, D1) e (CT2, D2) e (CT3, D3) e (CT4, D4) e (CT5, D5)
= e

1
gbs, gÈ–̨,x̨Ía1vd

2
e

1
gba1s1 , g≠È–̨,x̨Ívd

1gz1
2

e
1
ga1s1 , g≠bz1

2

e
1
gba2s2 , vd

2gz2
2

e
1
ga2s2 , g≠bz2

2

= e(g, g)È–̨,x̨Ía1bs2e(v, g)bsde (v1, g)a1bs1d e (v2, g)a2bs2d .

76

Next, the algorithm computes:

A2 = e (CT6, D6) e (CT7, D7)
= e(v, g)bsde (v1, g)a1bs1d e (v2, g)a2bs2d e(g, w)≠d1t.

Now,

A3 = A1
A2

= e(g, g)È–̨,x̨Ía1bs2e(g, w)d1t.

We compute e(g, w)d1t as follows:

A4 =
rŸ

j=1

A
e (CTj,1, K)
e (CTj,2, D7)

B 1
ID≠IDj

=
rŸ

j=1

1
e(g, w)d1tj(ID≠IDj)

2 1
ID≠IDj

=
rŸ

j=1
e(g, w)d1tj = e(g, w)d1t.

Finally, we compute
rk

i=1 Cxi
i

A3/A4
=

rk
i=1 e(g, g)xiyie(g, g)xi–ia1bs2

e(g, g)È–̨,x̨Ía1bs2

= e(g, g)Èx̨,y̨Íe(g, g)È–̨,x̨Ía1bs2

e(g, g)È–̨,x̨Ía1bs2

= e(g, g)Èx̨,y̨Í,

and output Èx̨, y̨Í = loge(g,g) e(g, g)Èx̨,y̨Í.

Theorem 6.2

Under the DLIN and BDDH assumption, the above construction is adaptively
secure.

Proof. This proof is analogous as in [LSW10] and [AL10]. By using the dual system
methodology, we will define (normal, semi-functional) keys and ciphertexts. A normal
key and ciphertext are generated by the real scheme and the normal key can decrypt
both normal ciphertext and semi-functional ciphertext. A semi-functional key can
only decrypt a normal ciphertext and it cannot decrypt a semi-functional ciphertext.
Semi-functional keys: By calling Extract to generate a decryption key for an
identity ID. We denote

(DÕ
1, DÕ

2, DÕ
3, DÕ

4, DÕ
5, DÕ

6, DÕ
7, K Õ) .

by the normal key.
Then we set D3 = DÕ

3, D5 = DÕ
5, D6 = DÕ

6, D7 = DÕ
7, K = K Õ (these values are left

unchanged). We choose a random “ œ Zp. We set the rest of the key as:

D1 = DÕ
1 · g≠a1a2“, D2 = DÕ

2 · ga2“, D4 = DÕ
4 · ga1“.

77

Semi-Functional Ciphertexts: From a normal ciphertext

CTÕ
0, CTÕ

1, CTÕ
2, CTÕ

3, CTÕ
4, CTÕ

5, CTÕ
6, CTÕ

7, CTÕ
i,1, CTÕ

i,2, ’i œ R.

we pick randomly ‰ œ Zq and replace (CTÕ
4, CTÕ

5, CTÕ
6, CTÕ

7) by

CT4 = CTÕ
4 · gba2‰, CT5 = CTÕ

5 · ga2‰, CT6 = CTÕ
6 · va2‰

2 , CT7 = CTÕ
7 · va2b‰

2 .

We will prove the Theorem by a following sequence of games:
GameReal is the real security game. We denote GameRealAdvA as the advantage of an
adversary A in the game.
Game0 is identical to GameReal but the ciphertext given to the attacker A is semi-
functional.
GameŸ (for 1 Æ Ÿ Æ q) is identical to Game0 but the first Ÿ decryption key generation
queries are answered by returning a semi-functional key. We note that in Gameq the
ciphertext and all the keys are semi-functional.
GameFinal: This is the same as Gameq except that the ciphertext is a semi-functional
encryption of a random message instead of y̨—.

The proof uses the indistinguishability between two consecutive games under
some assumptions. The sequence starts from GameReal and stops at GameFinal where
the ciphertext is random and the adversary does not have any advantage.

The indistinguishability between GameReal and Game0 is stated and proved as
follows:

Lemma 6.1

Under the DLIN assumption, GameReal and Game0 are computationally indistin-
guishable.

Proof

B first receives an instance of the DLIN problem

(G, g, f, ‹, gc1 , f c2 , T) ,

it needs to distinguish T = ‹c1+c2 or T is random. When the adversary A sends
R = {ID1, . . . , IDr} to B, B simulates as follows:
B simulates PK: The simulator B chooses randomly b, –1, . . . , –k, yv, yv1 , yv2 œ
Zq and random group elements w, h œ G. It then sets

g = g, ga1 = f, ga2 = ‹, w = w, h = h.

The values a1, a2 are unknown to the simulator B. B sets:

gb, gba1 = f b, gba2 = ‹b, v = gyv , v1 = gyv1 , v2 = gyv2 .

It then can computes

·1, ·2, · b
1 , · b

2 , e(g, g)–1a1b = e(g, f)–1b, . . . , e(g, g)–ka1b = e(g, f)–kb.

We have ·1 = vva1
1 = vf yv1 . Finally, B sends the public parameters to A.

78

Decryption Key Extraction: B can generate decryption keys for IDi for all
IDi œ R. It can be done because the simulator B knows

MSK = (g, v, v1, v2, –̨ = (–1, . . . , –k)) .

Simulate Challenge Ciphertext: After obtaining the public key PK and
decryption keys for all identities of R = {ID1, . . . , IDr}, the adversary A sends
B two messages y̨0, y̨1. The simulator B chooses a random value — œ {0, 1} and
will create a semi-functional ciphertext for y̨— and revoked set R as follows:

1. First, the simulator B chooses randomly, sÕ
1, sÕ

2, t1, . . . , tr, and calls the
normal encryption algorithm to generate

CTÕ
0, CTÕ

1, . . . , CTÕ
7, CTÕ

1,1, CTÕ
1,2, . . . , CTÕ

r,1, CTÕ
r,2,

where
CTÕ

0 = (CÕ
1, CÕ

2, . . . , CÕ
k) .

2. B keeps fix terms CTi,1 = CTÕ
i,1, CTi,2 = CTÕ

i,2, i œ [r].

It simulates the other components as follows:

CT0 = (C1, . . . , Ck); Cj = CÕ
j (e (gc1 , f) e (g, f c2))b–j , j œ [k],

CT1 = CTÕ
1 (gc1)b , CT2 = CTÕ

2 (f c2)≠b ,

CT3 = CTÕ
3 (f c2)≠1 , CT4 = CTÕ

4(T)b, CT5 = CTÕ
5T,

CT6 = CTÕ
6 (gc1)yv (f c2)≠yv1 T yv2 , CT7 = CTÕ

7
1
(gc1)yv (f c2)≠yv1 T yv2

2b
.

We consider 2 cases:

1. If T = ‹c1+c2 , this will be a normal ciphertext with s1 = ≠c2 + sÕ
1, s2 =

c1 + c2 + sÕ
2, and s = s1 + s2 = c1 + sÕ

1 + sÕ
2.

2. If T is random, this will be a properly distributed semi-functional cipher-
text.

Therefore, whenever A has some advantage in distinguishing GameReal from
Game0, the simulator can distinguish between the random tuple and DLIN tuple
with the same advantage. ⌅

Lemma 6.2

Under the DLIN assumption, GameŸ and GameŸ≠1 are computationally indistin-
guishable for each Ÿ œ [r].

Proof

We assume that there exists an adversary A can distinguish two game GameŸ

and the GameŸ≠1. We will build an algorithm B to break DLIN assumption.

79

That is B first receives an instance of the DLIN problem:

(G, g, f, ‹, gc1 , f c2 , T) ,

it needs to distinguish T = ‹c1+c2 or T is random.
To do this, B will call on A by simulating either GameŸ or GameŸ≠1.

B simulates PK: B picks randomly –1, . . . , –k, a1, a2, yv1 , yv2 , yw, yh œ Zq. It
then sets

gb = f, ga1 , ga2 , gba1 = fa1 , gba2 = fa2 , v = ‹≠a1a2 ,
v1 = ‹a2gyv1 , v2 = ‹a1gyv2 ,

e(g, g)–1a1b = e(f, g)–1a1 , . . . , e(g, g)–ka1b = e(f, g)–ka1 ,
·1 = vva1

1 , ·2 = vva2
2 , · b

1 = f yv1 a1 , · b
2 = f yv2 a2 ,

w = fgyw , h = w≠IDŸgyh .

Decryption Key Extraction: The simulator B generates decryption keys in
three cases:

• In case j > Ÿ, B generates a normal key for IDj by calling the usual
decryption key generation algorithm because it knows the MSK.

• In case j < Ÿ, B generates a semi-functional key for IDj because it can
run the semi-functional key generation algorithm described above and it
knows the exponents a1 and a2.

• For j = Ÿ, the simulator will create a decryption key that is normal if
T = ‹c1+c2 and is semi-functional if T is random.

We need to generate the functional key for IDŸ, B calls the key generation
algorithm to extract a normal key skx̨,ID : DÕ

1, DÕ
2, . . . , DÕ

7, K Õ. We let dÕ
1, dÕ

2, zÕ
1, zÕ

2
denote the random exponents that were chosen. We then set:

D1 = DÕ
1T

≠a1a2 , D2 = DÕ
2T

a2 (gc1)yv1 , D3 = DÕ
3 (f c2)yv1 ,

D4 = DÕ
4T

a1 (gc1)yv2 , D5 = DÕ
5 (f c2)yv2 , D6 = DÕ

6f
c2 ,

D7 = DÕ
7 (gc1) , K = K Õ (gc1)yh .

We consider 2 cases:

1. If T = ‹c1+c2 , then this is a normal key with d1 = dÕ
1 + c1 and d2 = dÕ

2 + c2.

2. If T is random, we can write T as T = ‹c1+c2g“ . This is a semi-functional
key.

Simulate Challenge Ciphertext: After obtaining the public key PK and
decryption keys for all identities of R = {ID1, . . . , IDr}, the adversary A sends
B two messages y̨0, y̨1. The simulator B chooses a random value — œ {0, 1} and
generates a semi-functional ciphertext for y̨— and revoked set R as follows:

1. First, B uses the normal encryption algorithm with randomly chosen
exponents sÕ

1, sÕ
2, tÕ to create CTÕ

0, CTÕ
1, . . . , CTÕ

7.

2. We keep fix CT0 = CTÕ
0, CT1 = CTÕ

1, CT2 = CTÕ
2, C3 = C Õ

3.

80

3. To add semi-functionality, B chooses a random exponent x œ Zp and sets:

CT4 = CTÕ
4f

a2x, CT5 = CTÕ
5g

a2x, CT6 = CTÕ
6v

a2x
2 , CT7 = CTÕ

7f
a2yv2 x‹≠a1xywa2 .

4. For CT7, we have implicitly set gt = gtÕ
‹a1xa2 . We let y‹ denote the

unknown discrete log of ‹ in base g. Then, we have set t = tÕ + y‹a1a2x,
so t is not known to B, but tÕ is.

5. For i ”= Ÿ, 1 Æ i Æ r, B sets ti to be a randomly chosen value. We let tÕÕ

denote the sum of these values. Then tŸ is defined to be tÕ ≠ tÕÕ + y‹a1a2x.
For i ”= Ÿ, the simulator B knows the value of ti, and so can compute:

CTi,1 = gti , CTi,2 =
1
wIDih

2ti
.

For i = Ÿ, B computes:

CTŸ,1 = gtŸ = gtÕ≠tÕÕ
‹a1a2x,

CTŸ,2 =
1
wIDŸw≠IDŸgyh

2y‹a1a2x+tÕ≠tÕÕ

= ‹yha1a2xgyh(tÕ≠tÕÕ).

We consider 2 cases:

1. If T = ‹c1+c2 , and B has guessed correctly, B has properly simulated
GameŸ≠1.

2. When T is random and B has guessed correctly, B has properly simulated
GameŸ.

⌅

Lemma 6.3

Under the BDDH assumption, Gamer and GameFinal are computationally indis-
tinguishable.

Proof

The simulator B first receives an instance of the BDDH problem: (g, gc1 , gc2 , gc3 , T) .
B must decide whether T = e(g, g)c1c2c3 or is random. To accomplish this, B
will call on A by simulating either Gamer or GameFinal. A first sends a set
S = {ID1, . . . , IDr} to B.
B simulates PK: B chooses random exponents b, –1, . . . , –k, yv, yv1 , yv2 , yw, yh œ
Zq. It sets:

g = g, gb, ga1 = gc1 , ga2 = gc2 , gba1 , gba2 = (gc2)b , v = gyv , v1 = gyv1

v2 = gyv2 , w = gyw , h = gyh ,

e(g, g)a1–1b = e (gc1 , gc2)–1 , . . . , e(g, g)a1–kb = e (gc1 , gc2)–k .

Decryption Key Extraction: B must now generate semi-functional keys for

81

ID1, . . . , IDr. For each IDi, B chooses random exponents d1, d2, z1, z2, “Õ œ Zq and
sets d = d1 + d2. The key elements are computed as:

D1 = (gc2)≠“Õa1 vd, D2 = (gc2)“Õ
vd

1gz1 , D3 =
1
gb

2≠z1
, D4 = (gc1)a1 ga1“Õ

vd
2gz2

D5 = g≠bz2 , D6 = gd2b, D7 = gd1 , K =
1
wIDih

2d1
.

Simulate Challenge Ciphertext: After obtaining the public key PK and
decryption keys for all identities of R = {ID1, . . . , IDr}, the adversary A sends
B two messages y̨0, y̨1. The simulator B chooses a random value — œ {0, 1}
and will create either a semi-functional ciphertext for y̨— or a semi-functional
encryption of a random message as follows:

B chooses random exponents s1, xÕ, t1, . . . , tr and sets t = t1 + · · · + tr. It
forms the ciphertext as:

CT0 = (C1, . . . , Ck) =
1
e(g, g)y—,1T b, . . . , e(g, g)y—,kT b

2

CT1 = gs1b (gc3)b , CT2 = gba1s1 , CT3 = ga1s1 , CT4 = (gc2)xÕb ,

CT5 = (gc2)xÕ
, CT6 = · s1

1 (gc3)yv (gc2)yv2 xÕ
, CT7 =

1
· b

1
2s1 (gc3)yvb (gc2)yv2 xÕb w≠t,

CT1,1 = gt1 , CT1,2 =
1
wID1h

2t1
, . . . , CTr,1 = gtr , CTr,2 =

1
wIDrh

2tr
.

These assignments implicitly set s2 = c3 and x = ≠c3 + xÕ.

1. If T = e(g, g)c1c2c3 , then this is a properly distributed semi-functional
encryption of M—.

2. If T is random, then this is a properly distributed semi-functional encryp-
tion of a random message.

Therefore B can use A ’s output to distinguish T = e(g, g)c1c2c3 from random
with the same advantage that A has in distinguishing Gamer from GameFinal. ⌅

6.3 Revocable Functional Encryption for Inner Prod-
uct with Constant-size Ciphertext

In this section we present two constructions of revocable inner product functional
encryption. These constructions achieve constant-size ciphertext but the size of
private keys is longer than constructions in the previous section as we applied the
n-equation technique proposed by Attrapadung et al. [AL10]. The first construction
is based on MEBDH assumption and it achieves selective security. The second
construction is based on simple assumptions such as BDDH and DLIN and it achieves
adaptive security as we use Waters ’s dual system method [Wat09].

6.3.1 Construction based on q-type Assumption
We will construct a revocable functional encryption for inner product with

constant-size ciphertext.
Let e : G ◊ G æ GT a bilinear map, where G,GT are cyclic groups of order q,

written multiplicatively.

82

Setup(1⁄, 1k): This algorithm generates a bilinear pairing (G,GT , q, e) for su�ciently
large prime order q and g is a generator of the group G. The bilinear map e
over (G,G) can be calculated e�ciently.

• For each i œ {1, . . . , k}, randomly choose si
$Ω Zq. We set s̨ = (s1, . . . , sk).

• We take randomly –, –1, –2, . . . , –k
$Ω Zq and set –̨ = (–1, . . . , –k).

• The public key is

PK =
3
G, g, g–1 , . . . , g–k , g–2

1 , g–1–2 , . . . , g–1–k , e(g, g)–s1 , . . . , e(g, g)–sk

4
.

• The master secret key is

MSK = {–, –1, . . . , –k, s1, . . . , sk}.

Extract(ID, MSK, x̨): Takes as input an identity ID (an integer in the set [n]), the
master secret key MSK and a characteristic vector x̨ = (x1, . . . , xk) œ Zk

q . Each
identity ID corresponds to a vector

ą = (ID0, ID1, . . . , IDk≠1) = (a1, . . . , ak).

We assume that the first component of ą is a1 ”= 0 mod q. For each vector ą,
we take randomly t

$Ω Zq and the secret key skx̨,̨a is a (k + 1)-tuple:

sk0 = gt, sk1 = gÈs̨,x̨Í–+–2
1t,

sk2 = g
t
1

≠–1
a2
a1

+–2

2

, sk3 = g
t
1

≠–1
a3
a1

+–3

2

, . . . , skk = g
t
1

≠–1
ak
a1

+–k

2

.

In a matrix form, we have

sk0 = gt, sk1 = gÈs̨,x̨Í–+–2
1t, sk2 = gtM€

ID
–̨,

where

MT
ID

:=

Q

ccccca

≠a2
a1

1 0 . . . 0
≠a3

a1
0 1 . . . 0

... . . .
≠ak

a1
0 0 . . . 1

R

dddddb
œ Z(k≠1)◊k

q

Encrypt(R, PK, y̨): Takes as input the set R of identities that secret keys will be
revoked, the public key PK, a message y̨ = (y1, . . . , yk) œ Zk

q .
We choose b1, . . . , bk are coe�cients of polynomial f(x) with degree k ≠ 1 that
is defined as follows:

f(x) = z(x)
Ÿ

iœR
(x ≠ i), where z(i) ”= 0, ’i œ R.

We sample r
$Ω Zq and compute

CT0 = (C1, C2, . . . , Ck)
= (e(g, g)y1e(g, g)s1–r, . . . , e(g, g)yke(g, g)sk–r)

CT1 = gr–1 Ę̀b,–̨Í

CT2 = gr

CT3 = gr–1 .

83

Decrypt(PK, skx̨,ID, CT): We set

MT
1 =

3
≠a2

a1
, ≠ a3

a1
, · · · , ≠ak

a1

4
,

b̨T
1 = (b2, b3, . . . , bk).

We have

A1 :=

Q

cca
e (CT1, sk0)

e
3

skb̨1
2 , CT3

4

R

ddb

1
M1 b̨1≠b1

=
Q

a
e

1
gr–1 Ę̀b,–̨Í, gt

2

e
1
gt̨bT

1 MT
ID

–̨, g–1r
2

R

b

1
M1 b̨1≠b1

=
Q

a e(g, g)rt–1 Ę̀b,–̨Í

e(g, g)rt–1b̨T
1 MT

ID
–̨

R

b

1
M1 b̨1≠b1

=
A

1
e(g, g)rt–1ÈMIDb̨1≠b̨,–̨Í

B 1
M1 b̨1≠b1

= e(g, g)≠rt–2
1 .

The last equation is true because
ÈMIDb̨1 ≠ b̨, –̨Í =

1
M1̨b1 ≠ b1

2
–1.

We then computes
A2 := e(sk1, CT2) = e(gÈs̨,x̨Í–+–2

1t, gr) = e(g, g)r–Ès̨,x̨Íe(g, g)–2
1tr.

Finally, we compute
rk

i=1 Cxi
i

A1 · A2
=

rk
i=1 e(g, g)xiyie(g, g)r–xisi

e(g, g)r–Ès̨,x̨Í

= e(g, g)Èx̨,y̨Íe(g, g)Ès̨,x̨Ír–

e(g, g)r–Ès̨,x̨Í

= e(g, g)Èx̨,y̨Í,

and output Èx̨, y̨Í = loge(g,g) e(g, g)Èx̨,y̨Í.

Theorem 6.3

Under the q-MEBDH assumption, the construction is selectively secure.

Proof

Suppose that there exists an adversary A who breaks the selective security game
of our scheme. We will build a simulator B that breaks the decisional q-MEBDH
assumption.

The simulator B takes as input a q-MEBDH challenge P, T. The simulator
then proceeds in the game as follows.

The adversary A submits a revocation set R = {ID1, . . . , IDm}, (m Æ q) and
two messages y̨0, y̨1 œ Zk

q to the simulator.
B finds a basis {zi}iœ[k≠1] of (y̨1 ≠ y̨0)‹. For each vector zi, chooses a random

element di œ Zp as secret key and set e(g, g)di as the master public key for zi

84

and also, B sets e(g, g)– as the master public key for y̨1 ≠ y̨0. Let {ę1, . . . , ęk}
be the canonical basis of Zk

q . B finds ci, ⁄i,j œ Zq such that

ęi = ci (y̨1 ≠ y̨0) +
k≠1ÿ

j=1
⁄i,jzj

then, sets

“i :=
k≠1Ÿ

j=1
e(g, g)dj⁄i,j and e(g, g)–si := e(g, g)–ci · “i.

Let ą = (a1, . . . , aq)T .

For each j = 1, . . . , q, we denote M (≠1)
IDj

as the matrix obtained by omitting
the first row. We have

rank
1
M (≠1)

IDj

2
= k ≠ 1.

Therefore the linear equation system with unknowns (b2,j, . . . , bk,j) :
1
MIDj

2T
b̨j :=

1
MIDj

2T
(1, b2,j, · · · , bk,j)T = ≠æ0

have a solution. We define a k ◊ q matrix

B =
Ë
b̨1, b̨2, . . . , b̨q

È
,

where b̨j is the jth column of B.
We choose ”̨ = (”1, . . . , ”q)T $Ω Zq

q and implicitly define the vector

–̨ = Bą + B”̨.

We set

g–1 = ga1+···+aq+”1+···+”q .

Therefore, we can calculate

g–1–̨ = g–1Bąg–1B”̨ = gB(a1+···+aq+”1+···+”q)ąg–1B”̨

from terms gai , gaiaj of MEBDH instance problem. Therefore, we totally simulate
the public key.
Simulate Decryption keys: The simulator B should answer all decryption
keys which are asked by the adversary A such that the function x̨ must hold

Èx̨, y̨1 ≠ y̨0Í = 0.

• We have

Ès̨, x̨Í =
ÿ

jœ[k≠1]

Q

a
ÿ

iœ[k]
xi⁄i,j

R

b dj.

85

• B simulates the decryption key for jth query as follows. It chooses
tÕ
j

$Ω≠ Zq and implicitly defines tj = tÕ
j ≠ –Ès̨, x̨Í/a2

j by setting

sk0 = gtÕ
j g≠–Ès̨,x̨Í/a2

j ,

sk1 = g–Ès̨,x̨Í+tj–2
1 = g–Ès̨,x̨Í+(tÕ

j≠–Ès̨,x̨Í/a2
j)–2

1

=
1
g–2

1
2tÕ

j · g–Ès̨,x̨Í(1≠–2
1)/a2

j .

The components sk0, sk1 can be computed from terms g–/a2
j , g–a2

i /a2
j for

1 Æ i, j Æ k from the problem instance.
We have

sk2 = gtj(MIDj)
T

–̨

= gtk(MIDj)
T (Bą+B”̨)

= gtÕ
k(MIDj)

€
Bą · g

≠
–Ès̨,x̨Í

1
MIDj

2T

Bą

a2
j · gtj(MIDj)

T
B”̨.

The term gtÕ
j(MIDj)

€
Bą can be calculated trivially from gai and the term

gtj(MIDj)
T

B”̨ can be calculated from g–/a2
j .

We consider the term g
≠

–Ès̨,x̨Í
1

MIDj

2T

Bą

a2
j . Since

1
MIDj

2T
b̨j = ≠æ0 ,

the term aj does not appear in
1
MIDj

2T
Bą.

Therefore, the term g≠–(MIDj)
T

Bą/a2
j can be computed from the term g–ai/a2

j

for j ”= i from the problem instance.

Simulate Challenge Ciphertext: The simulator B receives y̨0, y̨1 and it picks
randomly — œ {0, 1}. The simulator then chooses random rÕ œ Zq. The adversary
A chooses a set of identity Rı µ R and sends to B. We call b̨ı a represention
of the set Rı. Hence, for all j œ [1, q], there must exist w̨j œ Zk≠1

p such that
b̨ı = MIDj w̨j. The ciphertext will be encrypted under randomness Âr = r + rÕ.
The challenge ciphertext will be simulated as follows:

CT0 = (C1, C2, . . . , Ck)
=

1
e(g, g)y—,1T s1 · e(g, g)s1–rÕ

, . . . , e(g, g)y—,kT sk · e(g, g)sk–rÕ2

CT1 = gr–1Ę̀bı,–̨ÍgrÕ–1Ę̀bı,–̨Í

= gr–1(̨bı)T
Bągr–1(̨bı)T

B”̨grÕ–1Ę̀bı,–̨Í

CT2 = grgrÕ

CT3 = gra1 · · · graq · (gr)”1+···+”q · (g–1)rÕ
.

86

We consider the term gr–1(̨bı)T
Bą in the ciphertext CT1. We have

gr–1(̨bı)T
Bą = 1.

Indeed, for each j œ [1, q], the coe�cient of aj in
1
b̨ı

2T
Bą is 0 since

1
b̨ı

2T
b̨j =

1
MIDj w̨j

2T
b̨j = (w̨j)T

1
MIDj

2T
b̨j = (w̨j)T ≠æ0 = 0.

Therefore, there does not have gra2
i in the term gr–1(̨bı)T

Bą.
The other components CT0, CT2, CT3 of the ciphertext can be easily calcu-

lated from the problem instance.
Finally, the adversary A outputs a guess —Õ for —. The simulator then outputs

1 to guesses that T = e(g, g)–r if — = —Õ; otherwise, it and outputs 0 to indicate
that it believes T is a random group element in GT .

When T = e(g, g)–r the simulator B gives a perfect simulation so we have
that

Pr [B (P, T = e(g, g)–r) = 0] = 1
2 + AdvA.

When T = R is a random group element the message y̨— is completely hidden
from the adversary and we have

Pr[B(P, T = R) = 0] = 1
2 .

Therefore, B can solve the decisional q-MEBDH game with non-negligible ad-
vantage. ⌅

6.3.2 Construction based on BDDH and DLIN Assumptions
Let e : G ◊ G æ GT a bilinear map, where G,GT are cyclic groups of order q,

written multiplicatively.

Setup(1⁄, 1k): This algorithm generates a bilinear pairing (G,GT , q, e) for su�ciently
large prime order q and g is a generator of the group G. The bilinear map e
over (G,G) can be calculated e�ciently.

• We choose random generators g, v, v1, v2 œ G.
• We pick random exponents a1, a2, b, –1, . . . , –k œ Zp.

• We set ·1 = vva1
1 , ·2 = vva2

2 , w = g–1 .

• The public key is

PK =
A

g, w, gb, ga1 , ga2 , g–1 , . . . , g–k , gba1 , gba2 , ·1, ·2, · b
1 , · b

2 ,
e(g, g)–1a1b, . . . , e(g, g)–ka1b

B

• The master secret key is

MSK = (v, v1, v2, –̨ = (–1, . . . , –k)) .

87

Extract(ID, MSK, x̨): Takes as input an identity ID œ Zq, the master secret key MSK
and a characteristic vector x̨ = (x1, . . . , xk) œ Zk

q . Each identity ID corresponds
to a vector

—̨ = (—1, . . . , —k) œ Zk
q .

We assume that the first component of —̨ is —1 ”= 0 mod q.
The algorithm chooses random exponents d1, d2, z1, z2 œ Zp and sets d = d1+d2.
The secret key skx̨,ID is the following tuple:

D1 = gÈ–̨,x̨Ía1vd, D2 = g≠È–̨,x̨Ívd
1gz1 , D3 =

1
gb

2≠z1
, D4 = vd

2gz2 ,

D5 =
1
gb

2≠z2
, D6 = gd2b, D7 = gd1 .

K2 = g
d1

1
≠–1

—2
—1

+–2

2

, K3 = g
d1

1
≠–1

—3
—1

+–3

2

, . . . , Kk = g
d1

1
≠–1

—k
—1

+–k

2

.

The term Ki can be rewritten in matrix form as follows:

K = gd1MT
ID

–̨,

where

MT
ID

:=

Q

ccccca

≠—2
—1

1 0 . . . 0
≠—3

—1
0 1 . . . 0

... . . .
≠—k

—1
0 0 . . . 1

R

dddddb
.

Encrypt(R, PK, y̨): Takes as input the set R of identities {ID1, . . . , IDr} that secret
keys will be revoked, the public key PK, a message y̨ = (y1, . . . , yk) œ Zk

q . We
choose b1, . . . , bk are coe�cients of polynomial f(x) with degree k ≠ 1 defined
as follows:

f(x) = z(x)
Ÿ

iœR
(x ≠ i), where z(i) ”= 0, ’i œ R.

The encryption algorithm chooses random exponents s1, s2, t and sets s = s1+s2.
The ciphertext CT is constructed as:

CT0 = (C1, C2, . . . , Ck)
=

1
e(g, g)y1

1
e(g, g)–1a1b

2s2
, . . . , e(g, g)yk

1
e(g, g)–ka1b

2s22

CT1 =
1
gb

2s
, CT2 =

1
gba1

2s1
, CT3 = (ga1)s1 , CT4 =

1
gba2

2s2

CT5 = (ga2)s2 , CT6 = · s1
1 · s2

2 , CT7 =
1
· b

1
2s1 1

· b
2
2s2

w≠t

CT8 =
1
wb1 · g–2b2 · · · g–kbk

2t
= gtÈ–̨,̨bÍ, CT9 = gt.

Decrypt(PK, skx̨,ID, CT): The decryption algorithm will start by computing:

A1 = e (CT1, D1) e (CT2, D2) e (CT3, D3) e (CT4, D4) e (CT5, D5)
= e

1
gbs, gÈ–̨,x̨Ía1vd

2
e

1
gba1s1 , g≠È–̨,x̨Ívd

1gz1
2

e
1
ga1s1 , g≠bz1

2

e
1
gba2s2 , vd

2gz2
2

e
1
ga2s2 , g≠bz2

2

= e(g, g)È–̨,x̨Ía1bs2e(v, g)bsde (v1, g)a1bs1d e (v2, g)a2bs2d .

88

Next, the algorithm computes:

A2 = e (CT6, D6) e (CT7, D7)
= e(v, g)bsde (v1, g)a1bs1d e (v2, g)a2bs2d e(g, w)≠d1t.

Now,

A3 = A1
A2

= e(g, g)È–̨,x̨Ía1bs2e(g, w)d1t.

We compute e(g, w)d1t as follows:

A4 =
Q

a
e

1
Kb2

2 · · · Kbk
k , CT9

2

e (CT8, D7)

R

b
≠ —1

—̨·̨b

=

Q

cccca

e

A
rk

i=2

3
g≠–1

—i
—1 g–i

4d1bi

, gt

B

e
1
(g–1b1+···+–kbk)t , gd1

2

R

ddddb

≠ —1
—̨·̨b

=

Q

cccca

e

A3
w≠ —2b2+···+—kbk

—1 g–2b2+···+–nbk

4d1
, gt

B

e
1
(wb1 · g–2b2+···+–kbk)t , gd1

2

R

ddddb

≠ —1
—̨·̨b

= e
3

w
—̨·̨b
—1 , g

4d1t· —1
—̨·̨b = e(g, w)d1t.

Finally, we compute
rk

i=1 Cxi
i

A3/A4
=

rk
i=1 e(g, g)xiyie(g, g)xi–ia1bs2

e(g, g)È–̨,x̨Ía1bs2

= e(g, g)Èx̨,y̨Íe(g, g)È–̨,x̨Ía1bs2

e(g, g)È–̨,x̨Ía1bs2

= e(g, g)Èx̨,y̨Í,

and output Èx̨, y̨Í = loge(g,g) e(g, g)Èx̨,y̨Í.

Theorem 6.4

Under the DLIN and BDDH assumption, the construction is adaptively secure.

Proof. This proof is analogous as in [LSW10] and [AL10]. By using the dual system
methodology, we will define (normal, semi-functional) keys and ciphertexts. A normal
key and ciphertext are generated by the real scheme and the normal key can decrypt
both normal ciphertext and semi-functional ciphertext. A semi-functional key can
only decrypt a normal ciphertext and it cannot decrypt a semi-functional ciphertext.

89

Semi-functional keys: By calling Extract to generate a decryption key for an
identity ID. We denote

(DÕ
1, DÕ

2, DÕ
3, DÕ

4, DÕ
5, DÕ

6, DÕ
7, K Õ

2, . . . , K Õ
k) .

by the normal key.
We then generate the semi-functional key as follows

(D1, D2, DÕ
3, D4, DÕ

5, DÕ
6, DÕ

7, K Õ
2, . . . , K Õ

k) ,

where we define

D1 = DÕ
1 · g≠a1a2“, D2 = DÕ

2 · ga2“, D4 = DÕ
4 · ga1“,

in which “ œ Zp is picked randomly.
Semi-Functional Ciphertexts: From a normal ciphertext

(CTÕ
0, CTÕ

1, CTÕ
2, CTÕ

3, CTÕ
4, CTÕ

5, CTÕ
6, CTÕ

7, CTÕ
8, CTÕ

9) ,

we pick randomly ‰ œ Zp and replace (CTÕ
4, CTÕ

5, CTÕ
6, CTÕ

7) by

CT4 = CTÕ
4 · gba2‰, CT5 = CTÕ

5 · ga2‰, CT6 = CTÕ
6 · va2‰

2 , CT7 = CTÕ
7 · va2b‰

2 .

We will prove the Theorem by a following sequence of games:
GameReal is the real security game. We denote GameRealAdvA as the advantage of an
adversary A in the game.
Game0: This is the same as GameReal except that the ciphertext given to the attacker
A is semi-functional.
GameŸ (for 1 Æ Ÿ Æ q) is identical to Game0 but the first i decryption key generation
queries are answered by returning a semi-functional key. We note that in Gameq the
ciphertext and all the keys are semi-functional.
GameFinal: This is the same as Gameq except that the ciphertext is a semi-functional
encryption of a random message instead of y̨—.

The proof uses the indistinguishability between two consecutive games under
some assumptions. The sequence starts from GameReal and stops at GameFinal where
the ciphertext is random and the adversary does not have any advantage.

The indistinguishability between GameReal and Game0 is stated and proved as
follows:

Lemma 6.4

Under the DLIN assumption, GameReal and Game0 are computationally indistin-
guishable .

Proof

The simulator B is given an instance of the DLIN problem

(G, g, f, ‹, gc1 , f c2 , T) ,

B must decide whether T = ‹c1+c2 or is random. To do this, B will call on A by
simulating either GameReal or Game0. A first sends a set S = {ID1, . . . , IDr} to
B.
B simulate PK: The simulator B chooses randomly b, –1, . . . , –k, yv, yv1 , yv2 œ

90

Zq and random group elements w, h œ G. It then sets

g = g, ga1 = f, ga2 = ‹, w = w, h = h.

The values a1, a2 are unknown to the simulator B. B sets:

gb, gba1 = f b, gba2 = ‹b, v = gyv , v1 = gyv1 , v2 = gyv2 .

It then can computes

·1 = vva1
1 = vf yv1

·2 = vva2
2 = vgyv2

e(g, g)–1a1b = e(g, f)–1b, . . . , e(g, g)–ka1b = e(g, f)–kb.

Finally, B sends PK to A.
Decryption Key Extraction: B can generate decryption keys for IDi for all
IDi œ R. It can be done because the simulator B knows

MSK = (g, v, v1, v2, –̨ = (–1, . . . , –k)) .

Simulate Challenge Ciphertext: After obtaining the public key PK and
decryption keys for all identities of R = {ID1, . . . , IDr}, the adversary A sends
B two messages y̨0, y̨1. The simulator B chooses a random value — œ {0, 1} and
generate a semi-functional ciphertext for y̨— and revoked set R as follows:

1. First, the simulator B chooses randomly, sÕ
1, sÕ

2, tÕ and calculates a normal
ciphertext

(CTÕ
0, CTÕ

1, CTÕ
2, CTÕ

3, CTÕ
4, CTÕ

5, CTÕ
6, CTÕ

7, CTÕ
8, CTÕ

9) ,

where
CTÕ

0 = (CÕ
1, CÕ

2, . . . , CÕ
k) .

2. B keeps fix terms CT8 = CTÕ
8, CT9 = CTÕ

9.

It simulates the other components as follows:

CT0 = (C1, . . . , Ck); Cj = CÕ
j (e (gc1 , f) e (g, f c2))b–j , j œ [k],

CT1 = CTÕ
1 (gc1)b , CT2 = CTÕ

2 (f c2)≠b ,

CT3 = CTÕ
3 (f c2)≠1 , CT4 = CTÕ

4(T)b, CT5 = CTÕ
5T,

CT6 = CTÕ
6 (gc1)yv (f c2)≠yv1 T yv2 , CT7 = CTÕ

7
1
(gc1)yv (f c2)≠yv1 T yv2

2b
.

We consider 2 cases:

1. If T = ‹c1+c2 , ciphertext has the distribution of a normal ciphertext with
s1 = ≠c2 + sÕ

1, s2 = c1 + c2 + sÕ
2, and s = s1 + s2 = c1 + sÕ

1 + sÕ
2.

91

2. If T is random, this will be a properly distributed semi-functional cipher-
text.

Therefore, whenever A has some advantage in distinguishing GameReal from
Game0, the simulator can distinguish between the random tuple and DLIN tuple
with the same advantage. ⌅

Lemma 6.5

Under the DLIN assumption, Gamej and Gamej≠1 are computationally indistin-
guishable, for each j œ [q].

Proof

We assume that there exists an adversary A who can distinguish Gamej from
Gamej≠1. We need to build an simulator B to break the DLIN assumption. B
takes as input a DLIN instance (G, g, f, ‹, gc1 , f c2 , T) and has to decide whether
T = ‹c1+c2 or not.
Init. The adversary A first sends the vectors —̨1, . . . , —̨q to the challenger B. We
are considering the jth vector —̨j as (—1, . . . , —k).
Setup. The algorithm B first randomly chooses –, –1, . . . , –k, a1, a2, yv1 , yv2

$Ω
Zp and sets g = g.

A1 = ga1 , A2 = ga2 , B = gb = f, v1 = ‹a2 · gyv1

B1 = gba1 = fa1 , B2 = gba2 = fa2 , v = ‹≠a1a2 , v2 = ‹a1 · gyv2

We set e(g, g)–1a1b = e(f, g)–1a1 , . . . , e(g, g)–ka1b = e(f, g)–ka1 , and then define

·1 = vva1
1 = gyv1 a1 , ·2 = vva2

2 = gyv2 a2 , · b
1 = f yv1 a1 , · b

2 = f yv2 a2 .

The simulator B picks randomly yw, ”1, . . . , ”n
$Ω Zq and defines w = f · gyw .

For i = 2, . . . , k, we set

hi = w—i/—1 · g”i

The simulator B uses the master secret

MSK = (v, v1, v2, –̨ = (–1, . . . , –k))

Key Queries. When A makes the mth private key query, B does as follows.
Case m > j. It generates a normal key, using the master secret key msk.
Case m < j. It creates a semi-functional key using ga1a2 .
Case m = j. In this case, it generates a key by computing

D1 = DÕ
1 · T ≠a1a2 , D2 = DÕ

2 · T a2 · (gc1)yv1 , D3 = DÕ
3 · (f c2)yv1

D4 = DÕ
4 · T a1 · (gc1)yv2 , D5 = DÕ

5 · (f c2)yv2 , D6 = DÕ
6 · f c2 .

92

and D7 = DÕ
7 · (gc1) , as well as elements

Ki = K Õ
i · (gc1)”i for i = 2, . . . , k,

which are all computable since we have w—i/—1 · hi = g”i and

Ki = K Õ
i · (gc1)”1 =

1
w—i/—1hi

2rÕ
1+c1

,

with rÕ
1 = logg (DÕ

7). We consider 2 cases:

1. If T = ‹c1+c2 , the decryption key sk—̨j
= (D1, . . . , D7, K2, . . . , Kn) forms a

normal key where

r1 = rÕ
1 + ◊1, r2 = rÕ

2 + c2, z1 = zÕ
1 ≠ yv1c2, z2 = zÕ

2 ≠ yv2c2

2. If T is random, it can be expressed as T = ‹c1+c2 · g“ for some “
$Ω Zq, so

that the decryption key sk—̨j
is distributed as a semi-functional decryption

key.

Challenge. The adversary A sends to the challenger B two messages y̨0, y̨1
and a vector b̨ı = (bı

1, . . . , bı
k) such that —̨i · b̨ı = 0 for each i œ {1, . . . , q}. The

simulator B takes randomly —
$Ω {0, 1} and generates a normal encryption of y̨—

(CTÕ
0, CTÕ

1, CTÕ
2, CTÕ

3, CTÕ
4, CTÕ

5, CTÕ
6, CTÕ

7, CTÕ
8, CTÕ

9) ,

where
CTÕ

0 = (CÕ
1, CÕ

2, . . . , CÕ
k) .

B then picks randomly ‰
$Ω Zq and simulates the ciphertext as

CT4 = CTÕ
4 · fa2·‰, CT5 = CTÕ

5 · ga2·‰, CT6 = CTÕ
6 · va2·‰

2

CT7 = CTÕ
7 · ‹≠yw·a1·a2·‰ · f yv2 ·a2·‰ = T

sÕ
1

1 · T
sÕ

2
2 · w≠tÕ · ‹≠yw·a1·a2·‰ · f yv2 ·a2·‰

CT8 = CTÕ
8 ·

1
‹

qn

i=2 yı
i ”i

2a1·a2·‰
, CT9 = CTÕ

9 · ‹a1·a2·‰.

The semi-functional component CT7 is created by implicitly setting t = logg (CT9)
as t = tÕ + logg(‹)a1a2‰. Since —̨ · b̨ı = 0, we have

CT8 =
1
wbı

1 · h
bı

2
2 · · · h

bı
k

k

2t
=

3
wbı

1 ·
1
w—2/—1g”2

2bı
2 · · ·

1
w—k/—1g”k

2bı
k

4t

=
3

w—̨ ·̨bı/—1 ·
1
g”2

2yı
2 · · ·

1
g”k

2yı
k

4t

=
3

g
qn

j=2 ”jyı
j

4t

= CTÕ
8 ·

3
‹

qk

i=2 yı
i ”i

4a1·a2·‰

We then can conclude that

(CTÕ
0, CTÕ

1, CTÕ
2, CTÕ

3, CTÕ
4, CTÕ

5, CTÕ
6, CTÕ

7, CTÕ
8, CTÕ

9)

is distributed as a semi-functional ciphertext.
We consider 2 cases:

93

1. If T = ‹c1+c2 , the simulator B guesses correctly and B simulated the
Gamej≠1.

2. If T is random, B simulated the Gamej.

⌅

Lemma 6.6

Under the BDDH assumption, Gameq and GameFinal are computationally indis-
tinguishable.

Proof

We assume that there exists an adversary A who can distinguish Gameq from
GameFinal. We need to build a simulator B to break the BDDH assumption. The
simulator B will obtain an instance of the BDDH problem:

(g, gc1 , gc2 , gc3 , T) .

It must decide whether T = e(g, g)c1c2c3 or T is random.
Init. The adversary A first sends the vectors —̨1, . . . , —̨q to the challenger B.
Setup. The algorithm B first randomly chooses

b, –, –1, . . . , –k, a1, a2, yv, yv1 , yv2 , yw œ Zq,

and sets g = g and the master public key is defined as follows:

gb, ga1 = gc1 , ga2 = gc2 , gba1 , gba2 = (gc2)b , v = gyv , v1 = gyv1

v2 = gyv2 , w = gyw , h1 = g–1 , . . . , hk = g–k

e(g, g)a1–1b, . . . , e(g, g)a1–kb.

Key Queries. We will simulate semi-functional keys for —̨1, . . . , —̨q. For each
—̨i = (—1, . . . , —k), we take randomly d1, d2, z1, z2, “Õ œ Zq and set d = d1 + d2.
The components of decryption key are calculated as follows:

D1 = (gc2)≠“Õa1 vd, D2 = (gc2)“Õ
vd

1gz1 , D3 =
1
gb

2≠z1
, D4 = (gc1)a1 ga1“Õ

vd
2gz2

D5 = g≠bz2 , D6 = gd2b, D7 = gd1 ,

K2 =
1
h—2/—1

1 · h2
2d1

, . . . , Kk =
1
h—k/—1

1 · hk

2d1
.

Challenge. The adversary A sends to the challenger B two messages y̨0, y̨1
and a vector b̨ı = (bı

1, . . . , bı
k) such that —̨i · b̨ı = 0 for each i œ {1, . . . , q}. The

simulator B takes randomly —
$Ω {0, 1} and generates either a semi-functional

ciphertext for y̨— or a semi-functional encryption of a random message as follows:

94

B takes randomly exponents s1, t, ‰Õ. It forms the ciphertext as:

CT0 = (C1, . . . , Ck) =
1
e(g, g)y—,1T –1a1b, . . . , e(g, g)y—,kT –ka1b

2

CT1 = gs1b (gc3)b , CT2 = gba1s1 , CT3 = ga1s1 , CT4 = (gc2)‰Õb ,

CT5 = (gc2)‰Õ
, CT6 = · s1

1 (gc3)yv (gc2)yv2 ‰Õ
, CT7 =

1
· b

1
2s1 (gc3)yvb (gc2)yv2 ‰Õb w≠t,

CT8 = (hbı
1

1 · · · h
bı

k
k)t, CT9 = gt.

We implicitly set s2 = c3 and ‰ = ≠c3 + ‰Õ.

1. If T = e(g, g)c1c2c3 , the ciphertext is distributed as a semi-functional
encryption of y̨—.

2. If T is random, the ciphertext is distributed as a semi-functional encryption
of a random message.

Therefore B can use A ’s output to distinguish T = e(g, g)c1c2c3 from random
with the same advantage that A has in distinguishing Gameq from GameFinal. ⌅

6.4 Towards Fine-grained Revocable Functional En-
cryption for Inner Product

In this section, we propose a new research direction on revocable functional
encryption. The motivation is as follows:

From the definition of revocable functional encryption, we can observe that for
each of the identity ID appearing in list R, every evaluation of functions F which are
assigned to the identity ID will be disable. We consider the following situation (in
PayTV context) each subscriber can use the decode functionality over many channels
of a content provider. When a user wants to unsubcribe some channels, he will request
the provider to stop charging him over these channels. It is clear that the above
definition does not cover this situation because once an identity is revoked, the service
provider will disable decryption over every channel corresponding to this identity.
We will need a fine-grained solution in which the encryption algorithm will allow
us to exclude some identities from decryption for one functionality while preserving
decryption for the other functionalities. We call it as a functional encryption scheme
with fine-grained revocation. The main di�erence from the previous definition of
revocable functional encryption is in the encrypt function: The set R consists of
elements in the form of a pair (ID, F) instead of just ID in the previous case.

95

Definition 6.3

A fine-grained revocable functional encryption scheme frFE consists of four
algorithms (Setup, Extract, Encrypt, Decrypt) which is defined as follows:

Setup(1⁄): Takes as input a security parameter ⁄ and outputs a master key pair
(PK, MSK).

Extract(ID, MSK, F): Given an identity ID of an user, a circuit F œ F⁄ and the
master secret key MSK, this algorithm outputs a secret key skF,ID.

Encrypt(PK, y, R = {(ID, F)}): Takes as input the public key PK, a message
y œ Y⁄, a list of R, this randomized algorithm will output a ciphertext
CT.

Decrypt(PK, skF,ID, CT): Given the master public key PK, a secret key skF,ID and
a ciphertext CT, this algorithm outputs F (y) œ S⁄ or an invalid symbol
‹.

For correctness, we require that for all (PK, MSK) Ω Setup(1⁄), all y œ Y⁄,
each F œ F⁄ and all identities (ID, F) ”œ R, skF,ID Ω Extract(ID, MSK, F), if
CT Ω Encrypt(PK, y, R) then one should get Decrypt(PK, skF,ID, CT) = F (y), with
overwhelming probability.

The security of revocable functional encryption scheme frFE will be defined as
follows:

Definition 6.4

A fine-grained revocable functional encryption scheme frFE for a list R,

frFE = (Setup, Extract, Encrypt, Decrypt)

is semantically secure under chosen-plaintext attacks (or IND ≠ CPA security) if
no PPT adversary has non-negligible advantage in the following game:

• The challenger B runs (PK, MSK) Ω Setup(1⁄) and the master public key
PK is given to the adversary A.

• The adversary adaptively makes secret key queries to the challenger.
That is, the adversary A chooses some pairs of identities ID and functions
F œ F⁄. A sends them to B and then obtains skF,ID Ω Extract(ID, MSK, F)
from B.

• We denote C = IDC ◊ FC ™ ID ◊ F as the set of all elements that have
been asked for the decryption key by the adversary A. The adversary A
chooses distinct messages y0, y1 œ Y⁄, a list R = IDR ◊ FR which each of
element has the form {(ID, F)} such that:

1. IDR ™ IDC .

96

2. For each element (ID, F) œ C and if (ID, F) ”œ R, the following
conditions need to be satisfied:

F (y0) = F (y1).

This restriction is required in all functional encryption to avoid trivial
attacks.

Whenever B receives the messages, it randomly picks — ΩÚ {0, 1} and then
transfers to A a ciphertext CT— = Encrypt(PK, y—, R).

• Adversary A eventually returns a guess —
Õ for a bit — and wins if —

Õ = —.

Selective security. When the messages y0, y1, a list of revoked elements R for the
challenge ciphertext are chosen before the Setup algorithm started, the frFE scheme
is said selectively-security against chosen-plaintext attacks, which is denoted by
sel≠IND≠CPA.

A candidate construction for fine-grained revocable inner product functional
encryption. We will give a candidate construction for fine-grained revocable inner
product functional encryption. The construction is in two steps. In Step 1, by fixing
a function, we will construct a scheme in which one will revoke an arbitrary set of
users corresponding to the function. In step 2, we extend this construction for many
functions.
Step 1. Revocable Functional Encryption for One Function.
Let e : G◊G æ GT a bilinear map, where G,GT are cyclic groups of order q, written
multiplicatively.

Setup(1⁄, 1k): This algorithm generates a bilinear pairing (G,GT , q, e) for su�ciently
large prime order q and g is a generator of the group G. The bilinear map e
over (G,G) can be calculated e�ciently.

• For each i œ {1, . . . , k}, randomly choose si
$Ω Zq. We set s̨ = (s1, . . . , sk).

• We take randomly –
$Ω Zq.

• Let H1, H2 : Zk
q æ G be two cryptographic hash functions.

• The public key is PK =
3
G, g, H1, H2, e(g, g)s1–, . . . , e(g, g)sk–

4
.

• The master secret key is MSK = {–, gs1 , . . . , gsk}.

Extract(ID, MSK, x̨): Takes as input an identity ID œ Zq, the master secret key MSK
and a characteristic vector x̨ = (x1, . . . , xk) œ Zk

q . For each identity ID, we take
randomly t

$Ω Zq and the secret key skx̨,ID is a tuple:

sk0 = gt, sk1 = g–Ès̨,x̨Í · H2(x̨)t, sk2 =
1
H1(x̨)H2(x̨)ID

2t
.

Encrypt(R, PK, y̨, x̨): Takes as input the set R of m identities {ID1, . . . , IDm} asso-
ciating to a function x̨, the public key PK, a message y̨ = (y1, . . . , yk) œ Zk

q .

97

These secret keys will be revoked. We sample r
$Ω Zq chooses random r1, . . . , rm

such that r = r1 + . . . + rm and compute

CT0 = (C1, C2, . . . , Ck)
= (e(g, g)y1e(g, g)s1–r, . . . , e(g, g)yke(g, g)sk–r

CTj,1 =
1
H1(x̨)H2(x̨)IDj

2rj

CTj,2 = grj ,

for all j œ [m].

Decrypt(PK, skx̨,ID, CT): We assume that CT is a ciphertext which is assigned to a
function x̨Õ. In the case H1(x̨) = H1(x̨Õ) = g–2 , H2(x̨) = H2(x̨Õ) = g–1 and
ID ”= IDj for all j œ [m], we first compute

e(sk2, CT2,j)
1

ID≠IDj e(sk0, CT1,j)
≠ 1

ID≠IDj =

= e
31

H1(x̨)H2(x̨)ID
2t

, grj

4 1
ID≠IDj

e
1
gt,

1
H1(x̨Õ)H2(x̨Õ)IDj

2rj
2≠ 1

ID≠IDj

= e(g, g)
rj t(–1ID+–2)

ID≠IDj e(g, g)
≠rj t(–1IDj +–2)

ID≠IDj

= e(g, g)–1trj .

Since r = r1 + . . . + rm, this implies that
mŸ

j=1

3
e(sk2, CT2,j)

1
ID≠IDj e(sk0, CT1,j)

≠ 1
ID≠IDj

4
= e(g, g)–1tr.

We then computes
mŸ

j=1
e(sk1, CT2,j) =

mŸ

j=1
e(g–Ès̨,x̨Í+–1t, grj) = e(g, g)r–Ès̨,x̨Íe(g, g)–1tr.

Finally, we compute

e(g, g)–1tr rk
i=1 Cxi

irm
j=1 e(sk1, CT2,j)

= e(g, g)–1tr rk
i=1 e(g, g)xiyie(g, g)r–xisi

e(g, g)r–Ès̨,x̨Íe(g, g)–1tr

= e(g, g)Èx̨,y̨Íe(g, g)r–Ès̨,x̨Í

e(g, g)r–Ès̨,x̨Í

= e(g, g)Èx̨,y̨Í,

and output Èx̨, y̨Í = loge(g,g) e(g, g)Èx̨,y̨Í.

Step 2. Construction of fine-grained revocable inner product functional encryption.
We will construct a fine-grained revocable functional encryption for inner product
from revocable one function. We assume that the revocable one function is a 4-tuple
(Setup, Extract, Encrypt, Decrypt).

�.Setup(1⁄, 1k): This algorithm generates a bilinear pairing (G,GT , q, e) for su�-
ciently large prime order q and g is a generator of the group G. The bilinear
map e over (G,G) can be calculated e�ciently.

• For each i œ {1, . . . , k}, randomly choose si
$Ω Zq. We set s̨ = (s1, . . . , sk).

98

• We take randomly –
$Ω Zq.

• Let H1, H2 : Zk
q æ G be two cryptographic hash functions.

• The public key is PK =
3
G, g, H1, H2, e(g, g)–s1 , . . . , e(g, g)–sk

4
.

• The master secret key is MSK = {–, gs1 , . . . , gsk}.

�.Extract(ID, MSK, x̨): Takes as input an identity ID œ Zq, the master secret key
MSK and a characteristic vector x̨ = (x1, . . . , xk) œ Zk

q . For each identity ID,
we take randomly t

$Ω Zq and the secret key skx̨,ID is a tuple:

sk0 = gt, sk1 = g–Ès̨,x̨Í · H2(x̨)t, sk2 =
1
H1(x̨)H2(x̨)ID

2t
.

�.Encrypt(R, PK, y̨, X̨): We assume that R = {R1, . . . , Rm} and X̨ = {x̨1, . . . , x̨m}
in which Ri is a list of revokers corresponding to the function x̨i. This algorithm
will call Encrypt(Ri, PK, y̨, x̨i) on the same message y̨ = (y1, . . . , yk) œ Zk

q . The
ciphertext is generated as follows

CT = (Encrypt(R1, PK, y̨, x̨1), . . . , Encrypt(Rm, PK, y̨, x̨m)) .

�.Decrypt(PK, skx̨,ID, CT): The decryptor calls the procedure Decrypt to recover
Èx̨, y̨Í.

Security. It is very challenging to prove the security of our candidate construction.
Di�erent from the case of identity revocation as in [NWZ16] and all classical model,
we have to revoke functions as well. The proof probably requires new insighful
techniques. We leaves this as an open problem for future works.

99

7 Conclusion & Disscussion

The contributions presented in this thesis focus on the design of Broadcast
Encryption, Traitor Tracing, Revocation, and Trace & Revoke schemes. In this
chapter, we will summarize our results and discuss further works.

1. In Chapter 3, we constructed an anonymous broadcast encryption scheme
(AnoBEB) based on k ≠ LWE assumption. Our scheme is the first one, which is
obtained e�ciently as PKE LWE. It is secure against chosen-plaintext attacks.

2. In Chapter 4, we propose a Trace & Revoke system as an application of AnoBEB
and the robust-IPP code. The security of this system relies on AnoBEB and
our construction is the most e�cient trace and revoke scheme for standard
black-box tracing in the bounded collusion model.

3. In Chapter 5, we introduce the notion of Traceable Functional Encryption,
and we also provide an instantiation for the inner product case. The scheme
obtained black-box confirmation, and it is secure under DDH assumption.

4. In Chapter 6, we study revocation problem in functional encryption and propose
several pairing-based constructions for inner product functional encryption with
short ciphertexts or decryption keys. We construct a revocable inner product
functional encryption in the multi-client setting. We extend this primitive to
a new notion of fine-grained revocable functional encryption and propose an
e�cient construction.

Perspectives. There are a couple of questions that remain open.

• We provided in Chapter 3 a LWE-based construction of AnoBEB which is as
e�cient as the underlying LWE PKE. We raise an open question of constructing
AnoBEB schemes from other standard encryptions, namely ElGamal, RSA,
Paillier encryptions, without a significant loss in the e�ciency. This seems
to us an interesting and a challenging problem, even for the simplest case of
a system of N = 2 users. The solution will directly give the most e�cient
Trace & Revoke systems for bounded collusion model (by instantiating our
Trace & Revoke scheme in Chapter 4) from DDH, RSA and DCR assumptions
respectively.

• In designing Trace & Revoke systems, there are two main approaches to tackle
this problem:

100

– restrict to bounded collusion model (motivated by the fact that this is a
practical scenario) and give e�cient solutions;

– consider the full collusion setting (all users can become traitors) and
improve theoretical results as there are actually no e�cient scheme, say
the ciphertext size depends on polylog(N), from the standard assumptions,
without relying on iO or multi-linear maps.

Recently, at STOC ’18, Goyal, Koppula and Waters [GKW18b], relying on
Mixed Functional Encryption with Attribute-Based Encryption, gave a traitor
tracing scheme for full collusion from the LWE assumption with polylog(N)
ciphertext size. It is an interesting open question of constructing a polylog
size Trace & Revoke scheme for full collusion from LWE or from a standard
assumption, as combining tracing and revoking functionalities is always a
di�cult problem.

• In Chapter 5 of this thesis, we formalized the concept Traceable Functional
Encryption and provided an construction of Traceable Functional Encryption
for inner product (Traceable IPFE). This is just a selective scheme and achieves
one-target tracing level in the sense that an adversary A is allowed to ask secret
keys for one target function only, but many identities, and then produces a
pirate decoder for this function. This leads to several open questions in this
direction that follows:

1. Can we build a Traceable IPFE achieve stronger security with more general
security in the sense that the adversary A can ask secret keys for several
functions (instead of just one target function)?

2. Can we build a Traceable IPFE secure from the Learning With Errors
(LWE) or Decisional Composite Residuosity (DCR) assumption?

3. Can we build a Traceable Functional Encryption for more general functions
such as quadratic functions, or any circuit?

4. Can we build a Traceable Functional Encryption in multi-client setting
under standard assumptions?

• In Chapter 6, we studied revocation schemes for inner product functional
encryption. There are still several interesting questions that remain open.

1. Can we construct an anonymous revocable inner product functional en-
cryption? That is, how we can hide a set of revoked user at the time
of encryption? or in other words, whether we can construct a revocable
inner product functional encryption preserving the user’s identity?

2. Can we build a (fine-grained) revocable IPFE from the Learning With
Errors (LWE) or Decisional Composite Residuosity (DCR) assumption?
Whether these constructions can be extended into multi-input or multi-
client schemes.

3. Can we build a decentralized multi-client revocable Functional Encryption
under standard assumptions?

4. Can we build a (fine-grained) revocable functional encryption for more
general functions such as quadratic functions, or any circuit from standard
assumption?

101

102

Bibliography

[ABDP15] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval.
Simple functional encryption schemes for inner products. In Jonathan
Katz, editor, PKC 2015, volume 9020 of LNCS, pages 733–751. Springer,
Heidelberg, March / April 2015.

[ABP+17] Shweta Agrawal, Sanjay Bhattacherjee, Duong Hieu Phan, Damien
Stehlé, and Shota Yamada. E�cient public trace and revoke from stan-
dard assumptions: Extended abstract. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 17,
pages 2277–2293. ACM Press, October / November 2017.

[ACGU20] Michel Abdalla, Dario Catalano, Romain Gay, and Bogdan Ursu. Inner-
product functional encryption with fine-grained access control. LNCS,
pages 467–497. Springer, Heidelberg, December 2020.

[AKPS12] Murat Ak, Aggelos Kiayias, Serdar Pehlivanoglu, and Ali Aydin Selcuk.
Generic construction of trace and revoke schemes. Cryptology ePrint
Archive, Report 2012/531, 2012. http://eprint.iacr.org/2012/531.

[AL10] Nuttapong Attrapadung and Benoît Libert. Functional encryption
for inner product: Achieving constant-size ciphertexts with adaptive
security or support for negation. In Phong Q. Nguyen and David
Pointcheval, editors, PKC 2010, volume 6056 of LNCS, pages 384–402.
Springer, Heidelberg, May 2010.

[ALS16] Shweta Agrawal, Benoît Libert, and Damien Stehlé. Fully secure
functional encryption for inner products, from standard assumptions.
In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part III, volume 9816 of LNCS, pages 333–362. Springer, Heidelberg,
August 2016.

[AP11] J. Alwen and C. Peikert. Generating shorter bases for hard random
lattices. Theor. Comput. Science, 48(3):535–553, 2011.

[AY20] Shweta Agrawal and Shota Yamada. Optimal broadcast encryption
from pairings and LWE. In Vincent Rijmen and Yuval Ishai, editors,
EUROCRYPT 2020, Part I, LNCS, pages 13–43. Springer, Heidelberg,
May 2020.

103

http://eprint.iacr.org/2012/531

[BBW06] Adam Barth, Dan Boneh, and Brent Waters. Privacy in encrypted
content distribution using private broadcast encryption. In Giovanni
Di Crescenzo and Avi Rubin, editors, FC 2006, volume 4107 of LNCS,
pages 52–64. Springer, Heidelberg, February / March 2006.

[Ber91] Shimshon Berkovits. How to broadcast a secret (rump session). In
Donald W. Davies, editor, EUROCRYPT’91, volume 547 of LNCS,
pages 535–541. Springer, Heidelberg, April 1991.

[BF99] Dan Boneh and Matthew K. Franklin. An e�cient public key traitor
tracing scheme. In Michael J. Wiener, editor, CRYPTO’99, volume
1666 of LNCS, pages 338–353. Springer, Heidelberg, August 1999.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Niko-
laenko, Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayaga-
murthy. Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In Phong Q. Nguyen and Elisabeth Oswald,
editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 533–556.
Springer, Heidelberg, May 2014.

[BGW05] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant
broadcast encryption with short ciphertexts and private keys. In Victor
Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 258–275.
Springer, Heidelberg, August 2005.

[BK13] Alexander Barg and Grigory Kabatiansky. Robust parent-identifying
codes and combinatorial arrays. IEEE Trans. Information Theory,
59(2):994–1003, 2013.

[BN08] Dan Boneh and Moni Naor. Traitor tracing with constant size ciphertext.
In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, ACM CCS
08, pages 501–510. ACM Press, October 2008.

[BP08] Olivier Billet and Duong Hieu Phan. E�cient traitor tracing from
collusion secure codes. In Reihaneh Safavi-Naini, editor, ICITS 08,
volume 5155 of LNCS, pages 171–182. Springer, Heidelberg, August
2008.

[BS95] Dan Boneh and James Shaw. Collusion-secure fingerprinting for digital
data (extended abstract). In Don Coppersmith, editor, CRYPTO’95,
volume 963 of LNCS, pages 452–465. Springer, Heidelberg, August 1995.

[BSW06] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant
traitor tracing with short ciphertexts and private keys. In Serge Vaude-
nay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 573–592.
Springer, Heidelberg, May / June 2006.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption:
Definitions and challenges. In Yuval Ishai, editor, TCC 2011, volume
6597 of LNCS, pages 253–273. Springer, Heidelberg, March 2011.

104

[BW06] Dan Boneh and Brent Waters. A fully collusion resistant broadcast,
trace, and revoke system. In Ari Juels, Rebecca N. Wright, and Sabrina
De Capitani di Vimercati, editors, ACM CCS 06, pages 211–220. ACM
Press, October / November 2006.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions
and their applications. In Kazue Sako and Palash Sarkar, editors,
ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 280–300.
Springer, Heidelberg, December 2013.

[BWZ14] Dan Boneh, Brent Waters, and Mark Zhandry. Low overhead broadcast
encryption from multilinear maps. In Juan A. Garay and Rosario
Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages
206–223. Springer, Heidelberg, August 2014.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, e�cient
traitor tracing, and more from indistinguishability obfuscation. In
Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I,
volume 8616 of LNCS, pages 480–499. Springer, Heidelberg, August
2014.

[CFN94] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In Yvo
Desmedt, editor, CRYPTO’94, volume 839 of LNCS, pages 257–270.
Springer, Heidelberg, August 1994.

[CPP05] Hervé Chabanne, Duong Hieu Phan, and David Pointcheval. Public
traceability in traitor tracing schemes. In Ronald Cramer, editor,
EUROCRYPT 2005, volume 3494 of LNCS, pages 542–558. Springer,
Heidelberg, May 2005.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm
for adaptive chosen ciphertext secure public-key encryption. In Lars R.
Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages
45–64. Springer, Heidelberg, April / May 2002.

[Del07] Cécile Delerablée. Identity-based broadcast encryption with constant
size ciphertexts and private keys. In Kaoru Kurosawa, editor, ASI-
ACRYPT 2007, volume 4833 of LNCS, pages 200–215. Springer, Heidel-
berg, December 2007.

[DF02] Yevgeniy Dodis and Nelly Fazio. Public key broadcast encryption for
stateless receivers. In Digital Rights Management Workshop, volume
2696 of Lecture Notes in Computer Science, pages 61–80. Springer,
November 2002.

[DPP07] Cécile Delerablée, Pascal Paillier, and David Pointcheval. Fully collusion
secure dynamic broadcast encryption with constant-size ciphertexts or
decryption keys. In Tsuyoshi Takagi, Tatsuaki Okamoto, Eiji Okamoto,
and Takeshi Okamoto, editors, PAIRING 2007, volume 4575 of LNCS,
pages 39–59. Springer, Heidelberg, July 2007.

105

[DPP20] Xuan Thanh Do, Duong Hieu Phan, and David Pointcheval. Traceable
inner product functional encryption. In CT-RSA 2020, LNCS, pages
564–585. Springer, Heidelberg, 2020.

[DPY20] Xuan Thanh Do, Duong Hieu Phan, and Moti Yung. A concise bounded
anonymous broadcast yielding combinatorial trace-and-revoke schemes.
LNCS, pages 145–164. Springer, Heidelberg, 2020.

[FN94] Amos Fiat and Moni Naor. Broadcast encryption. In Douglas R. Stinson,
editor, CRYPTO’93, volume 773 of LNCS, pages 480–491. Springer,
Heidelberg, August 1994.

[FNP07] Nelly Fazio, Antonio Nicolosi, and Duong Hieu Phan. Traitor tracing
with optimal transmission rate. In Juan A. Garay, Arjen K. Lenstra,
Masahiro Mambo, and René Peralta, editors, ISC 2007, volume 4779 of
LNCS, pages 71–88. Springer, Heidelberg, October 2007.

[FP12] Nelly Fazio and Irippuge Milinda Perera. Outsider-anonymous broadcast
encryption with sublinear ciphertexts. In Marc Fischlin, Johannes
Buchmann, and Mark Manulis, editors, PKC 2012, volume 7293 of
LNCS, pages 225–242. Springer, Heidelberg, May 2012.

[Fre10] David Mandell Freeman. Converting pairing-based cryptosystems from
composite-order groups to prime-order groups. In Henri Gilbert, editor,
EUROCRYPT 2010, volume 6110 of LNCS, pages 44–61. Springer,
Heidelberg, May / June 2010.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In
Michael Mitzenmacher, editor, 41st ACM STOC, pages 169–178. ACM
Press, May / June 2009.

[GGH13] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilin-
ear maps from ideal lattices. In Thomas Johansson and Phong Q.
Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages
1–17. Springer, Heidelberg, May 2013.

[GKM+19] Rishab Goyal, Sam Kim, Nathan Manohar, Brent Waters, and David J.
Wu. Watermarking public-key cryptographic primitives. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2019, Part III,
LNCS, pages 367–398. Springer, Heidelberg, August 2019.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikun-
tanathan, and Nickolai Zeldovich. Reusable garbled circuits and succinct
functional encryption. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, 45th ACM STOC, pages 555–564. ACM Press,
June 2013.

[GKSW10] Sanjam Garg, Abishek Kumarasubramanian, Amit Sahai, and Brent
Waters. Building e�cient fully collusion-resilient traitor tracing and
revocation schemes. In Ehab Al-Shaer, Angelos D. Keromytis, and
Vitaly Shmatikov, editors, ACM CCS 10, pages 121–130. ACM Press,
October 2010.

106

[GKW18a] Romain Gay, Lucas Kowalczyk, and Hoeteck Wee. Tight adaptively
secure broadcast encryption with short ciphertexts and keys. In Dario
Catalano and Roberto De Prisco, editors, SCN 18, volume 11035 of
LNCS, pages 123–139. Springer, Heidelberg, September 2018.

[GKW18b] Rishab Goyal, Venkata Koppula, and Brent Waters. Collusion resistant
traitor tracing from learning with errors. In Ilias Diakonikolas, David
Kempe, and Monika Henzinger, editors, 50th ACM STOC, pages 660–
670. ACM Press, June 2018.

[GKW19] Rishab Goyal, Venkata Koppula, and Brent Waters. New approaches to
traitor tracing with embedded identities. In TCC 2019, Part II, LNCS,
pages 149–179. Springer, Heidelberg, March 2019.

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. In Proc. of STOC, pages
197–206. ACM, 2008. Full version available at http://eprint.iacr.
org/2007/432.pdf.

[GQWW19] Rishab Goyal, Willy Quach, Brent Waters, and Daniel Wichs. Broadcast
and trace with N ‘ ciphertext size from standard assumptions. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2019, Part III,
LNCS, pages 826–855. Springer, Heidelberg, August 2019.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional
encryption with bounded collusions via multi-party computation. In
Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume
7417 of LNCS, pages 162–179. Springer, Heidelberg, August 2012.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-
based encryption for circuits. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, 45th ACM STOC, pages 545–554. ACM
Press, June 2013.

[GVW19] Rishab Goyal, Satyanarayana Vusirikala, and Brent Waters. Collusion
resistant broadcast and trace from positional witness encryption. In
PKC 2019, Part II, LNCS, pages 3–33. Springer, Heidelberg, 2019.

[GW09] Craig Gentry and Brent Waters. Adaptive security in broadcast en-
cryption systems (with short ciphertexts). In Antoine Joux, editor,
EUROCRYPT 2009, volume 5479 of LNCS, pages 171–188. Springer,
Heidelberg, April 2009.

[HS02] Dani Halevy and Adi Shamir. The LSD broadcast encryption scheme.
In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages
47–60. Springer, Heidelberg, August 2002.

[KHAM08] Masafumi Kusakawa, Harunaga Hiwatari, Tomoyuki Asano, and Seiichi
Matsuda. E�cient dynamic broadcast encryption and its extension to
authenticated dynamic broadcast encryption. In Matthew K. Franklin,
Lucas Chi Kwong Hui, and Duncan S. Wong, editors, CANS 08, volume
5339 of LNCS, pages 31–48. Springer, Heidelberg, December 2008.

107

http://eprint.iacr.org/2007/432.pdf
http://eprint.iacr.org/2007/432.pdf

[KS12] Aggelos Kiayias and Katerina Samari. Lower bounds for private broad-
cast encryption. In Information Hiding, volume 7692 of Lecture Notes
in Computer Science, pages 176–190. Springer, 2012.

[KW20] Sam Kim and David J. Wu. Collusion resistant trace-and-revoke for
arbitrary identities from standard assumptions. In ASIACRYPT 2020,
Part II, LNCS, pages 66–97. Springer, Heidelberg, December 2020.

[KY02] Aggelos Kiayias and Moti Yung. Traitor tracing with constant trans-
mission rate. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume
2332 of LNCS, pages 450–465. Springer, Heidelberg, April / May 2002.

[LPQ12] Benoît Libert, Kenneth G. Paterson, and Elizabeth A. Quaglia. Anony-
mous broadcast encryption: Adaptive security and e�cient construc-
tions in the standard model. In Marc Fischlin, Johannes Buchmann,
and Mark Manulis, editors, PKC 2012, volume 7293 of LNCS, pages
206–224. Springer, Heidelberg, May 2012.

[LPSS14] San Ling, Duong Hieu Phan, Damien Stehlé, and Ron Steinfeld. Hard-
ness of k-LWE and applications in traitor tracing. In Juan A. Garay
and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of
LNCS, pages 315–334. Springer, Heidelberg, August 2014.

[LSW10] Allison B. Lewko, Amit Sahai, and Brent Waters. Revocation systems
with very small private keys. In 2010 IEEE Symposium on Security
and Privacy, pages 273–285. IEEE Computer Society Press, May 2010.

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-
fly multiparty computation on the cloud via multikey fully homomorphic
encryption. In Howard J. Karlo� and Toniann Pitassi, editors, 44th
ACM STOC, pages 1219–1234. ACM Press, May 2012.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computa-
tion via multi-key FHE. In Marc Fischlin and Jean-Sébastien Coron,
editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages
735–763. Springer, Heidelberg, May 2016.

[NNL01] Dalit Naor, Moni Naor, and Je�ery Lotspiech. Revocation and tracing
schemes for stateless receivers. In Joe Kilian, editor, CRYPTO 2001,
volume 2139 of LNCS, pages 41–62. Springer, Heidelberg, August 2001.

[NP01] Moni Naor and Benny Pinkas. E�cient trace and revoke schemes.
In Yair Frankel, editor, FC 2000, volume 1962 of LNCS, pages 1–20.
Springer, Heidelberg, February 2001.

[NPP13] Hung Q. Ngo, Duong Hieu Phan, and David Pointcheval. Black-box
trace and revoke codes. 67(3):418–448, November 2013.

[NWZ16] Ryo Nishimaki, Daniel Wichs, and Mark Zhandry. Anonymous traitor
tracing: How to embed arbitrary information in a key. In Marc Fischlin
and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume
9666 of LNCS, pages 388–419. Springer, Heidelberg, May 2016.

108

[PPS12] Duong Hieu Phan, David Pointcheval, and Mario Strefler. Decentral-
ized dynamic broadcast encryption. In Ivan Visconti and Roberto De
Prisco, editors, SCN 12, volume 7485 of LNCS, pages 166–183. Springer,
Heidelberg, September 2012.

[PPSS12] Duong Hieu Phan, David Pointcheval, Siamak Fayyaz Shahandashti,
and Mario Strefler. Adaptive CCA broadcast encryption with constant-
size secret keys and ciphertexts. In Willy Susilo, Yi Mu, and Jennifer
Seberry, editors, ACISP 12, volume 7372 of LNCS, pages 308–321.
Springer, Heidelberg, July 2012.

[PR08] Ely Porat and Amir Rothschild. Explicit non-adaptive combinatorial
group testing schemes. In Luca Aceto, Ivan Damgård, Leslie Ann Gold-
berg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz,
editors, ICALP 2008, Part I, volume 5125 of LNCS, pages 748–759.
Springer, Heidelberg, July 2008.

[PST06] Duong Phan, Reihaneh Safavi-Naini, and Dongvu Tonien. Generic con-
struction of hybrid public key traitor tracing with full-public-traceability.
In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener,
editors, ICALP 2006, Part II, volume 4052 of LNCS, pages 264–275.
Springer, Heidelberg, July 2006.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes,
and cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th
ACM STOC, pages 84–93. ACM Press, May 2005.

[Rot06] Ron Roth. Introduction to Coding Theory. Cambridge University Press,
New York, NY, USA, 2006.

[Tar03] Gábor Tardos. Optimal probabilistic fingerprint codes. In 35th ACM
STOC, pages 116–125. ACM Press, June 2003.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and
HIBE under simple assumptions. In Shai Halevi, editor, CRYPTO 2009,
volume 5677 of LNCS, pages 619–636. Springer, Heidelberg, August
2009.

[Wee16] Hoeteck Wee. Déjà Q: Encore! Un petit IBE. In Eyal Kushilevitz and
Tal Malkin, editors, TCC 2016-A, Part II, volume 9563 of LNCS, pages
237–258. Springer, Heidelberg, January 2016.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended
abstract). In 23rd FOCS, pages 160–164. IEEE Computer Society Press,
November 1982.

[Zha20] Mark Zhandry. New techniques for traitor tracing: Size N1/3 and more
from pairings. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2020, Part I, LNCS, pages 652–682. Springer, Heidelberg,
August 2020.

109

	Introduction
	Broadcast Encryption
	Notion
	State of The Art in Broadcast Encryption

	Traitor Tracing
	Notion
	State of The Art in Traitor Tracing

	Motivation for Our Works and Contributions

	Preliminaries
	Notations
	Standard Assumptions
	Prime order group assumptions
	Pairing group assumptions
	Hardness assumption of k-LWE

	Anonymous Broadcast Encryption for Bounded Universe
	Definitions
	Broadcast Encryption
	Anonymous Broadcast Encryption

	A Construction based on the Learning with Errors Assumption
	Efficiency of AnoBEB

	Trace & Revoke Scheme from AnoBEB
	Definitions
	Intuition
	Trace & Revoke Systems
	Robust Identifying Parent Property codes

	Construction
	Trace & Revoke scheme from AnoBEB and robust IPP code
	Correctness and Security

	Traceable Inner Product Functional Encryption
	Traceable Functional Encryption
	Definition
	Security

	Construction for Inner-Product Case
	Security Analysis
	Semantic Security
	Security of Tracing Algorithm

	Revocable Inner Product Functional Encryption
	Revocable Functional Encryption
	Motivation
	Definition
	Security

	Revocable Functional Encryption for Inner Product with Constant-size Secret Keys
	Construction based on q-type Assumption
	Construction based on BDDH and DLIN Assumptions

	Revocable Functional Encryption for Inner Product with Constant-size Ciphertext
	Construction based on q-type Assumption
	Construction based on BDDH and DLIN Assumptions

	Towards Fine-grained Revocable Functional Encryption for Inner Product

	Conclusion & Disscussion

