L'interféromètre à somme de fréquences ALOHA en bande H : Des tests en laboratoire jusqu'aux premières franges sur le ciel
(Document en Français)
- Thèse soumise à l'embargo de l'auteur : embargo illimité (accès réservé aux membres de l'enseignement supérieur français) Ce document est protégé en vertu du Code de la Propriété Intellectuelle.
- Auteur
- Darré Pascaline
- Date de soutenance
- 29-09-2016
- Directeur(s) de thèse
- Reynaud François - Delage Laurent
- Rapporteurs
- Lantz Eric - Malbet Fabien
- Membres du jury
- Reynaud François - Delage Laurent - Krawczyk Rodolphe - Le duigou Jean-Michel - Desfarges-Berthelemot Agnès
- Laboratoire
- XLIM - UMR CNRS 7252
- Ecole doctorale
- École doctorale Sciences et ingénierie pour l'information, mathématiques (Limoges ; 2009-2018)
- Etablissement de soutenance
- Limoges
- Discipline
- Electronique des hautes fréquences, photonique et systèmes
- Classification
- Astronomie, cartographie, géodésie
- Mots-clés libres
- Interférométrie stellaire, Somme de fréquences, PPLN, Régime de comptage de photons, Cohérence temporelle
- Mots-clés
- Interférométrie,
- Astronomie infrarouge,
- Optique adaptative,
- Spectres de fréquences
La technique de l'interférométrie en astronomie permet d'observer des objets avec une haute résolution angulaire comparativement à l'utilisation d'un unique télescope. L'observation dans l'infrarouge moyen représente aujourd'hui un enjeu en interférométrie notamment pour l'étude des noyaux actifs de galaxie ou de la formation des planètes. Cependant ce domaine spectral est particulièrement contraignant puisqu'il est soumis à l'émission propre des éléments optiques de l'instrument mais également de l'atmosphère. Ce manuscrit développe les travaux effectués sur un nouvel instrument utilisant un processus de conversion de fréquence pour transposer le rayonnement infrarouge vers un domaine spectral permettant de s'affranchir de l'émission propres des optiques. Un prototype fonctionnant dans le proche infrarouge à 1,55 µm et convertissant, via une processus de somme de fréquences, le rayonnement dans le domaine visible autour de 630 nm grâce à une pompe intense à 1064 nm, a été mis en place pour démontrer, en laboratoire, le principe de cette solution innovante notamment dans le cadre de l'analyse de la cohérence spatiale d'un corps noir. L'objectif est maintenant de démontrer la capacité de l'instrument à détecter un objet réel. J'introduis dans cette thèse les notions théoriques essentielles à la compréhension des travaux présentés pour ensuite détailler le fonctionnement de l'instrument et les éléments d'amélioration apportés, notamment en terme de transmission, au cours de ma thèse. Les études préliminaires en laboratoire du comportement de l'instrument ont permis d'aboutir aux premières franges sur le ciel en utilisant la plus petite base (34 m) du réseau interférométrique CHARA et de rechercher la magnitude limite de l'instrument. L'utilisation du processus de conversion de fréquence a pour conséquence de filtrer le spectre converti. Ainsi dans la configuration actuelle de l'interféromètre, seul 0,6 nm du spectre infrarouge en entrée du cristal est converti à travers le processus de SFG. Afin d'augmenter la sensibilité, une solution est de créer plusieurs processus de SFG simultanément dans chaque étage de conversion afin d'échantillonner le spectre infrarouge converti. Cette solution requiert d'utiliser plusieurs sources de pompe indépendantes qui vont créer des systèmes de franges incohérents. Je présente l'analyse de la cohérence temporelle d'une source infrarouge large bande convertie via l'utilisation de deux sources de pompe et un moyen de synchroniser les différents systèmes de franges afin de maximiser le contraste.
- Type de contenu
- Text
- Format
Pour citer cette thèse
Darré Pascaline, L'interféromètre à somme de fréquences ALOHA en bande H : Des tests en laboratoire jusqu'aux premières franges sur le ciel, thèse de doctorat, Limoges, Université de Limoges, 2016. Disponible sur https://aurore.unilim.fr/ori-oai-search/notice/view/2016LIMO0067